
preamble



1 / 24

Differential Join Restriction Categories

Jonathan Gallagher
with Robin Cockett and Geoff Cruttwell

October 23, 2010



Talk Outline

• Talk Outline

Background

Differential Restriction
Categories

Differential Join
Restriction Categories

2 / 24

Goal: Give and motivate the definition of differential

join restriction category.

Here are the ideas outlining the talk.

• Restriction categories axiomatize partiality.

• Cartesian differential categories axiomatize smooth functions
on R

n.

• Differential restriction categories combine the two theories to

axiomatize the category of smooth functions on an open
subset of Rn.

• Differential join restriction categories bring more topological
structure.
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Definition 1. A restriction category is a category X with a

combinator, ( ) : X(A,B) −→ X(A,A), satisfying

R.1 f f = f ;

R.2 f g = g f ;

R.3 f g = f g ;

R.4 fh = fh f .

A

f

A B

f
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• PAR the category of sets and partial functions is a restriction

category. f gives the domain of definition of f .

f (x) =

{

x f(x) ↓

↑ else

• TOP the category of topological spaces and continous maps

defined on an open set is a restriction category. This category

has the same restriction as PAR.

Other examples of restriction categories can be found in [2]
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Cartesian Differential Categories [1] axiomatize smooth functions on R
n by

axiomatizing a differential combinator (think Jacobian). The differential
combinator has the type,

f : Rn −→ R
m

D[f ] : Rn −→ (Rn
⊸ R

m)

It is too strong to assume that the category is closed with respect to linear
maps. Thus the differential combinator is used in uncurried form.

f : Rn −→ R
m

D[f ] : Rn × R
n −→ R

m

The first coordinate is the directional vector. The second coordinate is the

point of differentiation. This axiomatization will require products. Left

additivity is needed for vectors.
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To build the theory of differential restriction categories, change the

theory of cartesian differential categories in light of restriction

structure. This means reconsidering:

• Cartesian categories,

• Left additive categories and cartesian left categories, and

• Differential categories.
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Pairing two maps together in a restriction category brings up the
partiality of both.

Definition 2. A map in a restriction category is total when f = 1.

Definition 3. A restriction product of A,B is an object A×B such that
for any f : C −→ A, g : C −→ B there is a unique 〈f, g〉 : C −→ A×B
such that

C
f

||yy
yy

yyy
yy g

""FFF
FFF

FFF

〈f,g〉

��≥ ≤

a ≤ b ⇔ a b = a

A A×Bπ0

oo
π1

// B

where π0, π1 are total and 〈f, g〉 = f g .
A restriction terminal object is 1 such that for any object A, there is a
unique total map !A : A −→ 1 which satisfies !1 = id1. Further, for any
map f : A −→ B, f !B ≤!A.
A cartesian restriction category has all restriction products.



Cartesian Left Additive Restriction Categories

• Talk Outline

Background

• Restriction
Categories

• Restriction
Categories Examples

• Cartesian Differential
Categories

• Differential Restriction
Categories

• Cartesian Restriction
Categories

• Cartesian Left
Additive Restriction
Categories

Differential Restriction
Categories

Differential Join
Restriction Categories

9 / 24

The addition of two maps must only be defined when both are.

Definition 4. A left additive restriction category has each

X(A,B) a commutative monoid with f + g = f g and 0 being

total. Furthermore, h(f + g) = hf + hg and s0 = s 0

Definition 5. A map, h, in a left additive restriction category is total
additive if h is total, and (f + g)h = fh+ gh.

Definition 6. A cartesian left additive restriction category is both

a left additive restriction category and a cartesian restriction

category where π0, π1, and ∆ are total additive, and

(f + h)× (g + k) = (f × g) + (h× k).
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A differential restriction category is a cartesian left additive

restriction category with a differential combinator

f : X −→ Y

D[f ] : X ×X −→ Y

such that

DR.1 D[f + g] = D[f ] +D[g] and D[0] = 0 (additivity of the
differential combinator) ;

DR.2 〈g + h, k〉D[f ] = 〈g, k〉D[f ] + 〈h, k〉D[f ] and
〈0, g〉D[f ] = gf0 (additivity of differential in first coordinate) ;

DR.3 D[1] = π0, D[π0] = π0π0, and D[π1] = π0π1;

DR.4 D[〈f, g〉] = 〈D[f ], D[g]〉;

DR.5 D[fg] = 〈D[f ], π1f〉D[g] (Chain rule) ;
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f : X −→ Y

D[f ] : X ×X −→ Y

(... and)

DR.6 〈〈g, 0〉, 〈h, k〉〉D[D[f ]] = h〈g, k〉D[f ] (linearity of the
derivative)

DR.7 〈〈0, h〉, 〈g, k〉〉D[D[f ]] = 〈〈0, g〉, 〈h, k〉〉D[D[f ]] (independence
of partial derivatives) ;

DR.8 D[f ] = (1× f)π0;

DR.9 D[f ] = 1× f (Undefinedness comes from the “point”) .
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Example 1: Smooth Maps on open subsets of R
n

• The Jacobian matrix provides the differential structure.

Jf (y1, . . . , yn) =







∂f1
∂x1

(y1, . . . , yn) . . . ∂f1
∂xn

(y1, . . . , yn)
...

. . .
...

∂fm
∂x1

(y1, . . . , yn) . . . ∂fm
∂xn

(y1, . . . , yn)







• D[f ] : (x1, . . . , xn, y1, . . . , yn) 7→
Jf (y1, . . . , yn) · (x1, . . . , xn).
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Example 2: Rational Functions Let R be a rig. Then RATR is a

restriction category where

Obj: n ∈ N

Arr: n → m given by a pair
((

fi
gi

)m

i=1
,U

)

where U is a finitely

generated multiplicative set with fi
gi

∈ R[x1, . . . , xn]
[

U−1
]

.

Id: ((xi) , ∅) : n −→ n

Comp: By substitution

Rest:
((

pi
qi

)m

i=1
,U

)

= ((xi) ,U)
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For polynomials over a rig, there is a formal partial derivative. Let

f =
∑

l alx
l1
1
· · ·xlnn . Then the partial derivative with respect to xk

is,
∂f

∂xk
=

∑

l

lkalx
l1
1
· · ·x

lk−1

k−1
xlk−1

k x
lk+1

k+1
· · ·xlnn

If R is a ring, then rational functions also have a formal partial

derivative.
∂ p
q

∂xk
=

∂p
xk
q − p ∂q

xk

q2
.

The differential on RATR is given by the formal Jacobian matrix of
these formal partial derivatives.
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• We have just seen two examples of differential restriction

categories. There is a difference: one has topological

properties the other does not. We will explore the structure
that gives these topological properties.

• We will also give a differential restriction category that is not
defined by a Jacobian matrix.
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Definition 7. In a restriction category, parallel maps f and g are

compatible if f g = g f .

Definition 8. A restriction category, X, is a join restriction
category if every set of compatible maps, C ⊆ X(A,B), has a join

(sup) that is stable; i.e.,

f





∨

g∈C

g



 =
∨

g∈C

fg.

Theorem 1. Join and differential restriction structure are compatible;

i.e.

D

[

∨

i

fi

]

=
∨

D [fi] .
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Smooth functions are a differential join restriction category, but

rational functions are not. Rational functions can have a sup for

every set of compatible maps, but stability fails. Consider,

(1, 〈x− 1〉) ⌣ (1, 〈y − 1〉) ,

so the join must be

(1, 〈1〉) .

As a counterexample, consider the substitution
[

x2/x, x2/y
]

.

〈x− 1〉 ∩ 〈y − 1〉 does not contain x or y; thus, the substitution

does not contain x− 1. However,

x− 1 ∈
([

x2/x, x2/y
]

〈x− 1〉 ∩
[

x2/x, x2/y
]

〈y − 1〉
)

.
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• The structure of join restriction categories allow any map to be

broken into arbitrary pieces and put together again.

• Join restriction categories have more topological structure; for

an object A, {e : A −→ A | e = e } is a locale.

• Join restriction categories allow the classical completion [3]

and the manifold completion [4].
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Let X be any restriction category. We can obtain a join restriction

category from X by a universal construction Jn(X):

Obj: Those of X.

Arr: A
F

−−→ B is a subset F ⊆ X(A,B) that is pairwise

compatible and has the property that if f ∈ F and h ≤ f (i.e.

h f = h) then h ∈ F .

Id: ↓ 1A = {d : A −→ A | d ≤ 1A}

Comp: FG = {fg | f ∈ F , g ∈ G}

Rest: F = {f | f ∈ F}

Join:
∨

iFi =
⋃

iFi
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Theorem 2. If X is a differential restriction category, then Jn(X) is

a differential join restriction category.

The differential structure on Jn(X) is

D[F ] =↓ {D[f ] | f ∈ F}

= {e | e ≤ D[f ] for some f ∈ F}

• This differential restriction structure is not given by a Jacobian.

• We can now obtain a differential join restriction category from

RATR.
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• From any differential restriction category we can obtain a

differential join restriction category.

• Coming next: The manifold completion of a differential join

restriction category has a tangent bundle structure which allow

the axiomatization of differential geometry categories.

Thank you.
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