Proof nets and semi-x-autonomous categories

Willem Heijltjes and Lutz StraBburger

FMCS, Halifax, 14 June 2012

The problem

» Categories are a natural semantics for logic

» Girard's proof nets for MLL™ describe a free category (as do
certain proof nets for additive linear logic)

» How to capture the nets (and subnets!) with a single
conclusion?

b b*
N s
NI

N /?

X
» Traditionally as maps | — A (where [is the unit to the tensor)
» Adding [introduces formulae such as L = /* and /9 (L ® L)

a*

Overview

» Proof nets for MLL™

» The virtual unit

» Semi-x-autonomous categories
» Related work

» Wire diagrams

» Proving the main theorem

Proof nets for MLL™

MLL

Multiplicative linear logic without units
A=a|a | AQA | ARA
general duality by DeMorgan

™ =a (A®B)=A"9B* (A%9B)=A"®B*

MLL

Multiplicative linear logic without units
A=a|a | AQA | ARA
general duality by DeMorgan

™ =a (A®B)=A"9B* (A%9B)=A"®B*

Formulae are annotated with vertices to serve as graphical objects:

AU = ay | az ‘ BV ®u CW ‘ BV ?U CW
N’

A sequent is a multiset 'y, of disjointly annotated formulae.

Proof nets

A pre-proof net is a sequent ', together with a linking £: a
partitioning of the atomic vertices in 'y into dual pairs.

L [My]

Proof nets

A pre-proof net is a sequent 'y, together with a linking £: a
partitioning of the atomic vertices in 'y into dual pairs.

L [My]

A switching graph for a pre-proof net is an undirected graph
(V,LUYS)

where S contains one edge (u, v) for every par-vertex (*®,), and all
edges (u, v) for every tensor-vertex (®,), where v is a child of u.

Proof nets

A pre-proof net is a sequent 'y, together with a linking £: a
partitioning of the atomic vertices in 'y into dual pairs.

L [My]

A switching graph for a pre-proof net is an undirected graph
(V,LUYS)

where S contains one edge (u, v) for every par-vertex (*®,), and all
edges (u, v) for every tensor-vertex (®,), where v is a child of u.

A proof net is a pre-proof net for which every switching graph is
acyclic and connected.

Sequent proofs construct proof nets

A pre-net is a proof net if and only if it is constructed by the
following sequent calculus. [Danos & Regnier]

E > [rx,A\/,Bw]
L [rx,A\/ Su Bw]

AX gR

{(v,w)} »[ay,a}]

L [Mx,Av] K»[Ay,Bw]
LUK » [rx,Ay,AV Qu Bw]

®R

Composition

Composition of proof nets is via the cut rule:

LTy, Av] K»I[A}, Aw]
E;’C > [ru,Aw]

Cut

where L; K contains the link (u, w) precisely when there is a path

(uyvi), (vi,va), ..., (Vp, w)

of links (alternately) from £ and from K

Composition is associative and has identities

Composition (example)

X,
N,
c \?/ .
/

/\

L/*

/

a* b *

Categorical structure in proof nets

o (symm.)

A*

e (eval.)

A x-autonomous category without units

Definition
A tensor—dual category (TD category) (C,®,*) is a category C with

» a tensor bifunctor (—®—),
» a dualising functor (—)*, and

» the following natural isomorphisms,

a: AR (BRC)2(A®B)® C c:AQRBX2B®A
0: A= AP ®: hom(A® B, C*) = hom(A,(B® C)*)

satisfying the associativity pentagon, the symmetry hexagon, and

Coherence axioms for TD categories ()

hom(A ® B, (C ® D))

— i

hom((A ® B) ® C, D*) hom(4, (B ® (C ® D))*)
7OO¢J/ @a TQ*O,

hom(A ® (B ® C), D*) hom(4, (B® C) ® D)*)

A A
: N
B C A B C* B_,C A Br C*
\\ \\ ®\ b4 /®
NN ® N @
NI N 7

Coherence axioms for TD categories (II)

(=)”

hom(A ® B, C*) hom(C**, (A® B)*) =% hom(C, (A ® B)*)

o fo

hom(A4, (B® C)*) Po hom(C' ® A, B¥)

hom(A4, (C ® B)*) —2 > hom(A ® C, B¥)

Proof nets and TD categories

Theorem
The subcategory of proof nets L » [A*, B] with no single-conclusion
subnets is the free tensor—dual category TD(A) over the atoms A.

Missing nets

NSV
Ny

A*

The virtual unit

YOneda

SETC

Day tensor
product

(Contl’ava I’ia nt)
Yoneda embedding

cop

tensor (®)

Hao

The virtual unit
Idea: find a virtual unit in SET¢ [Lamarche & StraBburger 2005]

I: C — SET

A proof net £ » [A] may be modelled by a natural transformation

ki =1 (= 1—-A if T=h"

The virtual unit
Idea: find a virtual unit in SET¢ [Lamarche & StraBburger 2005]

I: C — SET

A proof net £ » [A] may be modelled by a natural transformation

ki =1 (= 1—-A if T=h"
hom(A, A) —2—~ 1A idp——2 > ka(ida)
fo— | HA(F) 1(f) fo—} }I(f)
hom(A, B)T‘HB fTHB f)

The virtual unit
Idea: find a virtual unit in SET¢ [Lamarche & StraBburger 2005]

I: C — SET

A proof net £ » [A] may be modelled by a natural transformation

ki =1 (= 1—-A if T=h"
hom(A, A) —2—~ 1A idp——2 > ka(ida)
fo— | HA(F) 1(f) fo—} }I(f)
hom(A, B) T‘ 1B f T HB_f)
I(f)(ra(ida))

K is determined as I(—)(x), by x = ka(ida) € IA

The virtual unit
Idea: find a virtual unit in SET¢ [Lamarche & StraBburger 2005]

I: C — SET

A proof net £ » [A] may be modelled by a natural transformation

ki =1 (= 1—-A if T=h"
hom(A, A) —2—~ 1A idp——2 > ka(ida)
fo— | HA(F) 1(f) fo—l }I(f)
hom(A, B) T‘ 1B f T HB_f)
I(f)(ra(ida))

K is determined as I(—)(x), by x = ka(ida) € IA
Aim: TA = the set of proof nets for A

The (left) virtual unit isomorphism

The internal hom-functor H& = (B*'® —) gives a ‘tensor’ in SET®

[
(]

h"®B = hom(A® B,—) hom(A,B* 9 —) = h* o HB

The (left) virtual unit isomorphism

The internal hom-functor H& = (B*'® —) gives a ‘tensor’ in SET®

P
h"®B — hom(A® B,—) = hom(A,B*® —) = h'oHB
Define an isomorphism X\ to make I a left unit

A:ToH™ = h™ Aa I(A* 7% —) = hom(A, —)

The (left) virtual unit isomorphism

The internal hom-functor H& = (B*'® —) gives a ‘tensor’ in SET®

(O]
h®B — hom(A® B,—) =

hom(A,B* 9 —) = h"o HE
Define an isomorphism X\ to make I a left unit
A:ToH™ = h™ Aa I(A* 7% —) = hom(A, —)

(A% B) — 2" . hom(A, B)

kS

R

I(f*9) nat(A) go—of

IR

I(X*®Y) ——— hom(X,Y)
Y

&

The (left) virtual unit isomorphism

The internal hom-functor H& = (B*'® —) gives a ‘tensor’ in SET®

[
(]

h"®B = hom(A® B,—) hom(A,B* 9 —) = h* o HB

Define an isomorphism X\ to make I a left unit

A:ToH™ = h™ Aa I(A* 7% —) = hom(A, —)
5 f
A,B
1(f*%g) nat(\) go—of A\\ //B
S

IR

I(X*®Y) —— hom(X,Y))\—1(f)

]

The virtual tensors

/'4*

The virtual tensor in SETC

...acts on morphisms as horizontal composition of two-cells.

I(=)(x): K =1 H: HB = HA

The virtual tensor in SETC

...acts on morphisms as horizontal composition of two-cells.

I(=)(x): =T H': HE = HA
HE X
SN T T
C U(f*%’—) C SET
\A/
H

(f*wid)o — : hom(X,B*® —) = hom(X,A* ® —)

The virtual tensor in SETC

...acts on morphisms as horizontal composition of two-cells.

I(=)(x): K =1 H: HB = HA

I((f* 9 id)o —)(x) : hom(X,B*® —) = [(A* % —)

The virtual tensor in SETC

...acts on morphisms as horizontal composition of two-cells.

I(=)(x): K =1 H: HB = HA

hX®B

ZIRR
c_ o) ¢’ |10 seT
\/ \/

HA I

I((f*2id)o®(—))(x) : hom(X®B,—) = [(A*® —)

The virtual tensor in SETC

...acts on morphisms as horizontal composition of two-cells.

I(=)(x): K =1 H: HB = HA
hX®B
HE uq’ hX
ZaRN
c_ e ¢’ |10 ser
\A/
H u)\ I
hA

AMI((r* 72 id) o d(—))(x)) : hom(X ® B, —) = hom(A, —)

The virtual tensor in C

Given the virtual tensor of x with f in SETC,
AI((F* 72 id) o ®(—))(x)) : hom(X ® B,—) = hom(A, —)
to obtain x® f in C, apply this transformation to idxgs

x®f = NI((F* 2 id) o d(id))(x))

The virtual tensor in C

Given the virtual tensor of x with f in SETC,
AI((F* 72 id) o ®(—))(x)) : hom(X ® B,—) = hom(A, —)

to obtain x® f in C, apply this transformation to idxgs

[I>

x®f = NI((f* 5 id) o d(id))(x))
= AMI((F* 2 id) o)(x))
= MI(n)(x)) o f

-®f

IX hom(A4, X ® B)

Hnl ® f-os

I(B*% (X ® B)) — > hom(B, X ® B)

The other two virtual tensors

fox = oo(x®f) A-B®X

x@y = I(x®idy)(y) €l(X®Y)

—Q®1id) xX1Y
IX x Iy =29

hom(V, X ®Y) x IY
- Q IxIY

(X ®Y)<~——hom(IY,[(X ® Y)) x IV

apply

Semi-x-autonomous categories

Coherence for the virtual tensor

I(c™)

(A9 B) I(B s A)

Coherence for the virtual tensor

(A% B) C)) —

(A% (B C)
A da* A

hom(A*® B* C) — hom(A* B C)

Coherence for the virtual tensor

IA x 1B IB xIA
—@— Qo 8-
I(A® B) I(B ® A)

Coherence for the virtual tensor

A® B
1Q(ARB) (z®A)®B
Ra
X®A®B) —— > (X®A)®B
/)9\ /)8\
A* T B* A* B*

Coherence for the virtual tensor

From the latter axiom follow:
ao x®(y®A) = (x®@y)®A

A* A*

Ng” NS
o ®\®/
l0)(x0(y©27)) = (xoy)8z

NSV CV e Vg 7\ e/

\/ \/
/ \

+ all (four) symmetric variants

R

Semi-x-autonomous categories

Definition
A semi-x-autonomous category (SSA category)

(Cu ®7* 7H7)‘)

is a category C with
» a tensor bifunctor and a dualising functor,
» isomorphisms «, o, ¢, and 0,
» a virtual unit functor I: C — SET, and

» a left virtual unit natural isomorphism
Mg I(A*® B) = hom(A, B)

satisfying the associativity pentagon, the symmetry hexagon, and
the four coherence axioms Ao*, Aa*, @o, and Qa

Main theorem

Theorem
The category of proof nets over atomic formulae A is the free
semi-x-autonomous category SSA(A)

A : ssa(A)

x ~ /(é,w)

(C7 ®7* 7:]15 A)

Semi-x-autonomous functors

A semi-x-autonomous functor
(G7,‘)/) (C7®7*7]I7 AC) _> (D7 ®7*7J7 AD)

consists of
» a functor G: C — D preserving the tensor and duality functors
» a natural transformation v: I = JG

satisfying the following, equivalent conditions:

Semi-x-autonomous functors

A semi-x-autonomous functor
(G7,‘)/) (C7®7*7]I7 AC) _> (D7 ®7*7J7 AD)

consists of
» a functor G: C — D preserving the tensor and duality functors
» a natural transformation v: I = JG

satisfying the following, equivalent conditions:

Ac

(1) I(A* 2 B) hom(A, B)
G(Ac(x)) = Ap(v(x)) v YA G
J(GA* » GB) hom(GA, GB)

Semi-x-autonomous functors

A semi-x-autonomous functor
(G7,‘)/) (C7®7*7]I7 AC) _> (D7 ®7*7J7 AD)

consists of
» a functor G: C — D preserving the tensor and duality functors
» a natural transformation v: I = JG

satisfying the following, equivalent conditions:

(2) IX o/ hom(A, X ® B)
G(xeg)=v(x)®Gg ~ 7@ G
JGX hom(GA,GX ® GB)

-G f

Related work

The approach via linearly distributive categories

A category with tensor, duality, associativity and symmetry, plus:

/)?\
e N
A* ® A* &
0N : N\
E @ : ey C*
7 \\ .
y S B B B B*
A .
® C °
AN \®/ C
switch* n ¢

* or dissociativity, or weak or linear distributivity
This approach is equivalent (both describe categories of proof nets)

See [Cockett & Seely 1991/1997] and [Dosen & Petri¢, 2005]

The approach via promonoidal categories

A promonoidal category has tensor and unit profunctors

P:AxA-—+ A J: 1+ A

Idea: let P be represented by an actual tensor bifunctor, but not J
When fully carried out, this approach would be essentially the same
as ours, since the profunctor J is a functor J : C — SET

See [Robin Houston's Ph.D. thesis, 2008], and several drafts and
technical reports from 2005 by Robin Houston, Dominic Hughes,
and Andrea Schalk

Wire diagrams

Wire diagram components

B A* B* A®B C B

Virtual tensors in wire diagrams

=

X
X®B

XQY
XQf

X®y
AQUn)(x)) o f

[r.l
|

D

I(c™)
(A% B) —) I(B % A)

(A% B) % C)) ~ s I(4% (B C)

A Ao A

hom(A*® B* C) — hom(A* B C)

IA x IB

o

1B x IA
o o N
(A®B) ——~ LB ®4)

Hao

+9(A®B)

X ®(A® B)

X®(A®B)

(XeA)®B

Hao

Proving the main theorem

Tree-sequents

A tree-sequent is a binary tree with annotated formulae for leaves

t = Ay | (1)

Tree-sequents

A tree-sequent is a binary tree with annotated formulae for leaves

t = Ay | (1)

From t, a sequent is extracted by |¢]

[Av] ={Av} L(s;t)] = [s] @ [t]

Tree-sequents

A tree-sequent is a binary tree with annotated formulae for leaves
t = Ay | (1)
From t, a sequent is extracted by |¢]

[Av] ={Av} L(s;t)] = [s] @ [t]

A C-object is extracted by ® t
Q(Ay) =A

(s, t) = (®s)® (R t)

Tree-sequents

A tree-sequent is a binary tree with annotated formulae for leaves
A tree-context with a hole allows manipulation inside tree-sequents

t = Av|(tt) t{x} = {x} [(& t{x}) | (¢{x}, 1)

From t, a sequent is extracted by |¢]
[Av] ={Av} L(s;t)] = [s] @ [t]
A C-object is extracted by ® t
Q(Ay)=A

(s, t) = (®s)® (R t)

Tree-sequents

A tree-sequent is a binary tree with annotated formulae for leaves
A tree-context with a hole allows manipulation inside tree-sequents

t = Av|(tt) t{x} = {x} [(& t{x}) | (¢{x}, 1)

From t, a sequent is extracted by |¢]
[Av] ={Av} [(s;t)] = s]wt] [{t}] = [¢]
A C-object is extracted by ® t
®(Av)=A

s, t) = (®s)® (R t)

Tree-sequents

A tree-sequent is a binary tree with annotated formulae for leaves
A tree-context with a hole allows manipulation inside tree-sequents

t = Av|(tt) t{x} = {x} [(& t{x}) | (¢{x}, 1)

From t, a sequent is extracted by |¢]
[Av] ={Av} [(s;t)] = s]wt] [{t}] = [¢]
A C-object is extracted by ® t
Q(Ay)=A Rt} =&t

(s, t) = (®s)®(®1) {f} =f

Coherence for the tensor

A coherence isomorphism from s to t is a map
f: s>t (sl =1t])
constructed by composition, inversion, and identity from
Qt{c} : Qt{r,s} > Qt{s,r}

®t{a} : ®t{q,(r,s)} = ®t{(g,r),s}

Coherence [MacLane]: for any s, t such that |s| = |t] there is
exactly one coherence isomorphism from s to t.

Two-sided tree-sequents

A two-sided tree-sequent s? >t is of the form >t or s > t, and has
an associated sequent

[>t]=1t] [s»t]=|s]"w|t]
and an associated real or virtual hom-object in SET

S(et) =1(%t) S(s > t) = hom(® s, ’&t)

Equivariance

An equivariance isomorphism from g7 > r to s? >t is an
isomorphism in SET

f:S5(q?er)— S(s?vt)

built by composition (and identity) from:
» isomorphisms ®, ®~1, X, and A™!, and functor —*

» (—of), (f*o—), and I(f*) for coherence isomorphisms f

Equivariance

An equivariance isomorphism from g7 > r to s? >t is an
isomorphism in SET

f:S5(q?er)— S(s?vt)

built by composition (and identity) from:
» isomorphisms ®, ®~1, X, and A™!, and functor —*

» (—of), (f*o—), and I(f*) for coherence isomorphisms f

Equivariance: for any two tree-sequents with the same associated
sequent there is exactly one equivariance isomorphism

A sequent calculus for SSA morphisms

qgl’er . .
id, u(—) Where v isan equivariance
a, > ay s?ot iso from (g?vr) to (s?>t)
S{Av,Bw} >t _ s? Dt{A\/,Bw} _
S{A\/ Qu Bw} >t s?op t{AV Su Bw}
s> Ay t > By > Ay t > By
-®-) o)
(s,t) » Ay ®u Bw te Ay ®, Bw
s> A\/ > BW > A\/ > BW
—©-) — ()
s> Ay ® Bw > Ay ®u Bw

s> Ay Ay >t > Ay Ay >t
————— ida (=o-) I
Av > Aw s>t >t

The virtual tensor as a cut

X X Av B
. X,A>X®B¢_®_
> X XA X®B
X AsB' SAX® B S
AsXeB o0~ AsX®B

x®f AI(P(id @ £))(x))

Proving the main theorem

A proof of s7 >t in the calculus on the previous slide constructs
»amap f: ®s— 'St oravirtualmap x €t
» a proof net £ » |s? > t]

(by collecting axiom links of cut-free proofs, and applying
composition on a cut)

Two proofs construct the same proof net if and only if they are
equal up to cut-elimination and permutations

To show: two proofs construct the same map if and only if they
are equal up to cut-elimination and permutations

A cut-elimination step

ﬁx B>Cg

f —®— =X f
A>C ' BsA®C (<)f“ A" AeC o BeC
b A9 C* A9 C* > B* . > C* * > B*
- B* 0O - - B

A cut-elimination step

ﬁx BDCg

f —®— =X f
A>C ' BsA®C :f) A" AeC o BeC
b A9 C* A9 C* > B* . > C* * > B*
- B* 0O - - B

A cut-elimination step

ﬁx BDCg

f —®— =X f
A-C B:AgC 7 A A-C B:C
-t o 100 o
> A9 C* A C* > B* > C* * *
! 00
B

Hao

(hOg)*:g*Oh*

Hao

Aot

hom(4*, B) ~—= hom(B* 4)

Hae

Hao

hom(A ® B, C*) — > hom(C, A* 5 B*)
@ !
hom(4, B$C*) ®¢ hom(C ® A, B*)

hom(A, C*®B*) = hom(A ® C, B*)

D

hom(A ® B,C*)

)
—_—

"+ hom(C, A* 5 BY)
@

hom(A, B~9C*)

o1

do hom(C ® A, B*)

naturality of A
hom(A, C*%B*) = hom(A ® C, B*)

Hao

IA x IB o i
o o N
[(A®@ B) —/—1(B®4)

Hao

IA x IB—2—1B x IA
—o-— Qo -0- naturality of A
I(A® B) —— (B ® A)

D

Hao

Hao

Conclusions

The virtual unit allows function application in categories

(other than by composition with a point [— A)

Then semi-x-autonomous categories are easily characterised

(such that proof nets describe the free one)

