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Topological spaces
A topological space is a set X (of points)
equipped with a set of (“open”) subsets of X
closed under finite intersection and arbitrary union.

Chipboard is a set X of particles of sawdust
equipped with a quantity of glue
that causes the sawdust to form a cuboid.
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Classifying subobjects
In a topos there is a bijective correspondence
I between subobjects U > > X
I and morphisms X > Ω.

The exponential ΩX is the powerset.

Similarly upper subsets of a poset or CCD-lattice.

U > 1

X
∨

∩

......................> Ω

>

∨

In topology there is a three-way correspondence
I amongst open subspaces U ⊂ > X,

I morphisms X > Σ ≡
(
�
•

)
,

I and closed subspaces C @ > X.
This is not set-theoretic complementation.
The exponential ΣX is the topology.



Classifying open subspaces
In a topos there is a bijective correspondence
I between subobjects U > > X
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Topology as λ-calculus — Basic Structure
The category S (of “spaces”) has

I finite products

I an internal distributive lattice (Σ,>,⊥,∧,∨)
I and all exponentials of the form ΣX

I satisfying
I for sets, the Euclidean principle

σ ∧ Fσ ⇐⇒ σ ∧ F>

I for posets and CCD-lattices, the Euclidean principle
and monotonicity

I for spaces, the Phoa principle

Fσ ⇐⇒ F⊥ ∨ σ ∧ F>

We do not ask for all exponentials (cartesian closure).
At least, not as an axiom.
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I and all exponentials of the form ΣX

I satisfying
I for sets, the Euclidean principle

σ ∧ Fσ ⇐⇒ σ ∧ F>

I for posets and CCD-lattices, the Euclidean principle
and monotonicity

I for spaces, the Phoa principle

Fσ ⇐⇒ F⊥ ∨ σ ∧ F>

The Euclidean and Phoa principles capture uniqueness of the
correspondence amongst open and closed subspaces of X and
maps X→ Σ (extensionality).



Advantages of this approach
The open–closed duality in topology, though not perfect,
runs deeply and clearly through the theory.

Whenever you have a theorem in this language,
turn it upside down (> ↔ ⊥, ∧ ↔ ∨, ∃ ↔ ∀,⇒↔⇐)
— you usually get another theorem.
Sometimes it’s one you wouldn’t have thought of.

This duality is obscured in
I traditional topology and locale theory by

∨
/∧

I constructive and intuitionistic analysis by ¬¬.
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Advantages of this approach
The theory is intrinsically computable in principle.

General topology is unified with recursion theory.
Recursion-theoretic phenomena appear.
There is no need for recursion-theoretic coding.

However, extracting executable programs is not obvious.
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Some familiar definitions

U > 1

open

X
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∩

> Σ
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X > 1
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X × X
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overt
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⊥
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C > 1

closed

X
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Hausdorff
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u

,X
> Σ
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1 > 1

compact

ΣX

>

∨

∩

∀X
> Σ
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The Frobenius laws for ∃X a Σ
!X a ∀X,

∃X(σ ∧ φ) ⇐⇒ σ ∧ ∃X(φ) and ∀X(σ ∨ φ) ⇐⇒ σ ∨ ∀X(φ),

are special cases of the Phoa principle.



Some familiar theorems
Any closed subspace of a compact space is compact.

Any compact subspace of a Hausdorff space is closed.

The inverse image of any closed subspace is closed.

The direct image of any compact subspace is compact.



Some less familiar theorems
Any open subspace of a overt space is overt.

Any overt subspace of a discrete space is open.

The inverse image of any open subspace is open.

The direct image of any overt subspace is overt.



Are 2N and I ≡ [0, 1] ⊂ R compact?

Not without additional assumptions!

Dcpo has the basic structure, plus equalisers and all
exponentials.

2N exists, and carries the discrete order.

The Dedekind and Cauchy reals may be defined.
They also carry the discrete order.

In this category, the order determines the topology.
The topology is discrete.

2N and I are not compact.
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Abstract Stone Duality

The category of topologies is Sop,
the dual of the category S of “spaces”.
Monadic axiom: It’s also the category of
algebras for a monad on S.

Inspired by Robert Paré, Colimits in topoi, 1974.

S
op

S

Σ(−)

∧

a Σ(−)

∨

Jon Beck (1966) characterised monadic adjunctions:

I Σ(−) : Sop
→ S reflects invertibility,

i.e. if Σf : ΣY � ΣX then f : X � Y, and
I Σ(−) : Sop

→ S creates Σ(−)-split coequalisers.

Category theory is a strong drug —
it must be taken in small doses.
As in homeopathy (?),
it gets more effective the more we dilute it!
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Diluting Beck’s theorem (first part)
If Σf : ΣY � ΣX then f : X � Y.

X is the equaliser of

X >
ηX

> Σ2X ≡ ΣΣ
X

ηΣ2X >

Σ2ηX
> Σ

4X

where ηX : x 7→ λφ. φx.
(Without the axiom, an object X that has this property is called
abstractly sober.)

There’s an equivalent type theory for general spaces X.

For X ≡N this is definition by description
and general recursion.

For X ≡ R it is Dedekind completeness.
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Diluting Beck’s theorem (second part)
Σ(−) : Sop

→ S creates Σ(−)-split coequalisers.
Recall that a Σ-split pair (u, v) has some J such that

Σu ; J ; Σv = Σv ; J ; Σv and idΣX = J ; Σu

Then their equaliser i has a splitting I such that

i ; u = i ; v, idΣE = I ; Σi and Σi ; I = J ; Σv.

E >
i

> X
u

>

v
> Y

Σ
Iφ<....

......
......

φ >

ΣE <<
Σi

>
I

> Σ
X
>

J
>

<< Σu

<
Σv

ΣY

This means that (certain) subspaces exist, and they have the
subspace topology — every open subspace of E is the
restriction of one of X, in a canonical way.
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Applications of Σ-split subspaces
Good news: There’s a corresponding type theory.

Bad news: It’s very awkward to use.

It can, however, be used to prove that Σ is a dominance or
classifier for open inclusions (closed ones too).

We may also construct
I the lift or partial map classifier X⊥,
I Cantor space 2N, and
I the Dedekind reals R.

Moreover, 2N and I are compact.

More generally, it can be used to develop an abstract, finitary
axiomatisation of the� relation for continuous lattices.

The free model is equivalent to the category of computably
based locally compact locales and computable continuous
functions.
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Overt discrete objects
Recall: discrete spaces have equality (=),
overt spaces have existential quantification (∃).

These play the role of sets.
For example, to index the basis of a locally compact space.

The full subcategory E ⊂ S of overt discrete spaces has:
I finite products,
I equalisers,
I stable disjoint coproducts,
I stable effective quotients of equivalence relations,
I definition by description.

This is a miracle.
None of the usual structure of categorical logic
was assumed in order to make it happen.
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Lists and finite subsets
On any overt discrete object X, there exist
I the free semilattice KX or “set of Kuratowski-finite

subsets” and
I the free monoid ListX or “set of lists”.

So E (the full subcategory of overt discrete objects) is
an Arithmetic Universe.

Kuratowski-finite = overt, discrete and compact.

Finite = overt, discrete, compact and Hausdorff.



Models of the monadic axiom
It is easy to find models of the monadic axiom.
If S0 has 1, × and Σ(−), then S ≡ Aop also has them, and the
monadic property, whereA is the category of Eilenberg–Moore
algebras for the monad on S.
It also inherits
I the other basic structure (>, ⊥, ∧, ∨ and the Euclidean or

Phoa axioms),
I N (with recursion and description),
I the Scott principle.

However, it need not inherit other structure such as being
cartesian closed or (a reflective subcategory of) a topos.

We call S the monadic completion of S0 and write S0 for it.



Escaping from local compactness
Most of the ideas that you try take you back in again!

The extended calculus should include
I all finite limits (in particular equalisers),
I something to control the relationship between equalisers

and exponentials (Σ(−)).
The second generalises the monadic axiom,
which we needed to get the correct topology on 2N and R.

I have a conjecture for what this axiom should be,
but I don’t have a model of it or any other proof of consistency.

Less ambitiously, we look for axioms that ensure that S
includes the category Loc(E) of locales, or at least
the category Sob(E) of sober spaces or spatial locales.
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An interim model
Dana Scott’s category Equ of equilogical spaces
I has the basic structure,N and the Scott principle,
I includes all sober spaces (in the traditional sense)

as abstractly sober objects, and
I satisfies the underlying set axiom (to follow).

The monadic completion Equ ≡ Aop of Equ
I has the basic structure,N and the Scott principle,
I satisfies the monadic principle,
I includes all sober spaces (maybe all locales?),
I satisfies the underlying set axiom,
I has all finite limits, colimits and exponentials

(it’s cartesian closed).

This is not the definitive model.
We just use it to guarantee consistency of the proposed axioms.
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The Underlying Set Axiom
Recall that the underlying set functor U from
the classical category Sp of (not necessarily T0) spaces
has adjoints

Sp

Set

discrete ≡ ∆

∧

a U

∨

a indiscriminate

∧

In ASD, Sp becomes S and ∆ : Set ⊂ Sp becomes E ⊂ S.
Underlying set axiom: ∆ has a right adjoint U.

Again, there’s a corresponding type theory:

a : X
========
τ. a : UX

a = ε(τ. a)

so long as the free variables of a are all of overt discrete type.
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Overt discrete objects form a topos
Lemma: Any mono X→ D from an overt object to a discrete
one is an open inclusion, and therefore classified by Σ.

Theorem:
I The underlying set axiom ∆ a U holds
I iff S is enriched over E, where

S(X,Y) > > UΣΣ
Y
×X >

> UΣΣ
3Y×X

is an equaliser in E,
I and then E is an elementary topos with Ω ≡ UΣ.

Now we can compare our category S
with Loc(E) and Sob(E).
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Comparing the monads
We have a composite of adjunctions over the topos E:

> Sop

S

Σ(−)

∧

a Σ(−)

∨

Σ

E

∆

∧

a U
∨

<

Ω

The monad Ω · Σ on E
is (isomorphic to) that for frames
iff the general Scott principle holds,

Φξ ⇐⇒ ∃` : K(N). Φ(λn. n ∈ `) ∧ ∀n ∈ `. ξn,

where N is any object of the topos E, not necessarily countable,
ξ : ΣN and Φ : ΣΣ

N
.



Comparing Swith Loc(E)
Assuming the general Scott principle as an axiom,
Loc(E) is the opposite of the category of Eilenberg–Moore
algebras for the monad Ω · Σ on E.
There is an Eilenberg–Moore comparison functor S → Loc(E).

S is too big — the functor is not full or faithful.
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Comparing Swith Loc(E)
Consider the full subcategory L ⊂ S
of objects X that are expressible as equalisers

X > > ΣN >
> Σ

M

where N,M ∈ E.

Axiom: Σ is injective with respect to these equalisers.
Warning: It cannot be injective with respect to all regular
monos in whole of S.

Example: ΣN
N
×NN > > ΣN

N
×NN

⊥
.
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Characterising sober spaces and locales
Theorem: If Σ is injective with respect to equalisers in L
then the comparison functor factorises as

S
>

>
< <

L > > Loc(E)

Indeed L ∩P ' Sob(E),
where P ⊂ S is the full subcategory of spaces X
with enough points, i.e. ε : UX� X.

Recall that S ≡ Equ provides a model of these assumptions
over any elementary topos E.

Corollary: We have a complete axiomatisation of Sob(E) over
an elementary topos E.

Using a stronger injectivity axiom we would be able to force
L ≡ Loc(E) and so completely axiomatise locales
if we had a model or other proof of consistency.
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The extended computable theory
The injectivity axioms can only be stated
in the context of the underlying set axiom.
So they describe a set theoretic form of topology,
i.e. with the logical strength of an elementary topos.

What is the extended form of the monadic axiom
that axiomatised computably based locally compact locales?

I conjecture that ΣΣ
(−)

should preserve coreflexive equalisers.

However, neither Equ nor any similar model satisfies this.

Nevertheless, there is plenty to do to develop the interim
theory.
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