Orthogonality Logic

Lurdes Sousa

Center for Mathematics of the University of Coimbra School of Technology of Viseu

joint work with Jiří Adámek and Michel Hébert

CT2006 WHITE POINT JUNE 25 - JULY 1

category A, $\mathcal{H} \subseteq Mor(A)$

 \mathcal{H}^{\perp} := full subcategory of \mathcal{A} -objects orthogonal to \mathcal{H}

category A, $\mathcal{H} \subseteq Mor(A)$

 \mathcal{H}^{\perp} := full subcategory of \mathcal{A} -objects orthogonal to \mathcal{H}

$$A \xrightarrow{r_A} \overline{A}$$

the construction of the reflection involves categorical "rules" (composition, limits, colimits, factorization, ...)

category A, $\mathcal{H} \subseteq Mor(A)$

 \mathcal{H}^{\perp} := full subcategory of \mathcal{A} -objects orthogonal to \mathcal{H}

$$A \xrightarrow{r_A} \overline{A}$$

 $r_A \in (\mathcal{H}^{\perp})_{\perp}$

the construction of the reflection involves categorical "rules" (composition, limits, colimits, factorization, ...)

category
$$A$$
, $\mathcal{H} \subseteq \mathsf{Mor}(A)$

 \mathcal{H}^{\perp} := full subcategory of \mathcal{A} -objects orthogonal to \mathcal{H}

$$A \xrightarrow{r_A} \overline{A}$$

the construction of the reflection involves categorical "rules" (composition, limits, colimits, factorization, ...)

$$r_A \in (\mathcal{H}^\perp)_\perp$$

Question: When are these "rules" part of a sound and complete deduction system for orthogonality?

Find a Deduction System of RULES such that

$$h \in (\mathcal{H}^{\perp})_{\perp} \Leftrightarrow h \text{ is deducible from } \mathcal{H} \text{ by successively applying the } RULES$$

Find a Deduction System of RULES such that

$$h \in (\mathcal{H}^{\perp})_{\perp} \Leftrightarrow h$$
 is deducible from \mathcal{H} by successively applying the *RULES*

$$\mathcal{H} \models h \Leftrightarrow \mathcal{H} \vdash h$$

Find a Deduction System of RULES such that

$$h \in (\mathcal{H}^{\perp})_{\perp} \Leftrightarrow h \text{ is deducible from } \mathcal{H} \text{ by successively applying the } RULES$$

$$\mathcal{H} \models h \Leftrightarrow \mathcal{H} \vdash h$$

$$\mathcal{H} \models h := (A \perp \mathcal{H} \Rightarrow A \perp h)$$
, for all objects A
 $\mathcal{H} \vdash h :=$ there is a formal proof of h from \mathcal{H} by using the Deduction System

The Finitary Case: Sentences versus Morphisms

$$e \equiv (u = v)$$

 $u \text{ and } v \text{ terms in } X$

$$q_e: FX \to FX/\sim_e$$

algebras satisfying

$$\mathbb{E} = \{e_i, i \in I\}, e_i \equiv (u_i = v_i) \quad \mathbb{E}' = \{q_{e_i}, i \in I\}$$

$$\mathbb{E}' = \{q_{e_i}, i \in I\}$$

The Finitary Case: Sentences versus Morphisms

$$e \equiv (u = v)$$
 $u \text{ and } v \text{ terms in } X$

$$q_e: FX \to FX/\sim_e$$

algebras satisfying

$$\mathbb{E} = \{e_i, i \in I\}, e_i \equiv (u_i = v_i) \quad \mathbb{E}' = \{q_{e_i}, i \in I\}$$

$$\mathbb{E}' = \{q_{e_i}, i \in I\}$$

Analogously for implications and regular sentences

The Finitary Case: Sentences versus Morphisms

A satisfies	A is orthogonal to	
equations	epimorphisms with projective domain	
$\forall \mathbf{x} E(\mathbf{x})$	(orthogonality=inject.)	
implications	epimorphisms	
$\forall \mathbf{x}(E(\mathbf{x}) \to F(\mathbf{x}))$	(orthogonality=inject.)	
limit sentences	morphisms	
$\forall \mathbf{x}(E(\mathbf{x}) \to \exists ! \mathbf{y} F(\mathbf{x}, \mathbf{y}))$		

 $E(\mathbf{x})$ and $F(\mathbf{x})$ involving a finite number of variables and equations

finitary morphisms, i.e., with finitely presentable domain and codomain

G. Roşu, Complete Categorical Equational Deduction (2001):

A sound and complete deduction system for finitary epimorphisms with projective domains

Adámek, Sobral, Sousa, Logic of implications (2005):

A sound and complete deduction system for finitary epimorphisms

Finitary Logic

A a finitely presentable category

- ullet Formulas: finitary morphisms, i.e., morphisms of ${\cal A}_{fp}$
- Formal proofs have only a finite number of steps

If \mathcal{F} is a set of finitary morphisms admitting a left calculus of fractions (in \mathcal{A}_{fp}) then \mathcal{F}^{\perp} is reflective in \mathcal{A} .

Hébert, Adámek, Rosický, More on orthogonality in I.p.c., *Cah. Topol. Géom. Différ. Catég.* 42 (2001)

sound rules

IDENTITY
$$id_A$$

COMPOSITION
$$\frac{h_1 \ h_2}{h_2 \cdot h_1}$$

PUSHOUT
$$\frac{h}{h'} \qquad \text{if} \qquad \bigvee_{h'} \stackrel{n}{\bigvee_{h'}}$$

COEQUALIZER
$$\frac{h}{h'} \qquad \text{if} \qquad \frac{h}{g} \xrightarrow{h'} \frac{h'}{g} \qquad f \cdot h = g \cdot h \\ h' = \operatorname{coeq}(f,g)$$

$$\frac{h}{g} \rightarrow \frac{f}{g}$$

$$(xf)h = (xg)h \implies xf = xg$$

$$(xf)h = (xg)h \implies xf = xg$$

CANCELLATION is not sound

$$\{0\} \xrightarrow{f} \{0,1\} \xrightarrow{g} \{0\}$$

$$g \cdot f = \mathrm{id}_{\{0\}} \not\models f$$

because $\{0,1\} \models id_{\{0\}}$ but $\{0,1\} \not\models f$)

$$abla$$
-cancellation

$$\frac{f \cdot h \quad \nabla_h}{h}$$

Finitary Orthogonality Deduction System

The Finitary Orthogonality Deduction System is sound and complete, that is,

$$\mathcal{H} \models h \text{ iff } \mathcal{H} \vdash h$$

Finitary Orthogonality Deduction System

IDENTITY	$\overline{\operatorname{id}_A}$	
COMPOSITION	$\frac{h_2 \ h_1}{h_2 \cdot h_1}$	
PUSHOUT	$\frac{h}{h'}$	\downarrow \downarrow
COEQUALIZER	$\frac{h}{h'}$	$ \begin{array}{ccc} & & \\ & h' \\ & & $
abla-cancellation	$\frac{f \cdot h \nabla_h}{h}$	g

abla-cancellation

IDENITITY

Finitary Orthogonality Deduction System

IDENIIIY	$\overline{\operatorname{id}_A}$	
COMPOSITION	$\frac{h_2 \ h_1}{h_2 \cdot h_1}$	
PUSHOUT	$\frac{h}{h'}$	$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$
COEQUALIZER	$\frac{h}{h'}$	$ \begin{array}{ccc} & & \\ & h' \\ & & $

Orthogonality Deduction System

IDENTITY

$$id_A$$

TRANSFINITE

$$\frac{h_i, i \in \alpha}{h}$$

 $\xrightarrow{h_1} \xrightarrow{h_2} \cdots$

COMPOSITION

PUSHOUT

$$\frac{h}{h'}$$

$$\downarrow \xrightarrow{h}$$

COEQUALIZER

$$\frac{h}{h'}$$

$$\xrightarrow{h} \xrightarrow{g} \xrightarrow{h'}$$

abla-cancellation

$$\frac{f \cdot h \quad \nabla_h}{h}$$

Orthogonality Deduction System

TRANSFINITE

COMPOSITION

PUSHOUT

COEQUALIZER

abla-cancellation

$$\frac{h_i, i \in \alpha}{h}$$

$$\frac{h}{h'}$$

$$\frac{h}{h'}$$

$$\frac{f \cdot h}{h}$$

$$\xrightarrow{h_1} \xrightarrow{h_2} \cdots \xrightarrow{h}$$

$$\xrightarrow{h} \xrightarrow{g} \xrightarrow{h'}$$

Orthogonality Deduction System

TRANSFINITE COMPOSITION	$\frac{h_i, i \in \alpha}{h}$	$\xrightarrow{h_1} \xrightarrow{h_2} \cdots \xrightarrow{h}$
PUSHOUT	$\frac{h}{h'}$	$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad$
COEQUALIZER	$\frac{h}{h'}$	$ \begin{array}{c} h' \\ \hline h \\ \hline g \\ \end{array} $
abla-cancellation	$\frac{f \cdot h \nabla_h}{h}$	

The Orthogonality Deduction System is sound and complete.

That is,

$$\mathcal{H} \models h \text{ iff } \mathcal{H} \vdash h$$

Incompleteness Example: a cocomplete category where the Orthogonality Logic is not complete

 $\begin{tabular}{ll} {\bf CPO}_{\bot}({\bf 1}) & \begin{tabular}{ll} {\bf Objects:} & (X,\leq,\alpha), \mbox{ where } (X,\leq) \mbox{ is a CPO} \\ \mbox{with a least element, and } & \alpha:X\to X \\ \mbox{ Morphisms: continuous maps preserving } \\ \mbox{the least element and the unary operation} \\ \end{tabular}$

$$\begin{array}{c}
x \bullet \xrightarrow{\alpha} \bullet \xrightarrow{\alpha} \cdots \\
\bot \bullet \xrightarrow{\alpha} \bullet \xrightarrow{\alpha} \cdots
\end{array}$$

$$\begin{array}{c}
h_2 = id \\
\bot \bullet \xrightarrow{\alpha} \bullet \xrightarrow{\alpha} \cdots \\
x < \alpha(x)$$

$$x \bullet \xrightarrow{\alpha} \bullet \xrightarrow{\alpha} \cdots$$

$$\perp \bullet \xrightarrow{\alpha} \bullet \xrightarrow{\alpha} \cdots$$

$$\xrightarrow{h_2=id}$$

$$\bot \bullet \xrightarrow{\alpha} \bullet \xrightarrow{\alpha} \cdots$$

$$\{h_1, h_2\} \models h \text{ but } \{h_1, h_2\} \not\vdash h$$

 $f: A \rightarrow Ord$ is a *coloring* of A, that is:

f is continuous, $f(\bot) = 0$ and $f(\alpha(x)) = f(x) + 1$

 $\mathcal{K}(A,K) = \{ \text{colorings of } A \}$

 $f:A \rightarrow Ord$ is a *coloring* of A, that is: f is continuous, $f(\bot) = 0$ and $f(\alpha(x)) = f(x) + 1$

 $\mathcal{K}(A,K) = \{ \text{colorings of } A \}$

In CPO_{\perp}(1), $\{h_1, h_2\} \models h$

But in K, K is orthogonal to $\{h_1, h_2\}$ but is NOT orthogonal to Then: In $\mathbf{CPO}_{\perp}(\mathbf{1})$, $\{h_1, h_2\} \models h$, but $\{h_1, h_2\} \not\vdash h$.

In the Orthogonality Deduction System, for sets \mathcal{H} , $\mathcal{H} \models h$ iff $\mathcal{H} \vdash h$

In the Orthogonality Deduction System, for sets \mathcal{H} , $\mathcal{H} \models h$ iff $\mathcal{H} \vdash h$

Question: What about the completeness when we admit a proper class of morphisms \mathcal{H} as premises?

In the Orthogonality Deduction System, for sets \mathcal{H} , $\mathcal{H} \models h$ iff $\mathcal{H} \vdash h$

Question: What about the completeness when we admit a proper class of morphisms \mathcal{H} as premises?

Spetial classes:

Classes of epimorphisms: Yes Classes where just a set of morphisms are not epimorphisms: ?? The completeness for classes of the Orthogonality Logic (in locally presentable categories) is equivalent to the Vopěnka's Principle.

existence of huge cardinals

 $\downarrow \downarrow$

Vopěnka's Principle := Ord has no full embedding into a loc. pres. cat.

 \Downarrow

existence of measurable cardinals