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The Compact closed category Spn(E )

• Let E be a �nitely complete category.

• Objects of Spn(E ) are the objects of E .

• Morphisms U //V are the isomorphisms class of

spans from U to V .

• A span from U to V is a diagram,

(s1,S, s2) :
S

V

s2
��<

<<
<<

U

s1
����

��
�

• An isomorphism of two spans (s1,S, s2) : U //V and

(s′1,S′, s′2) : U //V is an invertible arrow h : S // S′ such
that following diagram commutes.

S

V

s2
##FF

FF
FF

FF

U

s1
{{xxxxxxx

S′
h∼=

��s′1

aaDDDDDDD s′2

==zzzzzzz
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• The composite of two spans (s1,S, s2) : U //V and

(t1,T, t2) : V //W is (s1 ◦p1,S ×V T, t2 ◦p2)

S ×V T

T

p2
��7

77
77

7

W

t2
��7

77
77

77
S

p1
����

��
��

U

s1
����

��
��

�

V
s2 ��7

77
77

77

t1����
��

��
�

• The identity span (1,U ,1) : U //U is

U

U

1
��<

<<
<<

U

1
����

��
�

• This de�nes the category Spn(E ).

• We write Spn(E )(U ,V ) ∼= [E /(U ×V )].
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• The category Spn(E ) is monoidal. Tensor product

Spn(E )×Spn(E ) × //Spn(E )

is de�ned by

(U ,V ) � //U ×V

[U S //U ′ , V T //V ′] � // [U ×VS×T//U ′×V ′].

• It is also compact closed.

In fact, we have the following isomorphisms:

? Spn(E )(U ,V ) ∼= Spn(E )(V ,U )

? Spn(E )(U ×V ,W ) ∼= Spn(E )(U ,V ×W )

The second isomorphism can be shown by the

following diagram

S

W
��<

<<
<<

U ×V
����

��
� ←7→

S

W
��<

<<
<<

U
����

��
�

V
�� ←7→

S

V ×W
��<

<<
<<

U
����

��
�
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Direct sums in Spn(E )

• Let E be a lextensive category.

• A category E is called lextensive when it has �nite

limits and �nite coproducts such that the functor

E /A×E /B //E /A+B ;
X

f
��

A
,

Y
g

��

B

� //

X +Y
f +g

��

A+B

is an equivalance of categories for all objects A

and B.

• In a lextensive category, coproducts are disjoint

and universal and 0 is strictly initial. Also we have

that the canonical morphism

(A×B)+ (A×C ) // A× (B +C )

is invertible.
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• In Spn(E ) the object U +V is the direct sum of U

and V. This can be shown as follows:

Spn(E )(U +V ,W ) ∼= [E /((U +V )×W )]
∼= [E /((U ×W )+ (V ×W ))]

' [E /(U ×W )]× [E /(V ×W )]
∼= Spn(E )(U ,W )×Spn(E )(V ,W );

and so Spn(E )(W,U +V ) ∼= Spn(E )(W,U )×Spn(E )(W,V ).

• The addition of two spans (s1,S, s2) : U //V and

(t1,T, t2) : U //V is given by

S

V

s2
��<

<<
<<

U

s1
����

��
� +

T

V

t2
��<

<<
<<

U

t1
����

��
� =

S +T

V +V

s2+t2
��4

44
44

4

V .

∇
��4

44
44

4U +U

s1+t1
��










U

∇
��










[s1,t1]

��

[s2,t2]

		

• Spn(E ) is a monoidal commutative-monoid-enriched

category.
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Mackey functors on E

• A Mackey functor

M : E // Modk

consists of two functors M∗ : (E )op // Modk ,

M∗ : E // Modk such that

? M∗(U ) = M∗(U ) (= M(U )) for all U in E .

? For all pullbacks

P V
q

//

W ,

s
��

U

p
��

r
//

in E , the square(Mackey square)

M(U ) M(W )M∗(r )
//

M(V )

M∗(s)

OOM(P )

M∗(p)

OO

M∗(q)
//

commutes.
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? For all coproduct diagrams

U i // U +V V
j

oo

in E , the diagram

M(U )
M∗i

// M(U +V )
M∗ioo

M∗ j
//

M(V )
M∗ j

oo

is a direct sum situation in Modk.

(This implies M(U +V ) ∼= M(U )⊕M(V ).)

• A morphism θ : M // N of Mackey functors is a

family θU : M(U ) // N (U ) of morphisms for U in E .

This gives natural transformations θ∗ : M∗ // N∗ and
θ∗ : M∗ // N∗.

• Proposition: (Due to Lindner)

The category Mky(E ,Modk) of Mackey functors is

equivalent to [Spn(E ),Modk]+ of the category of

coproduct-preserving functors. That is:

Mky(E ,Modk) ' [Spn(E ),Modk]+
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• Proof

Let M : E // Modk be a Mackey functor.

We De�ne a morphism M : Spn(E ) // Modk by

M(U ) = M∗(U ) = M∗(U ) and

M

(
S

V

s2
��9

99
99

U

s1
����

��
�

)
= (

M(U ) M(S)
M∗(s1)

// M(V )
M∗(s2)

//
)
.

Conversely, let M : Spn(E ) // Modk be a functor.

Then we can de�ne two functors M∗ and M∗,

E Spn(E )(−)∗ // Modk ,M //

Eop
(−)∗

66mmmmmmmmmmmm

by putting M∗= M ◦ (−)∗ and M∗= M ◦ (−)∗.

• Denote Mky = Mky(E ,Modk) ' [Spn(E ),Modk]+
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Tensor products in Mky

• Let T be general compact closed, commutative-

monoid-enriched category. (The main example is

Spn(E )).

• The tensor product of Mackey functors can be

de�ned by convolution in [T ,Modk]+ since T is a

monoidal category.

• The tensor product is:

(M ∗N )(Z ) =
∫ X ,Y

T (X ⊗Y , Z )⊗M(X )⊗k N (Y )

∼=
∫ X ,Y

T (Y , X∗⊗Z )⊗M(X )⊗k N (Y )

∼=
∫ X

M(X )⊗k N (X∗⊗Z )

∼=
∫ Y

M(Z ⊗Y ∗)⊗k N (Y ).
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Hom functor and Burnside functor

• Let T = Spn(E ) where E the category of �nite

G-sets for the �nite group G.

• The Hom Mackey functor is

Hom(M , N )(V ) = Mky(M(V ×−), N ),

functorially in V .

(L∗M)(U ) // N (U )
L(V )⊗k M(V ×U ) // N (U )

L(V ) // Homk(M(V ×U ), N (U ))

L(V ) //

∫
U
Homk(M(V ×U ), N (U ))

L(V ) // Mky(M(V ×−), N )

• The Burnside functor J : E // Modk has value at U

equal to the free k-module on Spn(E )(1,U ) = [E /U ].

12



Green functors on E

• A Green functor A : E // Modk is

? A Mackey functor (that is, a coproduct

preserving functor A : Spn(E ) // Modk) with

? A monoidal structure made up of a natural

transformation

µ : A(U )⊗k A(V ) // A(U ×V ),

for which we use the notation µ(a⊗b) = a.b for

a ∈ A(U ), b ∈ A(V ), and

? a morphism η : k // A(1) such that η(1) = 1.

• Green functors are the monoids in Mky.

• The Burnside functor J and Hom(A, A) are monoids

in Mky and therefore are Green functors.
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Finite dimensional Mackey functors

• Let Mky�n be the category of �nite-dimensional-

valued Mackey functors. De�ne Mky�n= [T ,Vect�n]+.

• Let C be the full sub-category of T consisting of

the connected G-sets. The functor F : C → T is a

fully faithful functor. The category C has �nitely

many objects. Each X ∈T can be written as

X ∼=
n⊕

i=1
F (Ui ).

• We can show that

M(X ) ∼=
∫ C

T (C , X )⊗M(C ).

• Lemma If S is a commutative monoid generated

by a �nite set of elements s1, . . . , sm and V is a vec-

tor space with basis v1, . . . , vn then S ⊗V is a �nite

dimensional vector space.
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• The tensor product M , N ∈ Mky�n is �nite dimen-
sional.

(M ∗N )(Z ) =
∫ X ,Y

T (X ×Y , Z )⊗M(X )⊗k N (Y )

∼=
∫ X ,Y ,C ,D

T (X ×Y , Z )⊗T (C , X )⊗T (D,Y )⊗M(C )⊗k N (D)

∼=
∫ C ,D

T (C ×D, Z )⊗M(C )⊗k N (D).

Here T (C ×D, Z ) is �nitely generated as a commu-
tative monoid and M(C ) and N (D) are �nite dimen-
sional.

• The promonoidal structure on Mky�n for the Mackey
functors M , N , and L is

P (M , N ;L) =NatX ,Y ,Z (T (X ×Y , Z )⊗M(X )⊗k N (Y ),L(Z ))
∼=NatX ,Y (M(X )⊗k N (Y ),L(X ×Y ))
∼=NatX ,Z (M(X )⊗k N (X∗×W ),L(Z ))
∼=NatY ,Z (M(Z ×Y ∗)⊗k N (Y ),L(Z )).

Therefore the category Mky�n is monoidal for the
promonoidal structure; that is,

P (M , N ;L) ∼= Mky�n(M ∗N ,L).
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• A monoidal category V is ∗-autonomous when it

is equipped with an equivalence S : V op //V of

categories and

V (A⊗B ,SC ) ∼= V (B ⊗C ,S−1 A).

In the category Mky�n we can write (S A)X = A(X∗)∗.

• Theorem The category Mky�n is ∗-autonomous.

• Proof The promonoidal structure P (M , N ;SL) for

the category Mky�n can be written as:

P (M , N ;SL) =NatX ,Y (M(X )⊗k N (Y ),L(X∗×Y ∗)∗)
∼=NatX ,Y (N (Y )⊗L(X∗×Y ∗), (M X )∗)
∼=NatX ,Y (N (Y )⊗L(X ×Y ∗), M∗(X ))
∼= P (N ,L; M∗).

• There is a possibility that for a class of �nite G

(including the cyclic ones) that Mky�n could be

compact (autonomous).

16



Modules over a Green functor

• A module M over A, or A-module means A acts

on M via the convolution.

• The monoidal action αM : A ∗M // M is de�ned by

a family of morphisms

ᾱM
U ,V : A(U )⊗k M(V ) // M(U ×V ),

where we put ᾱM
U ,V (a⊗m) = a.m for a ∈ A(U ), m ∈ M(V ).

• If M is an A-module, then M is of course a Mackey

functor.

• Let Mod(A) denote the category of left A-modules.

Objects are A-modules and morphisms are A-module

morphisms.
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Morita equivalence of Green functors

• For any good monoidal category W we have the

monoidal bicategory Mod(W ). We spell this out in

the case W = Mky:

? Objects are monoids A in W (i.e. A : E // Modk
are Green functors)

? morphisms are modules M : A � //B with a two-

sided action αM : A∗M ∗B // M, that is

αM
U ,V ,W : A(U )⊗k M(V )⊗k B(W ) // M(U ×V ×W )

? Composition of morphisms M : A � //B and

N : B � //C is M ∗B N and it is de�ned via the

coequalizer

M ∗B ∗N
αM∗1N //

1M∗αN
// M ∗N // M ∗B N = N ◦M

that is,

(M∗B N )(U ) = ∑
X ,Y

Spn(E )(X×Y ,U )⊗M(X )⊗k N (Y )/ ∼B .

? The identity morphism is given by A : A � // A.
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? The 2-cells are natural transformations θ : M // M ′
which respect the actions

A(U )⊗k M(V )⊗k B(W ) M(U ×V ×W )
ᾱM

U ,V ,W //

M ′(U ×V ×W ) .

θU×V ×W
��

A(U )⊗k M ′(V )⊗k B(W )

1⊗kθV ⊗k1
��

ᾱM ′
U ,V ,W

//

? The tensor product on Mod(W ) is the convolution

∗. The tensor product of the modules M : A � //B
and N : C � //D is M ∗N : A∗C � //B ∗D .

• De�nition: Green functors A and B are said to

be Morita equivalent when they are equivalent in

Mod(W ).

• Proposition: If A and B are equivalent in Mod(W )

then Mod(A) ' Mod(B) as categories.

• Proof Mod(W )(−, J ) : Mod(W )op // CAT is a pseudo func-

tor and so takes equivalences to equivalences.
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• Now we enriched Mod(A) to a W -category P A.

• The W -category P A has underlying category

Mod(W )(J , A). The objects are modules M : J � // A

and homs are de�ned by the following equalizer.

Mod(A)(M , N ) Hom(M , N )// Hom(A∗M , N )Hom(αM ,1) //

Hom(A∗M , A∗N )

(A∗−)
%%KKKKKKKKKKKKKKKKKKK

Hom(1,αN )

99rrrrrrrrrrrrrrrrrrr

• The Cauchy completion QA of A is the full

sub-W -category of P A consisting of the modules

M : J � // A with right adjoints N : A � // J .

• Recall the classical result from enriched category

theory:

• Theorem: Green functors A and B are Morita

equivalent if and only if QA 'QB as W -categories.
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• In our case this theorem can be applied via our

characterization of the Cauchy completion.

• Theorem: The Cauchy completion QA of the

monoid A in Mky consists of all the retracts of

modules of the form

k⊕
i=1

A(Yi ×−)

for some Yi ∈ Spn(E ).
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Some applications of Mackey
functors

• Let Rep(G) be the category of k-linear representa-

tions of the �nite group G.

The category Mky(G) provides an extension of

ordinary representation theory.

For example, Rep(G) can be regarded as a full

re�ective monoidal sub-category of Mky(G).

• Mackey functors provide relations between λ- and

µ-invariants in Iwasawa theory and between Mordell-

Weil groups, Shafarevich-Tate groups, Selmer groups

and zeta functions of elliptic curves

(W. Bley and R. Boltje, Cohomological Mackey

functors in number theory, J. Number Theory 105

(2004), 1�37).
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