
Quantum Programming
Description of LQPL

Semantics and Design
Conclusion

LQPL(Linear Quantum Programming
Language)

Brett Giles

Department of Computer Science
University of Calgary

2012-06

Brett Giles LQPL(Linear Quantum Programming Language)

Quantum Programming
Description of LQPL

Semantics and Design
Conclusion

Outline

1 Quantum Programming
Languages

2 Description of LQPL
LQPL Design
The LQPL Components
Quantum Algorithms

3 Semantics and Design
Technical Design
Operational Semantics

4 Conclusion

Brett Giles LQPL(Linear Quantum Programming Language)

Quantum Programming
Description of LQPL

Semantics and Design
Conclusion

Languages

Quantum Circuits

Transforms (e.g., Hadamard, Not, Pauli)
Qubit measures
Controlled Transforms (C-Not, C-Had, Toffoli)

For example — Entanglement:

H •

Brett Giles LQPL(Linear Quantum Programming Language)

Quantum Programming
Description of LQPL

Semantics and Design
Conclusion

Languages

QPL by Selinger

Data with Classical Control
Explicitly handle classical control, loops, subroutines
Denotational semantics
Discussion and implications of handling product and sum
types

Brett Giles LQPL(Linear Quantum Programming Language)

Quantum Programming
Description of LQPL

Semantics and Design
Conclusion

Languages

LQPL

LQPL is based on QPL’s language and semantics. Differences:
The inclusion of probabilistic integers (e.g., i is 1 with 25%
probability, 17 with 75%)
The inclusion of probabilistic algebraic data types (e.g.,
list1 has 50% chance of being empty or having one
element)
Language constructs for creating and using these
probabilistic items.
The explicit use of non-probabilistic classical data
(integers).
The removal of controlled transforms and the addition of
syntax for quantum control.

Brett Giles LQPL(Linear Quantum Programming Language)

Quantum Programming
Description of LQPL

Semantics and Design
Conclusion

LQPL Design
The LQPL Components
Quantum Algorithms

LQPL Language

Structure Data type declarations (sum, product, recursive) and
subroutines are at top level, in global scope

Qubits (x = |0〉); transform; measure
Types (lis = Nil); case

Integers (i = 5); use
Control (Had q <= r1,r2); control target (left hand side) any

statements; control elements (right hand side) any data
type with qubits.

Classical Result of Integer use; pass to subroutines; “switch”

Looping is accomplished by subroutine calls; multiple return
points by sum types;

Brett Giles LQPL(Linear Quantum Programming Language)

Quantum Programming
Description of LQPL

Semantics and Design
Conclusion

LQPL Design
The LQPL Components
Quantum Algorithms

The Compiler

Performs type inference / checking. (Expressions,
subroutine parameters and return values, “classicality” or
“quantum” of expressions)
Enforces linear usage of all variables — i.e., enforce
“no-duplication” of qubits, applies the same rule to
algebraic data and probabilistic integers.
Enforces balanced data after measures or cases — e.g., if
a qubit q is created when a list is Nil, it must also be
created when the list is Cons _ _

Brett Giles LQPL(Linear Quantum Programming Language)

Quantum Programming
Description of LQPL

Semantics and Design
Conclusion

LQPL Design
The LQPL Components
Quantum Algorithms

A “machine” for LQPL

The machine state is primarily a quantum stack
Stack is equivalent to a probability distribution of density
matrices
Qubits have up to four substacks, integers a variable
number and algebraic datatypes at most one substack per
constructor
All operations except quantum control are pushed down to
the appropriate entry on the stack
Quantum control involves “rotating” the stack - expensive

Brett Giles LQPL(Linear Quantum Programming Language)

Quantum Programming
Description of LQPL

Semantics and Design
Conclusion

LQPL Design
The LQPL Components
Quantum Algorithms

Quantum Stacks - “bits+”

Brett Giles LQPL(Linear Quantum Programming Language)

Quantum Programming
Description of LQPL

Semantics and Design
Conclusion

LQPL Design
The LQPL Components
Quantum Algorithms

Ice Cream - Algorithm

Problem:
One ice cream? 3 grand kids — one of whom is a girl.
Girl has to be first! .. but can’t cheat the boys.

Solution:
Girl repeatedly flips the coin until she gets heads: she gets
the ice cream if she gets heads in an even number of flips.
Otherwise, she passes the coin to one of the boys.
He tosses the coin: If he gets Heads he wins the ice
cream, otherwise it goes to the remaining boy.

With what probability does the girl get the Ice Cream?
DEMO

(Example due to Carroll Morgan)

Brett Giles LQPL(Linear Quantum Programming Language)

Quantum Programming
Description of LQPL

Semantics and Design
Conclusion

LQPL Design
The LQPL Components
Quantum Algorithms

Quantum Stacks - Qubits

Standard Density QStack

qub1 = |0〉
(

1 0
0 0

)

qub1 = |1〉
(

0 0
0 1

)

Brett Giles LQPL(Linear Quantum Programming Language)

Quantum Programming
Description of LQPL

Semantics and Design
Conclusion

LQPL Design
The LQPL Components
Quantum Algorithms

Quantum Stacks - Qubits

Standard Density QStack

q =
1√
2
|0〉+

1√
2
|1〉

(
.5 .5
.5 .5

)

Demo - coinflip

Brett Giles LQPL(Linear Quantum Programming Language)

Quantum Programming
Description of LQPL

Semantics and Design
Conclusion

LQPL Design
The LQPL Components
Quantum Algorithms

Quantum Teleportation

A(lice) and B(ob) are qubits in a Bell (aka EPR) state. Then,
Alice can transfer a qubit to Bob by sending two bits of
information.

|v〉 • H M1 •

A M2 •

B X Z |v〉

DEMO “teleport.qpl”

Brett Giles LQPL(Linear Quantum Programming Language)

Quantum Programming
Description of LQPL

Semantics and Design
Conclusion

LQPL Design
The LQPL Components
Quantum Algorithms

Grover’s search

Determine for which x ∈ Bn is f : Bn → B is 1.
Classically, this requires the 2n applications of f . The
quantum algorithm requires O(

√
2n) applications.

For the algorithm, first define:

Uf |x〉 = (−1)f (x) |x〉 and U0 |x〉 =

{
|x〉 if any x 6= 0
− |x〉 if x = 0n

then:
Start with n zeroed qubits and apply Hadamard to them.
Apply G = −H⊗nU0H⊗nUf approximately

√
2n times.

Measure the qubits, forming an integer and check the
result.

DEMO “Grover”
Brett Giles LQPL(Linear Quantum Programming Language)

Quantum Programming
Description of LQPL

Semantics and Design
Conclusion

Technical Design
Operational Semantics

Overall design

Compiler
QPOCode

��

Emulator and
Assembler

State

||
GUI

Commands

;;

LQPLCode

``

Brett Giles LQPL(Linear Quantum Programming Language)

Quantum Programming
Description of LQPL

Semantics and Design
Conclusion

Technical Design
Operational Semantics

Data structure for the emulator

Base Tuple of the QuantumStack, ClassicalStack, et. al..
Control Add list of controlling qubits and functions to move back

and forth from Base.
Stream An infinite list of (Integer, Control) pairs that approximate

the end result — the further down the list, the closer the
approximation.

The majority of QPO instructions are defined on “Base”.
Transforms are defined at the “Control” stage and subroutine
calls are defined at the “Stream” stage.

Brett Giles LQPL(Linear Quantum Programming Language)

Quantum Programming
Description of LQPL

Semantics and Design
Conclusion

Technical Design
Operational Semantics

Modules and Interfaces

GUI Formerly in Haskell, using Gtk2Hs. Complex to build,
tightly coupled to the emulator and compiler. Now in Swing
(Java), the GUI provides visualization of the quantum stack
and allows inspection of the other data stored in the LQPL
emulator.

Emulator Written in Haskell, extensive use of laziness (e.g., infinite
lists)

Compiler Also in Haskell, follows standard compiler construction
practices.

I/f The GUI connects to both the emulator and the compiler is
via TCP/IP based messaging, significantly reducing the
coupling.

Brett Giles LQPL(Linear Quantum Programming Language)

Quantum Programming
Description of LQPL

Semantics and Design
Conclusion

Technical Design
Operational Semantics

Operational Semantics

The machine language has an operational semantics, defined
as state transitions dependant upon the next instruction to be
executed.

(QLoad x |k〉 :C,S,Q,D,N)
=⇒ (C,S, x :[|k〉 → Q],D,N)

(QCons x c:C,S,Q,D,N)
=⇒ (C,S, x :[c{} → Q],D,N)

(QMove x :C, v :S,Q,D,N)
=⇒ (C,S, x :[v̄ → Q],D,N)

(QBind z0:C,S, x :[c{z ′
1, . . . , z

′
n} → Q],D,N)

=⇒ (C,S, x :[c{z(N), z ′
1, . . . , z

′
n} → Q[z(N)/z0]],D,N ′)

Brett Giles LQPL(Linear Quantum Programming Language)

Quantum Programming
Description of LQPL

Semantics and Design
Conclusion

Technical Design
Operational Semantics

Machine language

Instruction oriented — Assembler-like language with thirty
opcodes
Qubit instructions — QLoad, AddCtrl, UnCtrl, QApply
QStack manipulations — QPullup, Rename, EnScope,
DeScope, SwapD
Data Types — QCons, QBind, QUnbind,...
Measure / deconstruction — Measure, Split, QUnbind,
Use, QDelete,...
Classical ops — CGet, CPut, CApply, CLoad, CPop
Branches / Subroutines — Jump, CondJump, Call, Return

Brett Giles LQPL(Linear Quantum Programming Language)

Quantum Programming
Description of LQPL

Semantics and Design
Conclusion

Observations

Can write quantum algorithms at a reasonably good level
of abstraction ...
Can test SMALL quantum programs (factoring primes
totally beyond current LQPL implementation)

teleportation
quantum arithmetic
Grover search
Simon’s

Quantum programming (with one Qubit) contains
probabilistic programming!
Can program (small) probabilistic algorithms.

Brett Giles LQPL(Linear Quantum Programming Language)

Quantum Programming
Description of LQPL

Semantics and Design
Conclusion

Next...

LQPL possible enhancements
Create transforms
Speed and memory improvements
other features...

Revisit semantics

Brett Giles LQPL(Linear Quantum Programming Language)

Quantum Programming
Description of LQPL

Semantics and Design
Conclusion

Thanks!

Thank You

Brett Giles LQPL(Linear Quantum Programming Language)

	Quantum Programming
	Languages

	Description of LQPL
	LQPL Design
	The LQPL Components
	Quantum Algorithms

	Semantics and Design
	Technical Design
	Operational Semantics

	Conclusion

