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Beginning (was on board)

1

Applicative systems

• : A× A −→ A

︸︷︷︸
“function”

• : A× A −→ A

m : a −→ b n : a
m n : a −→ b

1The beginning of this talk was given on the board. Here we try to
recap the interactive feel of the board.
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How to make linear resource use available
(on board)

m : a −→ b

m : a −→ b
m :!a ( b

δ[m] : (a×!a) ( b

δ[m] : a ( (!a ( b)

δ[m] : a ( (a −→ b)
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(on board)

m : a −→ b
m :!a ( b

Linear Decompose

m : a −→ b
m :!a ( b

δ[m] : (a×!a) ( b

δ[m] : a ( (!a ( b)

δ[m] : a ( (a −→ b)
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How to make linear resource use available
(on board)

m : a −→ b
m :!a ( b

δ[m] : (a×!a) ( b

δ[m] : a ( (!a ( b)

δ[m] : a ( (a −→ b)

Given that m : a −→ b, δ[m] makes a linear use of one thing of
type a, and then returns the rest of the function a −→ b.
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How to make linear resource use available
(on board)

m : a −→ b
m :!a ( b

δ[m] : (a×!a) ( b

δ[m] : a ( (!a ( b)

δ[m] : a ( (a −→ b)

There are two options for adding linear resource use.

Differential Combinatory Algebras June 26, 2012 4 / 42



How to make linear resource use available
(on board)

m : a −→ b
m :!a ( b

δ[m] : (a×!a) ( b

δ[m] : a ( (!a ( b)

δ[m] : a ( (a −→ b)

Option 1: Add a linear application

m : a −→ b v : a p : a
D(m, v ,p) : b

Lin app
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How to make linear resource use available
(on board)

m : a −→ b
m :!a ( b

δ[m] : (a×!a) ( b

δ[m] : a ( (!a ( b)

δ[m] : a ( (a −→ b)

Option 2: Add a combinator

d : (a −→ b) −→ (a ( (a −→ b))

Differential Combinatory Algebras June 26, 2012 4 / 42



How to use linear application (on board)

I will be a bit suggestive with the notation

We use a special kind
of substitution operation which tries to use v in a linear way and
p in a more classical way.

D(λx .m, v ,p)
D[β]−−−−→ ∂m

∂x
(p) · v
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How to use linear application (on board)

We use a special kind of substitution operation which tries to use
v in a linear way and p in a more classical way.

D(λx .m, v ,p)
D[β]−−−−→ ∂m

∂x
(p) · v

This notation turns out to be more than suggestive. The
categorical models of this system are Blute et al’s Differential
Categories: examples are traditional systems of derivatives.
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The derivative of application (on board)

Recall
m : a −→ b n : a

m n : b
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The derivative of application (on board)

m : a −→ b n : a
m n : b

To be able to support this, application must be linear in the first
variable.
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The derivative of application (on board)

m : a −→ b n : a
m n : b

No assumptions are made about the second argument
because we have no useful information about it.
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The derivative of application (on board)

m : a −→ b n : a
m n : b

If x 6∈ n then we can simplify what linear in the first argument
means:

× 6∈ n =⇒ ∂m n
∂x

(p) · v =

(
∂m
∂x

(p) · v
)

n
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Example Reduction (Resource λ versus
Differential λ)

(λx .x [x∞])[V ,P∞]

D(λx .xx ,V ,P)
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Example Reduction (Resource λ versus
Differential λ)

(λx .x [x∞])[V ,P∞]

D(λx .xx ,V ,P)

In the resource λ-calculus, reduction takes place one argument
at a time. The argument of application is really a multiset, and is
a choice of substitutions V and P. V is available once, and P is
available forever.

Differential Combinatory Algebras June 26, 2012 7 / 42



Example Reduction (Resource λ versus
Differential λ)

(λx .x [x∞])[V ,P∞]

→ (λx .V [x∞])[P∞]

+ (λx .P [x∞])[V ,P∞]

D(λx .xx ,V ,P)

In one world, V is chosen as the argument, and it is used
depleting it from the choice of arguments. In the other world, P
is used; however as it is infinite, it remains in the bag.
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Example Reduction (Resource λ versus
Differential λ)

(λx .x [x∞])[V ,P∞]

→ (λx .V [x∞])[P∞]

+ (λx .P [x∞])[V ,P∞]

D(λx .xx ,V ,P)

→ ∂xx
∂x

(P) · V

On the differential side, there is just one rule, the reduction rule
D[β].
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Example Reduction (Resource λ versus
Differential λ)

(λx .x [x∞])[V ,P∞]

→ (λx .V [x∞])[P∞]

+ (λx .P [x∞])[V ,P∞]

D(λx .xx ,V ,P)

→ ∂xx
∂x

(P) · V

=

(
∂x
∂x

(P) · V
)

x [P/x ]

+ D
(

P,V ,
∂x
∂x

(P) · P
)

Here we can see the derivative break up into two pieces. This is
an application of the higher order chain rule at work. Note the
component of the sum looks different than the second – this is
because the derivative is linear in the first argument.
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Example Reduction (Resource λ versus
Differential λ)

(λx .x [x∞])[V ,P∞]

→ (λx .V [x∞])[P∞]

+ (λx .P [x∞])[V ,P∞]

D(λx .xx ,V ,P)

→ ∂xx
∂x

(P) · V

=

(
∂x
∂x

(P) · V
)

x [P/x ]

+ D
(

P,V ,
∂x
∂x

(P) · P
)

This time we are substituting into an infinite variable.
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Example Reduction (Resource λ versus
Differential λ)

(λx .x [x∞])[V ,P∞]

→ (λx .V [x∞])[P∞]

+ (λx .P [x∞])[V ,P∞]

→ V [P∞] + P [V ,P∞]

D(λx .xx ,V ,P)

→ ∂xx
∂x

(P) · V

=

(
∂x
∂x

(P) · V
)

x [P/x ]

+ D
(

P,V ,
∂x
∂x

(P) · P
)

When substituting into an infinite variable, we get just a normal
substitution.

Differential Combinatory Algebras June 26, 2012 7 / 42



Example Reduction (Resource λ versus
Differential λ)

(λx .x [x∞])[V ,P∞]

→ (λx .V [x∞])[P∞]

+ (λx .P [x∞])[V ,P∞]

→ V [P∞] + P [V ,P∞]

D(λx .xx ,V ,P)

→ ∂xx
∂x

(P) · V

=

(
∂x
∂x

(P) · V
)

x [P/x ]

+ D
(

P,V ,
∂x
∂x

(P) · P
)

Differential Combinatory Algebras June 26, 2012 7 / 42



Example Reduction (Resource λ versus
Differential λ)

(λx .x [x∞])[V ,P∞]

→ (λx .V [x∞])[P∞]

+ (λx .P [x∞])[V ,P∞]

→ V [P∞] + P [V ,P∞]

D(λx .xx ,V ,P)

→ ∂xx
∂x

(P) · V

=

(
∂x
∂x

(P) · V
)

x [P/x ]

+ D
(

P,V ,
∂x
∂x

(P) · P
)

= V P + D(P,V ,P)

The derivative of a variable with respect to itself is just the
“direction vector.”
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Example Reduction (Resource λ versus
Differential λ)

→ V [P∞] + P [V ,P∞]

= V P + D(P,V ,P)
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Differential applicative systems (on board)

The differential λ-calculus of Ehrhard and Regnier is the
embodiment of the above analysis into a rewriting system,
and is the first known example of a differential applicative
system.
The differential λ-calculus is confluent, and is a conservative
extension of the λ-calculus.
Hence, it contains a full model of computability.
The structural story of differential applicative systems was
worked out using the tools from the study of Turing
categories.
The only known models are total and have an idempotent
sum (it even seemed this might be necessary).
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Today’s talk (on board)

It was unclear whether nice models could be found. Today we
will exhibit a nice total model, and point to two ways to produce

a partial model.
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Turing Categories (Cockett and Hofstra)

X is a Turing category when there is an object T such that:
There is a universal application •, and for every f there is a cf :

T × B • // C

f (a,b) = cf (a) • b

A× B

cf×1

OO

f

??��������������������
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Restriction categories

Definition
A restriction category is a category in which, for each map f : A
−→ B, there is a map f : A −→ A such that

[R.1] f f = f [R.3] f g = f g
[R.2] f g = g f [R.4] f h = fh f

The restriction partial order is defined as

f ≤ g := f g = f

Differential Combinatory Algebras June 26, 2012 11 / 42



Restriction products

The binary restriction product of A,B is A× B with total
projections π0, π1 and a unique pairing such that in

U

g

!!CCCCCCCCCCCCCCCC

f

}}{{{{{{{{{{{{{{{{

〈f ,g〉

��
A A× Bπ0
oo

π1
// B

〈f ,g〉π0 = g f and 〈f ,g〉π1 = f g.
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Characterizing Turing Categories

Theorem
X is a Turing category iff there is a universal application T × T
•−−→ T and every object is a retract of T .

Every Turing category contains a partial combinatory
algebra (PCA) and every PCA generates a Turing category
by taking the category of computable maps.
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Cartesian left additive restriction categories

Definition

A left additive restriction category is a restriction category in
which each X(A,B) is a commutative monoid such that
f + g = f g and 0 = 1; the sum is left additive:
f (g + h) = fg + fh and f 0 = f 0
An additive map is h such that (f + g)h ^ fh + gh. A strongly
additive map is h such that (f + g)h ≥ fh + gh.

A Cartesian left additive restriction category has Cartesian
and left additive restriction structure, and further,
(f + g)× (h + k) = (f × h) + (g × k) and 0× 0 = 0.
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Differential restriction categories

Definition

A differential restriction category is a Cartesian left additive restriction
category with a differential combinator

f : X −→ Y
D[f ] : X × X −→ Y
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Differential restriction categories

DR.1 D[0] = 0 and D[f + g] = D[f ] + D[g];
DR.2 〈0,g〉D[f ] = gf 0 and 〈g + h, k〉D[f ] = 〈g, k〉D[f ] + 〈h, k〉D[f ];
DR.3 D[π0] = π0π0 and D[π1] = π0π1;
DR.4 D[〈f ,g〉] = 〈D[f ],D[g]〉;
DR.5 D[fg] = 〈D[f ], π1f 〉D[g];
DR.6 〈〈g, 0〉 , 〈h, k〉〉D[D[f ]] = h 〈g, k〉D[f ];
DR.7 〈〈0,h〉 , 〈g, k〉〉D[D[f ]] = 〈〈0,g〉 , 〈h, k〉〉D[D[f ]];
DR.8 D[f ] = (1× f )π0;
DR.9 D[f ] = 1× f .
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Differential Turing categories

A differential index for f : A× B −→ C in •BC : T × B −→ C is a
map cf : A −→ T such that (using the term logic):

cf (x) •BC y = f (x , y) (so it is a code);
(v ,a) 7→ ∂cf (x)

∂x (a) · v is a differential index for
((v ,a), y) 7→ ∂f (x,y)

∂x (a) · v .

A map •BC : T × B −→ C is said to be differentially universal in
case it is both linear and strongly additive in its first
argument and each map f : A× B −→ C has a differential
index in •BC .
X is a differential Turing category if it has differential Turing
structure, that is an object T with for each pair of objects B
and C a differentially universal map •BC : T × B −→ C.
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case it is both linear and strongly additive in its first
argument and each map f : A× B −→ C has a differential
index in •BC .
X is a differential Turing category if it has differential Turing
structure, that is an object T with for each pair of objects B
and C a differentially universal map •BC : T × B −→ C.

x 6∈m⇒ ∂n•m
∂x (a) · v ^

(
∂n
∂x (a) · v

)
•m
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Differential Turing categories

A differential index for f : A× B −→ C in •BC : T × B −→ C is a
map cf : A −→ T such that (using the term logic):

cf (x) •BC y = f (x , y) (so it is a code);
(v ,a) 7→ ∂cf (x)

∂x (a) · v is a differential index for
((v ,a), y) 7→ ∂f (x,y)

∂x (a) · v .

A map •BC : T × B −→ C is said to be differentially universal in
case it is both linear and strongly additive in its first
argument and each map f : A× B −→ C has a differential
index in •BC .
X is a differential Turing category if it has differential Turing
structure, that is an object T with for each pair of objects B
and C a differentially universal map •BC : T × B −→ C.

(m + n) • t ≥m • t + n • t
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Characterizing Differential Turing Categories

Theorem
X is a differential Turing category iff there is a differentially
universal application T × T •−−→ T and every object is a differential
retract of T .
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Characterizing Differential Turing Categories

Theorem
X is a differential Turing category iff there is a differentially
universal application T × T •−−→ T and every object is a differential
retract of T .

r is linear:
∂r(x)
∂x

(a) · v ^ r(v)

Dn[s]r = π0 · · ·π0︸ ︷︷ ︸
n-times
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Characterizing Differential Turing Categories

Theorem
X is a differential Turing category only if there is a differentially
universal application T × T •−−→ T and every object is a differential
retract of T .

Define s to be the code for π0 : A× 1 −→ A, r := 〈1, !〉 •.
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Characterizing Differential Turing Categories

Theorem
X is a differential Turing category only if there is a differentially
universal application T × T •−−→ T and every object is a differential
retract of T .

Define s to be the code for π0 : A×1 −→ A, r := 〈1, !〉 •. First, sr = 1.

T × 1 • // A s 〈1, !〉 • = 〈1, !〉 (s × 1)• = 〈1, !〉π0 = 1

A× 1

π0

<<zzzzzzzzz
s×1

OO

Also, r = 1 • () is linear as • is linear in its first argument.
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Characterizing Differential Turing Categories

Theorem
X is a differential Turing category only if there is a differentially
universal application T × T •−−→ T and every object is a differential
retract of T .

Define s to be the code for π0 : A× 1 −→ A, r := 〈1, !〉 •. Second

(v ,a) 7→ ∂s(x)
∂x

(a) · v • () = ∂s(x) • ()
∂x

(a) · v =
∂x
∂x

(a) · v = v

so that D[s]r = π0 as required.
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Characterizing Differential Turing Categories

Theorem
X is a differential Turing category if there is a differentially
universal application T × T •−−→ T and every object is a differential
retract of T .

Define the derived application •BC : T × B −→ C as (1× sB) • rC .
Given f define cf to be the code for (1× rB)fsC .
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Characterizing Differential Turing Categories

Theorem
X is a differential Turing category if there is a differentially
universal application T × T •−−→ T and every object is a differential
retract of T .

Define the derived application •BC : T × B −→ C as (1× sB) • rC .
Given f define cf to be the code for (1× rB)fsC . To see that this
gives a universal application:

T × B
1×sB // T × T • // T

rC // C

A× B

cf×1

OO

1×sB

// A× T

cf×1

OO

1×rB
// A× B

fsC

OO

f

<<yyyyyyyyy
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Characterizing Differential Turing Categories

Theorem
X is a differential Turing category if there is a differentially
universal application T × T •−−→ T and every object is a differential
retract of T .

Define the derived application •BC : T × B −→ C as (1× sB) • rC .
Given f define cf to be the code for (1× rB)fsC . That •BC is also
linear in its first variable follows mostly from Cartesian
coherences and also that •r is linear in its first variable.
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Characterizing Differential Turing Categories

Theorem
X is a differential Turing category if there is a differentially
universal application T × T •−−→ T and every object is a differential
retract of T .

Define the derived application •BC : T × B −→ C as (1× sB) • rC .
Given f define cf to be the code for (1× rB)fsC .

(1× sB)

(
∂cf (x)
∂x

(a) · v • y
)

rC = (1× sB)

(
∂sC(f (x , rB(y)))

∂x
(a) · v

)
rC

=

(
∂sC(f (x , rB(sB(y))))

∂x
(a) · v

)
rC

=
∂f (x , y)
∂x

(a) · v

As generally D[fs]r = D[f ].
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Differential PCAs

The above allows us to define abstractly what a differential PCA
is in a differential restriction category.
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Differential PCAs

The above allows us to define abstractly what a differential PCA
is in a differential restriction category.

However: Do differential PCAs exist?

Last FMCS, a total model was presented with an
idempotent sum (Manzonetto, G.).
This FMCS, idempotence will be removed, and we will point
the way to partiality.
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Quick Note on Total Differential Turing
Categories

The differential indexing always holds for total differential Turing
categories:

∂f (x , y)
∂x

(a) · v

=
∂cf (x) • y

∂x
(a) · v

=

(
∂cf (x)
∂x

(a) · v
)
• y
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Outline

Differential Applicative Systems in Sets
An Equational Completion
Rewriting and Confluence Modulo
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Differential combinatory algebra

Definition
A mal-differential applicative system in Sets is A = (A, •,+, 0,d)
where (A,+, 0) is a commutative monoid and

1 (t1 + t2)m = t1 m + t2 m; 0 m = 0;
2 d (t1 + t2) v a = d t1 v a + d t2 v a; d 0 v a = 0;
3 d t (v1 + v2)a = d t v1 a + d t v2 a; d t 0 a = 0;
4 d (d x) y z = d x y ;
5 d d x y = d x ;
6 d (d x y) z = d (d x z) y . a

aThe last rule is a permutation.

This is enough to define a derivative
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The partial derivative in a DCA

1 ∂t
∂y (a) · v := 0 when y 6∈ t

2 ∂x
∂x (a) · v := v

3 ∂t
∂x (a) · 0 := 0

4 ∂t
∂x (a) · (v1 + v2) :=

∂t
∂x (a) · v1 +

∂t
∂x (a) · v2

5 ∂0
∂x (a) · v := 0

6
∂t1+t2
∂x (a) · v := ∂t1

∂x (a) · v + ∂t2
∂x (a) · v

7

∂t1 t2

∂x
(a) · v :=

(
∂t1

∂x
(a) · v

)
(t2 [a/x ])

+ d (t1 [a/x ])
(
∂t2

∂x
(a) · v

)
(t2 [a/x ])
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The rules of differentiation (Blute et al)

DT.1 ∂t1+t2
∂p (s) · u = ∂t1

∂p (s) · u + ∂t2
∂p (s) · u and ∂0

∂p (s) · u = 0;

DT.2 ∂t
∂p (s) · (u1 + u2) =

∂t
∂p (s) · u1 +

∂t
∂p (s) · u2 and

∂t
∂p (s) · 0 = 0;

DT.3 ∂x
∂x (s) · u = u;
∂t

∂(p,p′)((s, s
′)) · (u, 0) = ∂t[s′/p′]

∂p (s) · u, and
∂t

∂(p,p′)((s, s
′)) · (0,u′) = ∂t[s/p]

∂p′ (s′) · u′;

DT.4 ∂(t1,t2)
∂p (s) · u =

(
∂t1
∂p (s) · u,

∂t2
∂p (s) · u

)
;

DT.5 ∂t[t ′/p′]
∂p (s) · u = ∂t

∂p′ (t ′ [s/p]) · ∂t ′
∂p (s) · u;

DT.6
∂ ∂t

∂p (s)·p
′

∂p′ (r) · u = ∂t
∂p (s) · u;

DT.7
∂ ∂t

∂p1
(s1)·u1

∂p2
(s2) · u2 =

∂ ∂t
∂p2

(s2)·u2

∂p1
(s1) · u1;
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On the Form of the Equations

Given that one exactly needs an equation of the form

m a b = n a b

Do you take the equation in that form or

m a = n a

or even
m = n?
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A second look at the equations

Recall,
∂t x
∂x

(a) · v = d t v a

d is linear in its first two arguments. The equation

d d x y = d x

expresses exactly that

∂[d t ] = d ∂[t ]

i.e. that d is linear in its first argument. Similarly, the equation

d (d x) y z = d x y

expresses exactly that d is linear in its second argument.
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Well Definedness

The operation of differentiation is not well defined

d d x y = d x

∂d d t1 t2

∂x
(a) · v

= Large complicated term

6= d d
∂t1

∂x
(a) · v t1 [a/x ]

=
∂d t1

∂x
(a) · v

Also, the equation
d (d x) y z = d x y

is problematic.
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Differential Applicative Systems

Definition
A differential applicative system in Sets is a mal-differential
applicative system, A, with two extra equations:

7 d (d d x) = 0;
8 d (d (d x) y) = 0.

Theorem
The generic category of a differential applicative system is a
Cartesian differential category.
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Differential Applicative Systems with k

Definition
A differential k-applicative system in Sets is a differential
applicative system A with a distinguished point k that is additive
in the first argument and such that

9 k x y = x (the k law);
10 d (k x) = 0 (well definedness for disappearing y);
11 d k x y = k x (k is linear in first argument);
12 d (d k x) = 0 (well definedness for linear in first argument).

Theorem
The generic category of a k-differential applicative system is a
Cartesian differential category.
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s

The equation for s is
s x y z = x z (y z)

z is duplicated, and put into non-linear positions.

Differential Combinatory Algebras June 26, 2012 30 / 42



s

The immediately needed equations are

d s x y = s x

d (s x) y = s (s (s (k d) x) y)

d (s x y) z = s (d x z) y + d (s x) (d y z) y

The first says s is linear in its first argument; hence d (d s x) = 0 will
be needed.

The others state what the derivative must do with each
argument of s.
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s

To get
d (s x) y = s (s (s (k d) x) y)

to be well defined, we need three additional equations:

s (s (s (k d) (k d))x) = k (s (k d)x)

s (s (s (k d) (s (k d) x))y) = k (s (s (k d) x)y)

s (s (s (k d) 0) x) = 0

Do not generalize these equations.
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Victory

To get
d (s x y) z = s (d x z) y + d (s x) (d y z) y

to be well defined, all we need is:

s (s (s (k d) (s (s (k d) x) y)) z) = s (s (s (k d) (s (s (k d) x) z)) y)

The well definedness of differentiation has been machine
checked.
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Differential Combinatory Algebras
Definition
A differential combinatory algebra in Sets is a differential
k-applicative system with a distinguished point s that is additive
in its first argument and where

13 s x y z = x z (y z);
14 d s x y = s x ;
15 d (d s x) = 0;
16 d (s x) y = s (s (s (k d) x) y);
17 s (s (s (k d) (k d))x) = k (s (k d)x);
18 s (s (s (k d) (s (k d) x))y) = k (s (s (k d) x)y);
19 s (s (s (k d) 0) x) = 0;
20 d (s x y) z = s (d x z) y + d (s x) (d y z) y ;
21 s (s (s (k d) (s (s (k d) x) y)) z) = s (s (s (k d) (s (s (k d) x) z)) y). a

aThe last rule is a permutation
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Differential Combinatory Algebras

Lemma
In a differential combinatory algebra, the simulation of
abstraction satisfies:

(λ∗x .m)n = m [n/x ] and d (λ∗x .m) v a =
∂m
∂x

(a) · v

This lemma says that a differential combinatory can simulate the
differential λ-calculus at a top level. Hence, we also get
combinatory completeness for all polynomials, and their
derivatives. Also, application can be shown to be linear in the
first component; thus we have:

Theorem
The computable map category of a differential combinatory
algebra in Sets is a total differential Turing category.
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Confluence and Rewriting

A term rewriting system is Confluent (Church-Rosser) if

·
∗

��=======
∗

���������

·

∗
��

·

∗
��·

Two terms are equal if and only if they have the same normal
form.
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Confluence Modulo Equivalence

A term rewriting system is Church-Rosser modulo if

·
∗

  BBBBBBBB
∗

~~||||||||

·

∗
��

·

∗
��

· /o/o/o ·

· /o/o/o

∗
��

·

∗

��

· /o/o/o

∗
��

·

· /o/o/o/o/o/o/o ·

Two terms are equal if and only if they have the same normal
form up to some simpler equivalence.
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Confluence Modulo via Decreasing
Diagrams (Ohlebusch)

If→α is a labelled rewrite system where the labels are in a well
ordered set W , and à is a symmetric relation where for every
a,b ∈W we have

· b //

a

��

·
∗ <b
��
·

a=

��
·

d∗
��

·
<a
∗ // ·

b
= // ·

d
∗ // · /o/o/o ·

· � �

a
��

·
=a
��

·
<a ∗
��

·
<a∗
��

· /o/o/o ·

where d < a or d < b.
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Confluence Modulo via Decreasing
Diagrams (Ohlebusch)

If→α is a labelled rewrite system where the labels are in a well
ordered set W , and à is a symmetric relation where for every
a,b ∈W we have

· b //

a

��

·
∗ <b
��
·

a=

��
·

d∗
��

·
<a
∗ // ·

b
= // ·

d
∗ // · /o/o/o ·

· � �

a
��

·
=a
��

·
<a ∗
��

·
<a∗
��

· /o/o/o ·

where d < a or d < b. Locally decreasing modulo implies
Church-Rosser modulo
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Proving Confluence

To use this technique:

A left linear labelling is needed 1

For all non-s steps label the rule by source. Termination gives
well ordering.
Treat s as a parallel move (ortogonality gives strict diamond
property, so that decreasingness holds)

Then it just remains to show that the critical pairs are locally
decreasing.

1See Felgenhauer, Middledorp, and Zankl “Labellings for Decreasing
Diagrams.” It turns out, that for left linear term rewriting systems, local
decreasingness is not equivalent to local decreasingness of critical
pairs; however, the latter with a left linear labelling does give a partial
converse.
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Confluence

Theorem
The rewriting system modulo associativity, commutativity, and
permutation for differential combinatory algebras is
Church-Rosser modulo.

Corollary

Differential combinatory algebras are conservative extensions of
ordinary combinatory algebras.
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Conclusion

Differential combinatory algebras give a model of a total
differential Turing category.
The rewriting system for differential combinatory algebras is
confluent.
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Future

Obtaining Partial Differential Combinatory Algebras
Use an extension to a partial term logic
Use non-termination of the rewriting system as the source of
partiality

Adding a coderliction to Abramsky et al’s linear
combinatory algebras
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