International Category Theory Conference CT 2006 White Point, Nova Scotia, June 25 - July 1, 2006

Galois theories of internal groupoids via congruence relations for Maltsev varieties

João J. Xarez

jxarez@mat.ua.pt

University of Aveiro

1 Coequalizer of the kernel pair

 \mathbb{C} finitely-complete; (F, φ) pointed endofunctor on \mathbb{C} , s.t. the kernel pair of $\varphi_A : A \to F(A)$ has a coequalizer for every object A in \mathbb{C} .

2 Idempotency of (I, η)

 $Fix(I,\eta), Mono(F,\varphi)$ full subcategories of \mathbb{C} .

Lemma 2.1

 (I, η) well-pointed endofunctor (i.e., $I\eta = \eta I$); $Fix(I, \eta) = Mono(F, \varphi)$.

Proposition 2.2

 $\mu, F\eta \ monics \Rightarrow (I, \eta) \ idempotent$

Remark 2.3

 (I,η) idempotent $\Leftrightarrow I\eta = \eta I$ and ηI iso $\Leftrightarrow Fix(I,\eta)$ reflective in $\mathbb C$

3 Stabilization and m.-l. factorization

Proposition 3.1

All η_A pullback stable regular epis <u>and</u> μ monic <u>and</u> $F\eta$ iso

 $\Rightarrow (I, \eta)$ idempotent with stable units;

$$\underline{and} \ \forall_{B \in \mathbb{C}} \exists_{p:E \to B} \ e.d.m. \ E \in Mono(F, \varphi)$$

 $\Rightarrow (\mathcal{E}', \mathcal{M}^*)$ factorization system (monotone-light).

4 First example: internal categories

 (F,φ) idempotent associated to the localization

$$\mathbf{Cat}(\mathbb{S}) o \mathbf{LEqRel}(\mathbb{S}) \simeq \mathbb{S}$$
 $C \mapsto \nabla_{C_0}$
 $C = C_1 \times_{C_0} C_1 \xrightarrow{\gamma} C_1 \xrightarrow{i} C_0$
 $\varphi_C = \begin{vmatrix} d_C \times d_C & d_C \\ d_C \times d_C & d_C \end{vmatrix} 1_{C_0}$
 $\nabla_{C_0} = C_0 \times C_0 \times C_0 \xrightarrow{} C_0 \times C_0 \xrightarrow{} C_0$

Lemma 4.1 \mathbb{S} regular \Rightarrow for every $C \in \mathbf{Cat}(\mathbb{S})$ the kernel pair of $\varphi_C = (d_C, 1_{C_0})$ has a coequalizer in $\mathbf{Cat}(\mathbb{S})$.

Conclusion 4.2 \mathbb{S} regular:

 $\mathbf{Cat}(\mathbb{S}) \to \mathbf{Preord}(\mathbb{S})$ reflection with stable units;

 $\mathbf{Grpd}(\mathbb{S}) \to \mathbf{EqRel}(\mathbb{S})$ reflection with stable units and monotone-light factorization,

$$(\sigma, d_1) : Eq(d_0) \to G, \text{ with } \sigma = \gamma(1_{G_1} \times s),$$

$$G_1 \times_{G_0} G_1 \times_{G_0} G_1 \xrightarrow{p_1 \times p_2} G_1 \times_{G_0} G_1 \xrightarrow{q_1} G_1$$

$$\downarrow \sigma \times \sigma \qquad \qquad \downarrow \sigma \qquad \qquad \downarrow d_0 \qquad \downarrow d_1$$

$$G_1 \times_{G_0} G_1 \xrightarrow{\gamma} \qquad G_1 \qquad \qquad \downarrow i \qquad G_0$$

$$G_1 \times_{G_0} G_1 \qquad \qquad \downarrow \sigma \qquad \qquad \downarrow i \qquad G_0$$

$$\sigma < 1_{G_1}, id_0 > = 1_{G_1} \text{ and } d_1 i = 1_{G_0}.$$

e.g. $\mathbb{S} = \mathbf{Set} \colon \mathbf{Cat} \to \mathbf{Preord},$ $(\mathcal{E}', \mathcal{M}^*) = (\mathbf{Full} \ \mathbf{and} \ \mathbf{Bijective} \ \mathbf{on} \ \mathbf{Objects}, \mathbf{Faithful}).$

 \mathbb{S} Maltsev category: $\mathbf{EqRel}(\mathbb{S}) = \mathbf{RRel}(\mathbb{S}) (\Rightarrow \mathbf{Cat}(\mathbb{S}) = \mathbf{Grpd}(\mathbb{S})).$

 \mathbb{S} regular Maltsev category: $\mathbf{Grpd}(\mathbb{S}) \to \mathbf{EqRel}(\mathbb{S}) = \mathbf{RRel}(\mathbb{S})$ reflection with stable units and monotone-light-factorization.

A variety of universal algebras is Maltsev iff its theory has a Maltsev operator $p: X \times X \times X \to X, \ p(x,y,y) = x = p(y,y,x).$ e.g. **Grp**:

$$p(x, y, z) = xy^{-1}z;$$
 $Cat(Grp) = Grpd(Grp) \simeq CrossMod.$

5 Geometric morphisms

Corollary 5.1

 \mathbb{C} admits a (regular epi, mono)-factorization <u>and</u> (F,φ) idempotent $\Rightarrow (I,\eta)$ idempotent.

Corollary 5.2

 \mathbb{C} regular <u>and</u> (F,φ) idempotent \Rightarrow (I,η) idempotent; <u>and</u> F left exact \Rightarrow stable units; <u>and</u> $\forall_{B \in \mathbb{C}} \exists_{p:E \to B} \ e.d.m. \ E \in Mono(F,\varphi) \Rightarrow m.-l. \ factorization.$ **Proposition 5.3** Let $F: \mathcal{E} \to \mathcal{F}$ be a geometric morphism between regular categories, $F^* \dashv F_*: \mathcal{E} \to \mathcal{F}$, which is an embedding.

Then, the reflection $I: \mathcal{F} \to Mono(F^*)$, obtained from the localization $F^*: \mathcal{F} \to \mathcal{E}$ through the coequalizer of the kernel pair process, does have stable units. Moreover, there is a monotone-light factorization associated to the reflection $I: \mathcal{F} \to Mono(F^*)$ provided the following four conditions also hold:

- 1. the category \mathcal{F} is cocomplete;
- 2. the full subcategory $Mono(F^*)$ is dense in \mathcal{F} , i.e., every object of \mathcal{F} is a colimit of objects of $Mono(F^*)$.
- 3. in \mathcal{F} the coproduct of monomorphisms is a monomorphism;
- 4. regular epis are effective descent morphisms in \mathcal{F} .

6 Second example: simplicial sets

 $K: \mathcal{B} \to \mathcal{A}$ fully faithful, \mathcal{S} regular and complete

$$\mathcal{S}^K:\mathcal{S}^\mathcal{A} o\mathcal{S}^\mathcal{B}$$

$$\Delta_n^{op} \subset \Delta^{op}, n \ge 0, \mathcal{S} = \mathbf{Set}$$

$$\mathbf{Smp} o \mathbf{Smp}_n$$

$$\mathbf{Smp} \to Mono(F_n)$$

$$(F_n, \varphi^n) \mapsto (I_n, \eta^n)$$

Lemma 6.1 Every unit morphism of any representable functor

$$\varphi_{\Delta(-,[p])}^n : \Delta(-,[p]) \to F_n(\Delta(-,[p])), \ p \ge 0,$$

is a monomorphism in $Smp = Set^{\Delta^{op}}$.