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Quantum Circuits

Transforms (e.g., Hadamard, Not, Pauli)
Qubit measures
Controlled Transforms (C-Not, C-Had, Toffoli)

For example — Entanglement:

H •
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QPL by Selinger

Data with Classical Control
Explicitly handle classical control, loops, subroutines
Denotational semantics
Discussion and implications of handling product and sum
types
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LQPL

LQPL is based on QPL’s language and semantics. Differences:
The inclusion of probabilistic integers (e.g., i is 1 with 25%
probability, 17 with 75%)
The inclusion of probabilistic algebraic data types (e.g.,
list1 has 50% chance of being empty or having one
element)
Language constructs for creating and using these
probabilistic items.
The explicit use of non-probabilistic classical data
(integers).
The removal of controlled transforms and the addition of
syntax for quantum control.
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LQPL Language

Structure Data type declarations (sum, product, recursive) and
subroutines are at top level, in global scope

Qubits (x = |0〉); transform; measure
Types (lis = Nil); case

Integers (i = 5); use
Control (Had q <= r1,r2); control target (left hand side) any

statements; control elements (right hand side) any data
type with qubits.

Classical Result of Integer use; pass to subroutines; “switch”

Looping is accomplished by subroutine calls; multiple return
points by sum types;
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The Compiler

Performs type inference / checking. (Expressions,
subroutine parameters and return values, “classicality” or
“quantum” of expressions)
Enforces linear usage of all variables — i.e., enforce
“no-duplication” of qubits, applies the same rule to
algebraic data and probabilistic integers.
Enforces balanced data after measures or cases — e.g., if
a qubit q is created when a list is Nil, it must also be
created when the list is Cons _ _
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A “machine” for LQPL

The machine state is primarily a quantum stack
Stack is equivalent to a probability distribution of density
matrices
Qubits have up to four substacks, integers a variable
number and algebraic datatypes at most one substack per
constructor
All operations except quantum control are pushed down to
the appropriate entry on the stack
Quantum control involves “rotating” the stack - expensive
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Quantum Stacks - “bits+”
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Ice Cream - Algorithm

Problem:
One ice cream? 3 grand kids — one of whom is a girl.
Girl has to be first! .. but can’t cheat the boys.

Solution:
Girl repeatedly flips the coin until she gets heads: she gets
the ice cream if she gets heads in an even number of flips.
Otherwise, she passes the coin to one of the boys.
He tosses the coin: If he gets Heads he wins the ice
cream, otherwise it goes to the remaining boy.

With what probability does the girl get the Ice Cream?
DEMO

(Example due to Carroll Morgan)
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Quantum Stacks - Qubits

Standard Density QStack

qub1 = |0〉
(

1 0
0 0

)

qub1 = |1〉
(

0 0
0 1

)
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Quantum Stacks - Qubits

Standard Density QStack

q =
1√
2
|0〉+

1√
2
|1〉

(
.5 .5
.5 .5

)

Demo - coinflip
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Quantum Teleportation

A(lice) and B(ob) are qubits in a Bell (aka EPR) state. Then,
Alice can transfer a qubit to Bob by sending two bits of
information.

|v〉 • H M1 •

A M2 •

B X Z |v〉

DEMO “teleport.qpl”
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Grover’s search

Determine for which x ∈ Bn is f : Bn → B is 1.
Classically, this requires the 2n applications of f . The
quantum algorithm requires O(

√
2n) applications.

For the algorithm, first define:

Uf |x〉 = (−1)f (x) |x〉 and U0 |x〉 =

{
|x〉 if any x 6= 0
− |x〉 if x = 0n

then:
Start with n zeroed qubits and apply Hadamard to them.
Apply G = −H⊗nU0H⊗nUf approximately

√
2n times.

Measure the qubits, forming an integer and check the
result.

DEMO “Grover”
Brett Giles LQPL(Linear Quantum Programming Language)
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Overall design

Compiler
QPOCode

��

Emulator and
Assembler

State

||
GUI

Commands

;;

LQPLCode

``
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Data structure for the emulator

Base Tuple of the QuantumStack, ClassicalStack, et. al..
Control Add list of controlling qubits and functions to move back

and forth from Base.
Stream An infinite list of (Integer, Control) pairs that approximate

the end result — the further down the list, the closer the
approximation.

The majority of QPO instructions are defined on “Base”.
Transforms are defined at the “Control” stage and subroutine
calls are defined at the “Stream” stage.
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Modules and Interfaces

GUI Formerly in Haskell, using Gtk2Hs. Complex to build,
tightly coupled to the emulator and compiler. Now in Swing
(Java), the GUI provides visualization of the quantum stack
and allows inspection of the other data stored in the LQPL
emulator.

Emulator Written in Haskell, extensive use of laziness (e.g., infinite
lists)

Compiler Also in Haskell, follows standard compiler construction
practices.

I/f The GUI connects to both the emulator and the compiler is
via TCP/IP based messaging, significantly reducing the
coupling.
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Operational Semantics

The machine language has an operational semantics, defined
as state transitions dependant upon the next instruction to be
executed.

(QLoad x |k〉 :C,S,Q,D,N)
=⇒ (C,S, x :[|k〉 → Q],D,N)

(QCons x c:C,S,Q,D,N)
=⇒ (C,S, x :[c{} → Q],D,N)

(QMove x :C, v :S,Q,D,N)
=⇒ (C,S, x :[v̄ → Q],D,N)

(QBind z0:C,S, x :[c{z ′
1, . . . , z

′
n} → Q],D,N)

=⇒ (C,S, x :[c{z(N), z ′
1, . . . , z

′
n} → Q[z(N)/z0]],D,N ′)
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Machine language

Instruction oriented — Assembler-like language with thirty
opcodes
Qubit instructions — QLoad, AddCtrl, UnCtrl, QApply
QStack manipulations — QPullup, Rename, EnScope,
DeScope, SwapD
Data Types — QCons, QBind, QUnbind,...
Measure / deconstruction — Measure, Split, QUnbind,
Use, QDelete,...
Classical ops — CGet, CPut, CApply, CLoad, CPop
Branches / Subroutines — Jump, CondJump, Call, Return
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Observations

Can write quantum algorithms at a reasonably good level
of abstraction ...
Can test SMALL quantum programs (factoring primes
totally beyond current LQPL implementation)

teleportation
quantum arithmetic
Grover search
Simon’s

Quantum programming (with one Qubit) contains
probabilistic programming!
Can program (small) probabilistic algorithms.
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Next...

LQPL possible enhancements
Create transforms
Speed and memory improvements
other features...

Revisit semantics

Brett Giles LQPL(Linear Quantum Programming Language)
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Thanks!

Thank You
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