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m Saunders Mac Lane
m Duality for groups
m Bulletin for the American Mathematical Society 56 (1950) 485-516

m Saunders Mac Lane
m Groups, categories and duality

m Bulletin of the National Academy of Sciences USA 34 (1948)
263-267)
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tion, we axiomatize the terms “injection homomorphism of a sub-
group into a larger group” and “projection homomorphism of a group
onto a quotient group.” We can then define homomorphisms onto and
isomorphisms into as “supermaps” and “submaps,” respectively.

DEFINITION. A bicategory® ( is a category with two given subclasses
of mappings, the classes of “injections” (x) and “projections” (x)
subject to the axioms BC-0 to BC-6 below.”

BC-0. A mapping equal to an injection (projection) is itself an in-
jection (projection).

BC-1. Every identity of ( is both an injection and a projection.

BC-2. If the product of two injections (projections) is defined, it is
an injection (projection).

BC-3. (Canonical decomposition). Every mapping e of the bi-
category can be represented uniquely as a product a= i, in which
«is an injection, 8 an equivalence, and  a projection.

Any mapping of the form \=#f (that is, any mapping with = equal
to an identity in the canonical decomposition) is called a submap;
any mapping of the form p =6 is called a supermap.

BC-4. If the product of two submaps (supermaps) is defined, itisa
submap (supermap).

Any product k7 - - - k., of injections x; and projections ; is
called an idemmap.

BC-5. If two idemmaps have the same range and the same domain,
they are equal.

BC-6. For each object 4, the class of all injections with range 4 is
a set, and the class of all projections with domain 4 is a set.

The inclusion relations between the various classes of mappings
can be represented by the following Hasse diagram.

Mappings

}bmzps supermaps
quivall P
identities

* The term “bicategory” was suggested by Professor Grace Rase.
7 In the preliminary announcement [16], axiom BC-6 did not appear, and axiom
BC-5 was present only in weaker form.
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jections, projections, identities, and their products. When so formu-
lated, it has a definite dual, but note that there may be several such
formulations which lead to essentially different duals. For example,
4Qis a quotient group of G” (that s, there is a projection with domain
G and range Q) is equivalent to “Qisa conormal quotient group of
(.» The duals—*M is a subgroup of G” and “ M is a normal subgroup
of G*—are not equivalent.

11. Partial order in a bicategory. The axioms (especially axiom
BC.5) suffice to introduce a relation of partial order (under “inclu-
sion”) in the objects of a bicategory: We define a mapping B to be
Jeft cancellable in a category if By = Bou always implies aa=a and
left imvertible if § has a left inverse v, with 7B =Ip- One may readily
prove, in succession, the following results.

Lemma 11.1. Two injections k1 and xa such that KKy is 4 identity are
themselves identities.

Luswca 11.2. Eoery right factor of a submapping is a submapping.
Liasia 1.3, If off s an identity, o s a supermap and B a submap.

Liava 1.4, Every left invertible mapping is @ submap, and every
submap is left cancellable.

Truores 11.5. The class of objects in @ bicategory is partially ordered
by either of the relations

(11.1) SCB ¥ and only if there is an injection k: S—B:

(11.17) Q=4 i and only if there is a projection T A—Q.

1f SCB, we call S a subobject of B, while if Q<4, Q is a guotient-
object of A, the terms corresponding to those in group theory. By
asiom BC-5 the mappings k and ¥ which appear in the dual defini-
tions (11.1) and (11.1') are unique; it is more suggestive to denote
them as

(11.2) «=[BDS):S~B: =los4l:4—0
Thus [BOS) is a mapping, defined preciscly when SCB and is then

an injection; every injection has this form. The notation is so chosen
that
1.3 [BDSISD r1=[8>7} [R= ollos 4] = [R= 4]
by BC-5, whenever the terms on the left are defined.

In examining prospective examples of bicategories, it is easier to
formulate the axioms directly in terms of these constructions on the
objects.
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A brief history of factorization systems

m Mac Lane 1948/1950
Isbell 1957/1964
Quillen 1967

m Kennison 1968

Kelly 1969

Ringel 1970/1971

m Freyd-Kelly 1972

m Pumpliin 1972
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(Orthogonal) factorization system (£, M) in C

(FS*1&2) &
c

M M=EL
(FS*3) :

= &

(FS*1) Iso-&£CE M -TIsoC M
(FS*2) &1M

(FS*3) C=M-€&
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Alternative characterization

(FS1) Iso C ENM
(FS2) £-ECEM-MCM
(FS3) C=M- &
(FS31) 6/1-\
. [~
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Strict factorization system (&, My) in C (M. Grandis)

(SFS1) Id C & N My

(SFS2) & - & C &y, My - My C M,
(SFS3) C=Myg-&

(SFS3!)

FINE
SN
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“Higher” Justification:

m [:C? - C <= Eilenberg-Moore structure w.r.t. (J?
m fs <= normal pseudo-algebras (Coppey, Korostenski-Tholen)
m sfs <= strict algebras (Rosebrugh-Wood)

Walter Tholen (York University, Torc Mac Lane and Factorization CT2006 10 / 31



{)
Free structure on C*#

u 1 u
—_— — s ——>
—_— —— s ———>

v v 1
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Mac Lane again:

(BC1
(BC2
(BC3

(BC3!

Id C & N Mg
& - & C &y, Mo - My € My
C =M,y Iso- &

J
R
e/7| IK
| |
1| |1
R
)

<)

J
(BC4) & -Iso CIso- &, Iso- Mo C My - Iso
(BC5) |Mo-&NC(A,B)| <1

~—  — — ~—
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G /ker¢) —— img¢

m epimorphisms from G <= congruences on GG
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|
objects: sets X with equivalence relation ~x
morphisms: [f]: X =Y
x~x 2l = f(x) ~y f(2))
fr~g &= VzeX: f(z)~y g(z)
closwre: ZCX,ZV={xe€eX|3z€Z:x~x z}
compare: Freyd completion!
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(]

xwfa:’ — f(x) ~y f(2)

& = {[Ix]: X —-X'| ~xC~x}
My = {ZeY]|2>=2)
[f] mono <= ~x=~y
[flepi = [f(X)"=Y
Epi N Mono =1Iso <«<— AC
<= Epi = SplitEpi
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|
Grp™ = Grp(Set™)

m groups with a congruence relation

homomorphisms “up to congruence”

m Grp~ — Set™ reflects isos
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Top™ UC Xopen = U =U"
ibiﬁbration
Set™
Xy —f(X)7

/ (7] \

X Y

Mac Lane: U C Xy open <= 3V C Yopen:U = f~1(V)
Better: U C X;open < 3V =V~CY:U = f~1(V) open
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Double factorization system (&, J, My) in C

(DFS*1) TIso-& C &y,Iso- T -Iso € J, My - Iso C My

(DFS*2) (&0, J)L(T, Mo)

(DFS*3) C=My-J - &
|

(EM) s — (€,Iso, M) dfs
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Alternative characterization

(DFS1) IsoC&NJTNM
(DFS2) & & C &, T T ST, My- Mo S Mg
(DFS3) C= M- J -&o

)

(DFS3! /| |\
\v v/

'l

J

(DFS4) J - MoCMy-TJ,&-TCT-&

(&0, T, My) dfs <= (&9, Mo - T), (T - &, M) fs
J=T -E&NMy- T
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Free structure on C3:

u 1 1 u
v .
f1i lgl fll fll Ufll J{gl
v _ 1 v 1
- — . .
f2i iQQ fQ\L wfgl gzl lg2
w wo T 1
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(€0, T, Mo) < (£, W, M)

E=ENW E=TJ &

J=ENM W= My &
Mo=MnNW M= My o

m W is closed under retracts in C3.

m When does W have the 2-out-of-3 property?
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“Quillen factorization

(&0, T, My): systems” (£, W, M):
(607/\/{0'»7)’(\7'50’/\/10) fS, (ngaM)v(gaMmW) fS,
Ey - My C My - &, W has 2-out-of-3 property.

Double factorization systems

ej € &y,e € &y,j € J = J iso,
jm e Mo,m € My, j € J = j iso.

(Pultr-Tholen 2002)
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Weak factorization system (£, M) in C

(WES*1&2) & ,
(WES*3) C=M-&

(WFS*1a) g¢gf € &€, ¢ split mono — f €&
(WES*1b) gf € M, f split epi = ge M
(WFS*2) &0 M
(WFS*3) C=M €
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(Mono,Epi) in Set

= (Mono,Mono®™) wfs in C with binary products and enough
injectives

m (][], SplitEpi) wfs in every lextensive category C
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R
|
fs — wis

&Y. closed under composition, direct products
stable under pullback, intersection

|
If C has kernelpairs, any of the following will make a wfs (£, M) an fs:

m M closed under any type of limit
mgfeMgeM = feM
mgf=1l9geM = feM
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Cassidy-Hébert-Kelly (1985), Ringel (1970)

|
C finitely well-complete

m reflective subcategories of C (full, replete)
m factorization systems (€, M) with gf € £, & = fe&
EM)—FM)={BeC|(B—1)ecM}
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|
F reflective in finitely complete C with reflection p: 1 — R

Vf:A— B :
(E,M) = (R_l(ISO),Cart(R, p)) fs = (pA,fJ)c
ﬂ (A——%RAXRBB)G(S'

& stable under pb along M < F = F(M) semilocalization

1

€ stable under pullback = F = F(M) localization
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C with 0

(€, M) torsion theory <= (£, M) fs,
&, M have 2-out-of-3 property

FM) = {B|(B—0)eM)
T(€) = {A](0— 4) €&}
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C with kernels and cokernels

SKC = SC+—sc 0
mgacl l l
KC—"%—~c—"%=QC
J/ lﬁc J/ﬁc'—VPQC
0 RC ——= RC = RQC

CeFM) < SC=0+«= KC=0
CeT() «— RC=0 <= QC=0
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Qg is0 <= (¢ iso <= nckc =0
(€, M) simple = (&£, M) normal

|
C homological, C°? homological:
normal torsion theories (£, M) <= standard torsion theories (7, F)

0—-T—-C—=F—=0
C(T,F)=0

alter Tholen (York Univ y, Torc Mac Lane and Factorization CT2006 30 / 31



Example

|
C: abelian groups with (4x =0 = 2z =0)
F: abelian groups with 2z =0

0 0 0
Pl
7, QZ(R—> 7 L:l> 7,
l pi lp
1
0 L Lo
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