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A great deal of representation theory can be realized geometrically
via convolution products on various homology theories.

The basic idea is that finite-dimensional irreducible representations
of certain Coxeter groups and Lie and associative algebras can be
obtained by “pull-tensor-push” operations or “integral transforms”.
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Toy Example

Given a span of finite sets

S
q

��

p

��
Y X

and a function K ∈ CS , we can construct a linear operator, or
integral transform,

K ∗ − : CX → CY

defined as

q∗(K · p∗(f ))(y) =
∑

s∈q−1(y)

K (s) · f (p(s)).



Orlov’s Result

In our toy example we have the isomorphism

C(X×Y ) ' HomC(CX ,CY )

For Fourier-Mukai transforms, the derived version of a
correspondence, we have Orlov’s result, which roughly states that
for smooth projective varieties

Db(X × Y ) ' Hom(Db(X ),Db(Y ))

modulo some important fine print.
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Some Geometric Theories

Our toy example illustrates the “pull-tensor-push” philosophy of
integral transforms.

More sophisticated examples:

Convolution algebras on

Borel-Moore homology
equivariant K-theory
constructible functions

Correspondences in the product of Hilbert schemes

Fourier-Mukai transforms between derived categories

The theory of motives
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Categorification and Matrix Multiplication

There is momentum in geometric representation theory towards
geometric function theory, which might be considered the study of
higher geometric representation theory.

Geometric function theory considers notions of higher generalized
functions on higher generalized spaces such as groupoids, orbifolds
and stacks, such that all of the generalized linear maps between
the functions on two spaces arise from a higher analog of plain
matrix multiplication, namely from a pull-tensor-push operation.
(Loosely quoted from the nLab.)

Categorification

It is useful to provide a unified framework in which to formalize
and compare these geometric function theories. To this end, we
want to consider the pull-tensor-push operations along with
appropriate homology theories as decategorification functors.

http://ncatlab.org/nlab/show/geometric+function+theory
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Groupoidification

Groupoidification is a categorification theory designed to study
geometric constructions in representation theory.

vector spaces  groupoids

linear operators  spans of groupoids
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Degroupoidification

The degroupoidification functor

D : Span(Grpd)→ Vect

takes a groupoid X to the vector space D(X ) : = CX , where X is
the set of isomorphism classes of X , and a span of groupoids

S
q

��

p

��
Y X

to a linear operator
D(S) : CX → CY .



Key to Decategorification

Each geometric theory has key technical results or tools from which
we obtain the relevant algebraic structure constants. For example,
geometric constructions of irreducible representations of U(sl(n))
arise, in part, from the Euler characteristic of flag varieties.

Groupoid Cardinality

|X | =
∑
[x]∈X

1

|Aut(x)|

Example

Let E be the groupoid of finite sets.

|E | =
∑
[e]∈E

1

|Aut(e)|
=

∑
n∈N

1

|Sn|
=

∑
n∈N

1

n!
= e.
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Linear Operators from Spans

Given a span S and a basis element [x ] ∈ X

S1
πS

~~   
S

q

��

p

  

1

x~~
Y X

we define

D(S)(x) =
∑
[y ]∈Y

|(qπS)−1(y)|[y ] ∈ CY .
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Categorified Linear Algebra

To find a good framework for categorified representation theory, it
makes sense to, as the King is so often quoted,

“Begin at the beginning, and go on till you come to the end: then
stop”

The first tool of representation theory is, of course, linear algebra.
So we would like to develop solid foundations of categorified linear
algebra.
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Concrete and Abstract Vector Spaces

Groupoidification models the theory of concrete vector spaces with
spans of groupoids replacing linear maps.

A closely related monoidal 2-category is the underlying 2-category
of topos frames. Here we forget the structure of a bounded topos
and consider the cocontinuous functors between cocomplete
categories (everything over Set).

Some help from the audience?

This is not quite the right setting for categorified abstract linear
algebra.

Nonetheless, this is the right type of setting to find a version
Orlov’s result.
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Plodding ahead...

Further, we can categorify permutation representations of a finite
group in this setting of spans of groupoids and cocontinuous
functors between presheaf topoi.

The categorification of permutation representations is an enriched
bicategory which as a corollary categorifies the Hecke algebra.

We study this to get some intuition for building a nice framework
for geometric representation theory.
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Permutation Representations

Given a finite group G , the category of permutation
representations PermRep(G ) consists of

finite-dimensional representations of G with a chosen basis
fixed by the action of G , and

G -equivariant linear operators.

This is a Vect-enriched category.

So we want to work as much as possible at the enriched level of
categorified linear algebra.
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Bicategories of Spans

Theorem

Given a bicategory B with pullbacks, finite limits and all 2-cells
invertible, there is a monoidal bicategory Span(B).

Span(Grpd) is a monoidal bicategory.



Change of Base Functors

Categorified Linearization

There is a monoidal functor Span(Grpd) to Cocont defined by

X 7→ SetX

(Y
q← S

p→ X ) 7→ q!p
∗ : SetX → SetY

(and taking maps of spans to natural transformations.)

Degroupoidification

Degroupoidification is a monoidal functor from Span(Grpd) to
Vect.
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Enriched Bicategories

Since we are enriching over groupoids and spans of groupoids, we
need a concept of enriched bicategories.

Enriched Bicategories

Given a monoidal bicategory V, a V-enriched bicategory consists of

a set of objects x ,y ,z ,. . . ,

for each pair x ,y , a V-object of morphisms hom(x , y),

for each triple of objects x ,y ,z , a V-morphism called
composition

hom(x , y)⊗ hom(y , z)→ hom(x , z),
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for each quadruple w ,x ,y ,z , an invertible V-2-morphism called
the associator

(w ,x)⊗((x ,y)⊗(y ,z))((w ,x)⊗(x ,y))⊗(y ,z)

(w ,y)⊗(y ,z) (w ,x)⊗(x ,z)

(w ,z)

a
//

1⊗c
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c⊗1

��

c
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c
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some more structure....and some axioms....
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One of the Axioms

(d,e)((c,d)((b,c)(a,b)))

((d,e)(c,d))((b,c)(a,b)) ((d,e)(c,d))((b,c)(a,b))

(((d,e)(c,d))(b,c))(a,b)

((d,e)((c,d)(b,c)))(a,b)(d,e)(((c,d)(b,c))(a,b))

(d,e)((c,d)(a,c))

((d,e)(c,d))(a,c)

(c,e)(a,c)

(c,e)((b,c)(a,b))

((c,e)(b,c))(a,b)

(b,e)(a,b)

((d,e)(b,d))(a,b)(d,e)((b,d)(a,b))

(d,e)(a,d)

(a,e)aacde

��											

aabce

ZZ55555555555

1×aabcd

ZZ55555555555

aabde

oo

abcde×1

��											

aacde

��										

ccde×1

44hhhhhhhhhhhhhhhhhhhh

1×cabc

jjVVVVVVVVVVVVVVVVVVVV

aabce

ZZ5555555555

1×cacd

��

1×cabd

ccGGGGGGGGGGGGGGGGGGGGGGGGG

aabde

oo

cbde×1

;;wwwwwwwwwwwwwwwwwwwwwwwww

cbce×1

��

1×cabc

ffMMMMMMMMMMMMMM

1×(1×cabc)

ddIIIIIIIIIIIIII

ccde×1

88qqqqqqqqqqqqqq

(ccde×1)×1

::uuuuuuuuuuuuuu

(1×cbcd)×1

��

1×(cbcd×1)

��

cade

44

cace

��

cabe

jj

π

66mmmmmm α×1 ''OOOO1×α
wwoooo

α

OO

α ''
α

ww

1



Change of Base

Change of base will provide a means of lifting our decategorification
functor to the enriched setting as well as switching between the
span of groupoids and cocontinuous functor pictures.

Change of Base

Given a V-enriched bicategory B and a lax monoidal functor
f : V → W, then there is a W-enriched bicategory f̄ (B).



Change of Base

Change of base will provide a means of lifting our decategorification
functor to the enriched setting as well as switching between the
span of groupoids and cocontinuous functor pictures.

Change of Base

Given a V-enriched bicategory B and a lax monoidal functor
f : V → W, then there is a W-enriched bicategory f̄ (B).



The Hecke Bicategory

For each finite group G , there is a Span(Grpd)-enriched
bicategory Hecke(G ) consisting of

finite G -sets (think permutation representation) as objects,

for each X ,Y , a hom-groupoid

(X × Y )//G

called the action groupoid,

for each triple X ,Y ,Z , a composition span

(X × Y × Z )
π13

ww

π12×π23

))
(X × Z ) (X × Y )× (Y × Z )

and some further structure...
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A Categorification Theorem

For each finite group G , there is an equivalence of Vect-enriched
categories

D̄(Hecke(G )) ' PermRep(G )
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The Cocont-enriched bicategory

Passing from Hecke(G ) to the Cocont-enriched bicategory by
change of base, we obtain a more hands-on description which is
more or less Span(GSet) consisting of

finite G -sets X ,Y ,Z ,. . . ,

for each pair X ,Y , a category of spans Span(X ,Y ) consisting
of

spans of finite G -sets and
(not-necessarily equivariant) maps of spans.
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The A2 Building over the Field of 2 Elements



The S3 Apartment

The Hexagon

S3 is the Weyl group of G = SL(3,F2) and this building is the
G -set of flags X = G/B, where B is the Borel subgroup of upper
triangular matrices.



Special Spans

P

�� ��

L

�� ��
X X X X

P = {((p, l), (p′, l) ∈ X × X | p 6= p′}

L = {((p, l), (p, l ′) ∈ X × X | l 6= l ′}

The spans P and L satisfy the relations of the A2 Hecke algebra up
to isomorphism.



The Categorified Hecke Algebra

The Hecke Algebra

The Hecke algebra the associative algebra with generated by P and
L with relations:

PLP = LPL

given by the existence of hexagonal apartments and

P2 = (q − 1)P + q, L2 = (q − 1)L + q

which comes from counting points in projective geometry.
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