Pseudo-Exponentiability

in

Homotopy Slices of Top

and

Pseudo-Slices of Cat

Top//B homotopy slice of Top

objects
$$p: X \longrightarrow B$$

Get a bicategory (composition is not associative)

What are the 2-cells? Equivalence classes of

To obtain Top//B, we'll use a variation of the construction of the lax slice $Cat \nearrow B$ as the Kleisli 2-category of a 2-monad on Cat/B (Street SLN 420).

Cat//B pseudo-slice of Cat (2-category)

objects
$$p: X \longrightarrow B$$

2-cells
$$F\colon f \longrightarrow f'$$
 s.t. $\begin{picture}(0,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}$

Cat/B 2-slice of Cat (2-category)

objects
$$p: X \longrightarrow B$$

$$\begin{array}{ccc} & X & \xrightarrow{f} Y \\ & & & \\ & & B \end{array}$$

2-cells
$$F: f \longrightarrow f'$$
 s.t. $qF = id_p$

NOTATION

Consider B^I in Cat, where I is the category

$$0 \stackrel{\cong}{\longrightarrow} 1$$

The composition functor is denoted by

$$B^I \times_B B^I \xrightarrow{\circ} B^I$$

and the identity-valued functor by

$$B \xrightarrow{\iota} B^I$$

where

Note.
$$X \xrightarrow{\widehat{\varphi}} Y \longleftrightarrow X \xrightarrow{\langle \widehat{\varphi}, f \rangle} B^I \times_B Y \longleftrightarrow B \xrightarrow{P} B^{I} \times_B Y$$

Define $T: \mathbf{Cat}/B \longrightarrow \mathbf{Cat}/B$ by

$$T(X \xrightarrow{p} B) = B^I \times_B X \xrightarrow{ev_0\pi_1} B$$

$$\eta_X: X \xrightarrow{\langle \iota_p, id_X \rangle} B^I \times_B X$$

$$\mu_X: B^I \times_B B^I \times_B X \xrightarrow{\circ \times id_X} B^I \times_B X$$

 $T = (T, \eta, \mu)$ is a 2-monad on $\mathcal{K} = \text{Cat}/B$

 $\operatorname{Cat}/\!/B$ is the *Kleisli 2-category* $\mathcal{K}_{\mathbf{T}}$ of \mathbf{T}

$$|\mathcal{K}_{\mathbf{T}}| = |\mathcal{K}| \qquad \mathcal{K}_{\mathbf{T}}(X, Y) = \mathcal{K}(X, TY)$$

with $id_X = \eta_X$ and composition induced by μ

Top/B 2-slice of Top (2-category)

objects
$$p: X \longrightarrow B$$

morphisms $X \xrightarrow{f} Y$

2-cells equivalence classes* of

$$X \times I \xrightarrow{F} Y$$

$$p\pi_1 \qquad \qquad p$$

s.t.
$$F|_{X\times 0} = f$$
, $F|_{X\times 1} = f'$

* $F \sim F'$ if there exists

$$X \times I^2 \xrightarrow{h} Y$$
 $p\pi_1 \qquad q$
 B

 $h|_{X\times I\times 0} = F$, $h|_{X\times I\times 1} = F'$, $h|_{X\times 0\times I} = f$, $h|_{X\times 1\times I} = f'$

Define $T: \mathbf{Top}/B \longrightarrow \mathbf{Top}/B$ by

$$T(X \xrightarrow{p} B) = B^I \times_B X \xrightarrow{ev_0\pi_1} B$$

$$\eta_X: X \xrightarrow{\langle \iota_p, id_X \rangle} B^I \times_B X$$

$$\mu_X: B^I \times_B B^I \times_B X \xrightarrow{\circ \times id_X} B^I \times_B X$$

 $T = (T, \eta, \mu)$ is a pseudo-monad on Top/B

Note. T is a 2-functor and η , μ are 2-natural, but

only commute up to invertible modifications

Define Top//B to be the *Kleisli bicategory*

Remark. Given $q: Y \to B$ exponentiable in the category \mathbf{Top}/B , the natural bijections

$$\theta_{p,r}$$
: $\mathbf{Top}/B(X \times_B Y, Z) \to \mathbf{Top}/B(X, Z^Y)$

are 2-natural isos of categories, or equivalently, the adjunction $-\times_B Y\dashv (\)^Y$ is a 2-adjunction.

When is q pseudo-exponentiable in Top/B?

Recall. An object Y is *pseudo-exponentiable* in a bicategory \mathcal{K} if $-\times Y : \mathcal{K} \to \mathcal{K}$ has a right pseudo-adjoint, i.e., there are equivalences

$$\theta_{X,Z}$$
: $\mathcal{K}(X \times Y, Z) \to \mathcal{K}(X, Z^Y)$

pseudo-natural in X and Z.

Lemma 1. If \mathbf{T} is a pseudo-monad on a bicategory \mathcal{K} with binary pseudo-products and

$$\rho: T(X \times TY) \longrightarrow TX \times TY$$

is an equivalence in \mathcal{K} , then $X \times TY$ is a pseudo-product of X and Y in \mathcal{K}_T .

Examples. $X \times_B B^I \times_B Y$ is a pseudo-product in $\mathbf{Cat}/\!/B$ and $\mathbf{Top}/\!/B$, since

$$\rho: B^I \times_B (X \times_B B^I \times_B Y) \longrightarrow (B^I \times_B X) \times_B (B^I \times_B Y)$$

is given in both cases by

$$\left(b \stackrel{\alpha}{\to} px, x, px \stackrel{\beta}{\to} qy, y\right) \mapsto \left(\left(b \stackrel{\alpha}{\to} px, x\right), \left(b \stackrel{\alpha}{\to} px \stackrel{\beta}{\to} qy, y\right)\right)$$

Suppose TY is pseudo-exponentiable in \mathcal{K} , and consider:

$$\mathcal{K}_{\mathbf{T}}(X \times TY, Z) = \mathcal{K}(X \times TY, TZ) \longrightarrow \mathcal{K}(T(X \times TY), T^{2}Z)$$

$$\stackrel{\mathcal{K}(id,\mu)}{\longrightarrow} \mathcal{K}(T(X \times TY), TZ) \simeq \mathcal{K}(TX \times TY, TZ) \simeq \mathcal{K}(TX, TZ^{TY})$$

$$\stackrel{\mathcal{K}(id,\eta)}{\longrightarrow} \mathcal{K}(TX, T(TZ^{TY})) \stackrel{\mathcal{K}(id,\mu)}{\longleftarrow} \mathcal{K}(TX, T^{2}(TZ^{TY}))$$

$$\longleftarrow \mathcal{K}(X, T(TZ^{TY})) = \mathcal{K}_{\mathbf{T}}(X, TZ^{TY})$$

If these functors are all equivalences, then Y will be pseudo-exponentiable in $\mathcal{K}_{\mathbf{T}}.$

Lemma 2. If **T** is a pseudo-monad on \mathcal{K} and $\eta T \cong T\eta$, then

$$\mathcal{K}(X,TY) \longrightarrow \mathcal{K}(TX,T^2Y) \xrightarrow{\mathcal{K}(id,\mu)} \mathcal{K}(TX,TY)$$

is an equivalence, for all X,Y.

Lemma 3. If T is as in Lemma 2 and TY is pseudo-exponentiable in K, then

$$\eta: TZ^{TY} \longrightarrow T(TZ^{TY})$$

is an equivalence in K, for all Z.

Examples. $\eta T \cong T\eta$ in Cat/B and Top/B

Theorem. Suppose \mathcal{K} has pseudo-products, \mathbf{T} is a pseudo-monad on \mathcal{K} , $\eta T \cong T\eta$, and

$$\rho: T(X \times TY) \to TX \times TY$$

is an equivalence, for all X.

If TY is pseudo-exponentiable in \mathcal{K} , then Y is pseudo-exponentiable in \mathcal{K}_T .

Proof. By Lemmas 2 and 3, the functors

$$\mathcal{K}_{\mathbf{T}}(X \times TY, Z) = \mathcal{K}(X \times TY, TZ) \longrightarrow \mathcal{K}(T(X \times TY), T^{2}Z)$$

$$\xrightarrow{\mathcal{K}(id, \mu)} \mathcal{K}(T(X \times TY), TZ) \simeq \mathcal{K}(TX \times TY, TZ) \simeq \mathcal{K}(TX, TZ^{TY})$$

$$\stackrel{\mathcal{K}(id,\eta)}{\longrightarrow} \mathcal{K}(TX,T(TZ^{TY})) \stackrel{\mathcal{K}(id,\mu)}{\longleftarrow} \mathcal{K}(TX,T^2(TZ^{TY}))$$

$$\leftarrow \mathcal{K}(X,T(TZ^{TY})) = \mathcal{K}_{\mathbf{T}}(X,TZ^{TY})$$

are all equivalences of categories.

Corollary 1. If $q: Y \longrightarrow B$ is a (Hurewicz) fibration and q is exponentiable in Top/B, then q is pseudo-exponentiable in Top/B.

Proof. Show $\eta_Y: Y \to B^I \times_B Y$ is an equivalence in Top/B, with pseudo-inverse given by $\eta_Y'(\beta, y) = H(\beta, y, 0)$, where

Then $q \exp \Rightarrow Tq$ pseudo-exp in $\mathbf{Top}/B \Rightarrow q$ pseudo-exp in \mathbf{Top}/B , by the Theorem.

Examples. Exponentible maps in \mathbf{Top}/B include $q: Y \longrightarrow B$ such that

- (1) Y locally compact, B locally Hausdorff
- (2) q locally trivial with locally compact fibers
- (3) q local homeomorphism

Corollary 2. TFAE for $q: Y \longrightarrow B$ in Cat:

- (a) $B^I \times_B Y \stackrel{ev_0\pi_1}{\longrightarrow} B$ is 2-exponentible in \mathbf{Cat}/B
- (b) q is pseudo-exponentible in Cat//B
- (c) q satisfies pseudo-lifting property:
- (PLP) Given $y \xrightarrow{\alpha} y'$ in Y and $q\alpha = \beta_2\beta_1$ in B, $\exists \alpha_1, \alpha_2$, and an isomorphism γ s.t.

Proof. (a) \Rightarrow (b) by the Theorem

Remarks.

- 1. The (PLP) with $\gamma=id_{b''}$ is the Giraud-Conduché condition for exponentiability in Cat/B .
- Corollary 2 (b)⇔(c) is in Johnstone's "Fibrations and partial products in a 2-category", Appl. Categ. Structures 1 (1993), no. 2, 141–179.