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Generators and relations for 2-qubit Clifford+T operators
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We give a presentation by generators and relations of the group of Clifford+T operators on two

qubits. The proof relies on an application of the Reidemeister-Schreier theorem to an earlier result

of Greylyn, and has been formally verified in the proof assistant Agda.

1 Introduction

The simplification of Clifford+T circuits is a topic of current interest in quantum computing [4, 5, 6,

15, 16, 17]. The Clifford+T gate set is both universal [18] and convenient for quantum error correction

[9], and is therefore the preferred gate set for fault-tolerant quantum computing. Generally, in a fault-

tolerant regime, applying a Clifford gate is some orders of magnitude cheaper than applying a T -gate,

and therefore, it is sensible to try to simplify circuits so as to minimize the T -count [3]. Many methods

for doing so have been proposed in the recent literature, including methods based on matroid partitioning

[2], Reed-Muller codes [4], and ZX calculus [5, 6, 16]. Regardless of which method is used, the objective

is to replace a Clifford+T circuit by a simpler, but equivalent circuit. This requires being able to tell when

two circuits are equivalent. Surprisingly, no complete set of relations for ancilla-free Clifford+T circuits

is currently known, i.e., there is no known set of relations by which any two equivalent Clifford+T

circuits can be transformed into each other.

In this paper, we give such a complete set of relations for the case of 2-qubit Clifford+T circuits. We

do this in several steps. First, a presentation of the group U4(Z[
1√
2
, i]) of all unitary 4×4-matrices over

the ring Z[ 1√
2
, i] is known due to the work of Greylyn [13]. Second, it is known that the group of 2-qubit

Clifford+T circuits is exactly the subgroup of this group consisting of matrices whose determinant is in

{±1,±i} [10]. Third, there is a theorem in group theory called the Reidemeister-Schreier theorem, by

which a complete set of relations for a subgroup can be derived from a complete set of relations for the

supergroup. Fourth, since the resulting relations are very long and complicated, we simplify them.

The last two steps of this procedure (applying the Reidemeister-Schreier theorem and simplifying

the resulting relations) require a large amount of algebraic manipulations. Our longest equational proof

has 480 steps, each of which in turns requires a lemma or rewrite procedure whose proof itself requires

many equational steps. Such proofs would be impossible to verify by hand, and even verifying them by

software is error-prone since it is hard to guarantee that no unwarranted assumptions were used. For this

reason, we encoded our proof in machine-checkable form, using the proof assistant Agda [1].

The rest of this paper is organized as follows. In Section 2, we state our main result. Section 3

gives a brief overview of the proof. In Section 4, we present the required background material, including

Greylyn’s presentation of U4(Z[
1√
2
, i]), the Reidemeister-Schreier theorem, and the Pauli rotation repre-

sentation, which is an important tool for manipulating Clifford+T circuits. We also briefly describe our

reasons for formalizing our proof in a proof assistant. Section 5 describes our formal proof of the main

result. In Section 6, we briefly discuss the meaning of the Clifford+T relations, and especially of the

three “non-obvious” relations. Section 7 contains some concluding remarks and ideas for future work.

http://arxiv.org/abs/2204.02217v2
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2 Statement of the main result

Recall that the set of Clifford operators is generated by the operators

ω = eiπ/4, H =
1√
2

(

1 1
1 −1

)

, S =
(

1 0
0 i

)

, CZ =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1



,

and is closed under multiplication and tensor product. Every such operator U is of size 2n ×2n for some

natural number n, and as usual, we say that U is an operator on n qubits. We write C (n) for the group

of n-qubit Clifford operators. It is well-known that this group is finite for any given n [21], and therefore

not universal for quantum computing. We obtain a universal gate set by also adding the T -gate as a

generator.

T =
(

1 0
0 ω

)

,

The resulting operators are called the Clifford+T operators, and we write C T (n) for the n-qubit Clif-

ford+T group.

In this paper, we focus on the case n = 2. Our goal is to give a complete presentation of the 2-qubit

Clifford+T group in terms of generators and relations. To ensure that all of our generators are 4× 4-

matrices, we introduce the following notation: we write T0 = T ⊗ I and T1 = I⊗T , and similarly for H0,

H1, S0, and S1. We also identify the scalar ω with the 4×4-matrix ωI. Our main result is the following:

Theorem 2.1. The 2-qubit Clifford+T group is presented by (X ,Γ), where the set of generators is

X = {ω ,H0,H1,S0,S1,T0,T1,CZ},
and the set of relations Γ is shown in Figure 1.

In Figure 1, we have used circuit notation to express some of the relations; for example, we have

written
T ,

T
, and

for T0, T1, and CZ, respectively. Note that the qubits are numbered from top to bottom. We write circuits

in the same order as matrix multiplication. Moreover, in relations (C18)–(C20), we have used a number

of abbreviations; these are defined in Figure 2. The empty word is denoted ε .

3 Proof outline

In a nutshell, the proof can be described in a few sentences. It proceeds as follows. Let R = Z[ 1√
2
, i] be

the smallest subring of the complex numbers containing 1√
2

and i, and let G = U4(R) be the group of

unitary 4×4-matrices with entries in R. Then it is clear that C T (2) is a subgroup of G, because all of its

generators belong to G. Moreover, from [10], it is known that C T (2) is precisely equal to the subgroup

of G consisting of matrices whose determinant is a power of i. A presentation of G by generators and

relations was given by Greylyn [13]. There is a general procedure, called the Reidemeister-Schreier

procedure [19, 20], for finding generators and relations of a subgroup, given generators and relations of

the supergroup. Applying this procedure therefore yields a complete set of relations for C T (2).
While in principle, the above proof outline suffices to prove Theorem 2.1, in practice there is a large

amount of non-trivial work involved in generating and simplifying the actual relations. For this reason,

we have formalized Theorem 2.1 and its proof in the proof assistant Agda. This allows the proof to be

independently checked without too much manual work.
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(a) Monoidal relations:

ωA = Aω , where A ∈ {Hi,Si,Ti,CZ} (C1)

A0B1 = B1A0, where A,B ∈ {H,S,T} (C2)

(b) Order of Clifford group elements:

ω
8 = ε (C3)

H2
i = ε (C4)

S4
i = ε (C5)

(SiHi)
3 = ω (C6)

CZ2 = ε (C7)

(c) Remaining Clifford relations:

S = S (C8)

S
=

S
(C9)

H S S H =
S S

H S S H (C10)

H S S H
= S S

H S S H
(C11)

H = S H

S

S H S ·ω−1 (C12)

H
=

S H

S

S H S
·ω−1 (C13)

(d) “Obvious” relations involving T :

T 2
i = Si (C14)

(TiHiSiSiHi)
2 = ω (C15)

T = T (C16)

H H

H H T =
T H H

H H (C17)

(e) “Non-obvious” relations involving T :

T H T † T H T † =
T H T † T H T † (C18)

T H T H T † T H T † H T † =
T H T H T † T H T † H T † (C19)

H T H

H T H = H T H

H T H
(C20)

Figure 1: Relations for 2-qubit Clifford+T operators. Here i ∈ {0,1}.
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T † = T 7

S† = S3

=
H H

=
H S S H

H
=

S H T T † H S†

H
=

H H

Figure 2: Abbreviations used in circuit notations

4 Background

4.1 Presentation of U4(Z[
1√
2
, i])

As usual, Z is the ring of integers. Let R = Z[ 1√
2
, i] be the smallest subring of the complex numbers

containing 1√
2

and i. Let ω = eiπ/4 be an 8th root of unity, and note that ω = 1+i√
2
∈ R. As before, U4(R)

is the group of unitary 4×4-matrices with entries in R.

Greylyn [13] gave a presentation of U4(R) by generators and relations. His generators are ω[ j],

X[ j,k], and H[ j,k], where j,k ∈ {0, ...,3} and j < k. The relations are shown in Figure 3. The intended

interpretation of the generators is as 1- and 2-level matrices; specifically, ω[ j] is like the identity matrix,

except with ω in the jth row and column, and X[ j,k] and H[ j,k] are like identity matrices, except with the

entries of X , respectively H , in the jth and kth rows and columns, like this:

ω[ j] =





··· j ···
... I 0 0

j 0 ω 0
... 0 0 I



, X[ j,k] =













... j ... k ...

... I 0 0 0 0

j 0 0 0 1 0
... 0 0 I 0 0

k 0 1 0 0 0
... 0 0 0 0 I













, H[ j,k] =















... j ... k ...

... I 0 0 0 0

j 0 1√
2

0 1√
2

0
... 0 0 I 0 0

k 0 1√
2

0 − 1√
2

0
... 0 0 0 0 I















.

Note that we index rows and columns of matrices starting from 0, whereas Greylyn indexed them starting

from 1. Greylyn’s result is the following:

Theorem 4.1 (Greylyn [13]). A presentation of the group U4(R) is given by (Y ,∆), where the set of

generators is Y = {ω[ j],X[ j,k],H[ j,k] | j,k ∈ {1, ...,4} and j < k}, and the set of relations ∆ is shown in

Figure 3.

4.2 The Reidemeister-Schreier theorem for monoids

The Reidemeister-Schreier theorem is a theorem in group theory that allows one to derive a complete set

of relations for a subgroup from a complete set of relations for the supergroup, given enough information

about the cosets. We will use a version of the Reidemeister-Schreier theorem that works for monoids,
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(a) Order of generators:

ω
8
[ j] = ε (G1)

H2
[ j,k] = ε (G2)

X2
[ j,k] = ε (G3)

(b) Disjoint generators commute:

ω[ j]ω[k] = ω[k]ω[ j], where j 6= k (G4)

ω[ℓ]H[ j,k] = H[ j,k]ω[ℓ], where ℓ 6= j,k (G5)

ω[ℓ]X[ j,k] = X[ j,k]ω[ℓ], where ℓ 6= j,k (G6)

H[ j,k]H[ℓ,t] = H[ℓ,t]H[ j,k], where {ℓ, t}∩{ j,k}= /0 (G7)

H[ j,k]X[ℓ,t] = X[ℓ,t]H[ j,k], where {ℓ, t}∩{ j,k}= /0 (G8)

X[ j,k]X[ℓ,t] = X[ℓ,t]X[ j,k], where {ℓ, t}∩{ j,k}= /0 (G9)

(c) X permutes indices:

X[ j,k]ω[k] = ω[ j]X[ j,k] (G10)

X[ j,k]ω[ j] = ω[k]X[ j,k] (G11)

X[ j,k]X[ j,ℓ] = X[k,ℓ]X[ j,k] (G12)

X[ j,k]X[ℓ, j] = X[ℓ,k]X[ j,k] (G13)

X[ j,k]H[ j,ℓ] = H[k,ℓ]X[ j,k] (G14)

X[ j,k]H[ℓ, j] = H[ℓ,k]X[ j,k] (G15)

(d) ω[ j]ω[k] is diagonal:

ω[ j]ω[k]X[ j,k] = X[ j,k]ω[ j]ω[k] (G16)

ω[ j]ω[k]H[ j,k] = H[ j,k]ω[ j]ω[k] (G17)

(e) Relations for H:

H[ j,k]X[ j,k] = ω
4
[k]H[ j,k] (G18)

H[ j,k]ω
2
[ j]H[ j,k] = ω

6
[ j]H[ j,k]ω

3
[ j]ω

5
[k] (G19)

H[ j,k]H[ℓ,t]H[ j,ℓ]H[k,t] = H[ j,ℓ]H[k,t]H[ j,k]H[ℓ,t], where k < ℓ (G20)

Figure 3: Greylyn’s relations for U4(Z[
1√
2
, i]). Whenever we use a generator X[ j,k] or H[ j,k], we implicitly

assume that j < k.
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which we now describe. To our knowledge, this monoid formulation of the Reidemeister-Schreier theo-

rem does not appear in the literature.

If X is a set, let us write X∗ for the set of finite sequences of elements of X , which we also call

words over the alphabet X . We write w ·v or simply wv for the concatenation of words, making X∗ into a

monoid. The unit of this monoid is the empty word ε . As usual, we identify X with the set of one-letter

words.

Let G be a monoid and let X ⊆ G be a subset of G. We write 〈X〉 for the smallest submonoid of G

containing X , and we say that X generates G if 〈X〉 = G. Given any word w ∈ X∗, we write [w]G ∈ G

for the canonical interpretation of w in G, i.e., [−]G : X∗ → G is the unique monoid homomorphism such

that [x]G = x for all x ∈ X .

A relation over X is an element of X∗×X∗, i.e., an ordered pair of words. We say that a relation (w,v)
is valid in G if [w]G = [v]G. If Γ is a set of relations over X , we write ∼Γ for the smallest congruence

relation on X∗ containing Γ. Here, as usual, a congruence relation is an equivalence relation that is

compatible with the monoid operation, i.e., such that w ∼ v and w′ ∼ v′ implies ww′ ∼ vv′. Given a set X

of generators for a monoid G and a set Γ of valid relations, we say that Γ is complete if for all w,v ∈ X∗,
[w]G = [v]G implies w ∼Γ v. In that case, we also say that (X ,Γ) is a presentation by generators and

relations (or simply presentation) of G.

Definition 4.2. Given sets X ,Y and a function f : X → Y ∗, let f ∗ : X∗ → Y ∗ be the unique monoid

homomorphism extending f . Concretely, f ∗ is given by f ∗(x1 . . .xn) = f (x1) · . . . · f (xn).
More generally, given sets C,X ,Y and a function f : C×X → Y ∗×C, let f ∗∗ : C×X∗ → Y ∗×C be

the function defined by f ∗∗(c0,x1 . . .xn) = (w1 · . . . ·wn,cn), where f (ci−1,xi) = (wi,ci) for all i= 1, . . . ,n.

Note that in case C is a singleton, the functions f ∗ and f ∗∗ are essentially the same. In general, the

difference is that f ∗∗ also keeps a “state” in the form of an element of C.

Theorem 4.3 (Reidemeister-Schreier theorem for monoids). Let X and Y be sets, and let Γ and ∆ be sets

of relations over X and Y , respectively. Suppose that the following additional data is given:

• a set C with a distinguished element I ∈C,

• a function f : X →Y ∗,

• a function h : C×Y → X∗×C,

subject to the following conditions:

(a) For all x ∈ X, if h∗∗(I, f (x)) = (v,c), then v ∼Γ x and c = I.

(b) For all c ∈ C and w,w′ ∈ Y ∗ with (w,w′) ∈ ∆, if h∗∗(c,w) = (v,c′) and h∗∗(c,w′) = (v′,c′′) then

v ∼Γ v′ and c′ = c′′.

Then for all v,v′ ∈ X∗, f ∗(v) ∼∆ f ∗(v′) implies v ∼Γ v′.

To better understand the utility of this theorem, let us briefly provide some context. First, we note

that we will be using this theorem in the case where G is a monoid, H is a submonoid of G, (Y,∆) is a

presentation of G, X is a set of generators for H , and we wish to show that some proposed set of relations

Γ is complete for H . Assuming that all hypotheses of Theorem 4.3 are satisfied, and further assuming that

f represents the inclusion function of H into G, i.e., that for all x ∈ X , [ f (x)]G = [x]H , the completeness

of Γ then follows. Namely, [v]H = [v′]H implies [ f ∗(v)]G = [ f ∗(v′)]G, which implies f ∗(v) ∼∆ f ∗(v′) by

completeness of ∆, which implies v ∼Γ v′ by Theorem 4.3.

To see how the theorem works, it is useful to further concentrate on the case where G and H are

groups, although the theorem itself does not require this. In the case of groups, one would typically
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consider the set H\G = {Hc | c ∈ G} of right cosets of H in G, and one would let C be a set of chosen

coset representatives. The function f is then chosen to assign to each x ∈ X some word w ∈ Y ∗ such

that [x]H = [w]G. The function h is chosen to assign to each pair of a coset representative c ∈ C and

generator y ∈ Y the unique coset representative c′ ∈ C and some word v ∈ X∗ such that c[y]G = [v]Hc′.
Conditions (a) and (b) are then sufficient for the set of relations Γ to be complete. In the more general

case of monoids, G is not necessarily partitioned into cosets, but the method works anyway, provided

that appropriate C, f , and h can be chosen.

Proof of Theorem 4.3. Let us say that a word w ∈ Y ∗ is special if h∗∗(I,w) = (v, I) for some v ∈ X∗. Let

Y ∗
s be the set of special words. By definition of h∗∗, the empty word is special and special words are

closed under concatenation, so Y ∗
s is a submonoid of Y ∗. Moreover, the image of f is special by property

(a), and therefore the image of f ∗ is also special. Finally, there is a translation back from special words

in Y to words in X : define g : Y ∗
s → X∗ by letting g(w) = v where h∗∗(I,w) = (v, I). Clearly, g is a monoid

homomorphism.

Claim A: for all v ∈ X∗, we have v ∼Γ g( f ∗(v)). Proof: Since both g and f ∗ are monoid homomorphisms

and ∼Γ is a congruence, it suffices to show this in the case when v ∈ X is a generator. But in that case, it

holds by assumption (a).

Claim B: for all w,w′ ∈ Y ∗ and c ∈ C, if w ∼∆ w′ and h∗∗(c,w) = (v,d) and h∗∗(c,w′) = (v′,d′), then

v ∼Γ v′ and d = d′. Proof: define a relation ∼ on Y ∗ by w ∼ w′ if for all c ∈ C, h∗∗(c,w) = (v,d) and

h∗∗(c,w′) = (v′,d′) implies v ∼Γ v′ and d = d′. We must show that w ∼∆ w′ implies w ∼ w′. Since ∼∆ is,

by definition, the smallest congruence containing ∆, it suffices to show that ∼ is a congruence containing

∆. The fact that ∼ is reflexive, symmetric, and transitive is obvious from its definition. The fact that it is

a congruence follows from the definition of h∗∗ and the fact that ∼Γ is a congruence. Finally, ∼ contains

∆ by assumption (b).

Note that, as a special case of claim B, we also have the following: if w,w′ ∈ Y ∗
s are special words,

then w ∼∆ w′ implies g(w)∼Γ g(w′). This follows directly from the definition of g.

To finish the proof of the Reidemeister-Schreier theorem, let v,v′ ∈ X∗ and assume that f ∗(v) ∼∆

f ∗(v′). Then we have:

v ∼Γ g( f ∗(v)) ∼Γ g( f ∗(v′)) ∼Γ v′,

where the first and last congruence holds by claim A, and the middle one holds by the special case of

claim B. Therefore, v ∼Γ v′ as claimed.

Corollary 4.4. Let G be a monoid with presentation (Y,∆), where Y ⊆G. Suppose H ⊆G is a submonoid

and X is a set of generators for H. Let Γ be a set of valid relations for H. Assume a set C and functions

f and h are given, satisfying the hypotheses of Theorem 4.3, and assume that f represents the inclusion

function of H into G, i.e., that x ∈ X, [ f (x)]G = [x]H . Then Γ is a complete set of relations for H.

4.3 Pauli rotation representation

One of the problems we face in applying the Reidemeister-Schreier theorem is that we must show that

a large number of (computer-generated) Clifford+T relations follow from the relations in Figure 1. It

would be very useful if this task could be automated. Ideally, the relations in Figure 1 could be turned

into a set of rewrite rules with the property that every Clifford+T circuit can be rewritten to a unique

normal form; in that case, to show that a given relation follows from the ones in Figure 1, it would be

sufficient to reduce the left-hand and right-hand sides to normal form and check that they are equal.
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Unfortunately, no such rewrite system or normal form is known. Instead, the best we can do is a

semi-automated process in which words are rewritten to something that is “almost” a normal form, i.e.,

not quite unique, but close enough so that many relations can be proved automatically, and the rest are

more easily solvable by hand.

For this, the Pauli rotation representation of Clifford+T operators turns out to be useful. This repre-

sentation was first described in [12, Section 3]. We start by noting that the T -gate is a linear combination

of the identity I and the Pauli operator Z. Specifically:

T =
(

1 0
0 ω

)

=
1+ω

2
I +

1−ω

2
Z. (1)

Therefore, an operator A commutes with T if and only if it commutes with Z. More generally, given any

n-qubit Pauli operator P, define

RP =
1+ω

2
I+

1−ω

2
P. (2)

Note that RZ = T . We refer to the operators RP as (45 degree) Pauli rotations. Note that RP is not a Pauli

operator; we call it a Pauli rotation because it is a rotation about a Pauli axis. By (2), it is again obvious

that an operator A commutes with RP if and only if it commutes with P. Moreover, from (2), we get the

following fundamental property of Pauli rotations:

CPC−1 = Q if and only if CRPC−1 = RQ. (3)

Let Z(i) = I ⊗ . . .⊗ I ⊗ Z ⊗ I ⊗ . . .⊗ I be the n-qubit Pauli operator with Z acting on the ith qubit, and

similarly T(i) = I⊗ . . .⊗ I⊗T ⊗ I⊗ . . .⊗ I = RZ(i)
. Since the Clifford operators act transitively on the set

of non-trivial self-adjoint Pauli operators by conjugation, for every such n-qubit Pauli operator P, there

exists a (non-unique) Clifford operator C such that CZ(1)C
−1 = P, and therefore CT(1)C

−1 = RP. We

therefore see that all of the Pauli rotations are Clifford conjugates of the T(1)-gate.

Next, we note that every Clifford+T operator can be written as a product of Pauli rotations followed

by a single Clifford operator. Specifically, by definition, every Clifford+T operator can be written as

C1T(i1)C2T(i2)C3 · · ·CnT(in)Cn+1.

For all k, let Dk =C1C2 · · ·Ck, so that Ck = D−1
k−1Dk. Then the above can be rewritten as

C1T(i1)C2T(i2)C3 · · ·CnT(in)Cn+1 = C1RZ(i1)
C2RZ(i2)

C3 · · ·CnRZ(in)
Cn+1

= D1RZ(i1)
D−1

1 D2RZ(i2)
D−1

2 D3 · · ·D−1
n−1DnRZ(in)

D−1
n Dn+1

= RD1Z(i1)
D−1

1
RD2Z(i2)

D−1
2
· · ·RDnZ(in)D

−1
n

Dn+1

= RP1
RP2

· · ·RPn
Dn+1,

where Pk = DkZ(ik)D
−1
k . Therefore, every Clifford+T operator can be written as a product of Pauli rota-

tions followed by a single Clifford operator, as claimed. It also shows that the number of required Pauli

rotations is at most equal to the T -count of the original circuit. In fact, since every Pauli rotation has

T -count 1, it is clear that every product of n Pauli rotations can be converted to a circuit of T -count n,

and vice versa. In particular, the minimal T -count of a circuit is equal to the minimal number of Pauli

rotations required to express it.

The Pauli rotation representation is not unique. There are some obvious relations:

(a) RP and RQ commute if and only if P and Q commute. This follows from (2).
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(b) For any P, the operator R2
P is Clifford, and therefore can be eliminated, resulting in a shorter

word. To see why, recall that there exists a Clifford operator C such that RP =CT(1)C
−1; therefore

R2
P =CT 2

(1)C
−1. Since T 2

(1) = S(1) is a Clifford gate, it follows that R2
P is Clifford.

(c) For any P, there exists a Clifford operator D such that R(−P) = RPD. Indeed, let C be a Clif-

ford operator such that P = CZ(1)C
−1. Then −P = C(−Z(1))C

−1 = CX(1)Z(1)X(1)C
−1. Therefore

R(−P) = CX(1)T(1)X(1)C
−1. Using the relation XTX = T S†

ω , we have R(−P) = CT(1)S
†
(1)ωC−1 =

CT(1)C
−1CS

†
(1)ωC−1 = RPCS

†
(1)ωC−1. Thus, the claim holds with D =CS

†
(1)ωC−1.

It is relatively easy to standardize the Pauli rotation representation modulo the above three relations:

First, we eliminate any generators of the form R(−P). This can be done from left to right, using relations

from (c); the resulting Clifford operator can be shifted all the way to the end of the word using relations

of the form DRP = RQD, where Q = DPD−1, see (3). Next, we use relations from (a) to swap adjacent

generators when possible, for example arriving at the lexicographically smallest word that is equal to

the given word up to such commuting permutations. Next, we use relations from (b) to remove any

duplicates. Should there be any such duplicates, the resulting word will need to be standardized again,

but since it uses fewer Pauli rotations, the process eventually terminates.

However, even when the Pauli rotation representation is standardized modulo the relations (a), (b),

and (c), it is still not unique. Indeed, there are some “non-obvious” relations. In a sense, the contribution

of this paper is to state exactly what these non-obvious relations are. They turn out to be the following.

Here, for brevity, we have omitted the tensor symbol ⊗, i.e., we wrote RIX instead of RI⊗X .

RIX RIZRZZRZX = RZX RIZRZZRIX ,
RIX RIZRIX RZX RZZRZX = RZX RIZRIX RZX RZZRIX ,

RXY RYZRXZRIX RZIRYX RZY RZX RXIRIZ = RYX RZY RZX RXIRIZRXY RYZRXZRIX RZI.

These turn out to be equivalent to relations (C18), (C19), and (C20) in Figure 1, respectively. We will

address the question of what these relations might “mean” (i.e., how one might be able to see that they

are true without computing the matrices) in Section 6.

4.4 Proof assistants

As outlined in Section 3, once we are armed with the Reidemeister-Schreier theorem, in theory there is

a mechanical way to obtain a complete set of relations for C T (2), given that C T (2) is a subgroup of

U4(Z[
1√
2
, i]) and we already have a complete set of relations for the latter due to Greylyn [13]. However,

when applied in practice, this method yields a large number of very large relations, all of which must be

shown to follow from the relations in Figure 1. Although Figure 3 appears to contain only 20 relations,

they are actually parameterized by indices such as j,k, etc. After accounting for these indices, there

are 123 distinct relations. Since there are two cosets of C T (2) in U4(Z[
1√
2
, i]), under part (b) of the

Reidemeister-Schreier theorem, each of these 123 relations yields two Clifford+T relations, plus another

8 relations (one for each generator) from part (a), giving a total of 254 Clifford+T relations that must be

verified. This task is too daunting to do “by hand”.

Given the mechanical and repetitive nature of these calculations, we initially wrote a computer pro-

gram to generate and verify the relations. However, this raised another issue: our program was large

and complicated and used a variety of tactics to show that the given relations follow from the ones in

Figure 1. We could not claim with mathematical certainty that our program was free of bugs, nor that it

didn’t use some hidden assumptions that weren’t actually consequences of Figure 1. Moreover, it would

have been unreasonable for any referee to verify our calculations.
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For this reason, we decided to go one step further and formalize the soundness and completeness

proofs in a proof assistant. A proof assistant is a piece of software in which one can write definitions,

theorems, and proofs, and the software will check the correctness of the proofs. Purists might object that

the proof assistant is itself a piece of software that might be buggy. But, as has been argued eloquently

by [11, 14], current proof assistants can be scrutinized at many levels and are many orders of magnitude

more reliable than the traditional way of checking paper-and-pencil proofs. The particular proof assistant

we used in this work is Agda [1].

5 Proof of the main result

5.1 Soundness and completeness

Our goal is to prove that Theorem 4.1 implies Theorem 2.1. Recall that Greylyn’s set of generators for

U4(R) is Y = {ω[ j],X[ j,k],H[ j,k] | j,k ∈ {1, ...,4} and j < k}. Also recall that our target set of generators

for C T (2) is X = {ω ,H0,H1,S0,S1,T0,T1,CZ}. We fix a translation from X to Y ∗ as follows:

f (ω) = ω[0]ω[1]ω[2]ω[3],

f (H0) = H[1,3]H[0,2],

f (H1) = H[2,3]H[0,1],

f (S0) = ω
2
[2]ω

2
[3],

f (S1) = ω
2
[1]ω

2
[3],

f (T0) = ω[2]ω[3],

f (T1) = ω[1]ω[3],

f (CZ) = ω
4
[3].

We prove the following soundness and completeness theorems for this translation:

Theorem 5.1 (Soundness). For all w,v ∈ X ∗, w ∼Γ v implies f ∗(w)∼∆ f ∗(v).

Theorem 5.2 (Completeness). For all w,v ∈ X ∗, f ∗(w)∼∆ f ∗(v) implies w ∼Γ v.

As already noted in Section 4.2, these two theorems, together with Theorem 4.1, immediately imply

Theorem 2.1. Specifically, we have w ∼Γ v if and only if f ∗(w)∼∆ f ∗(v) if and only if [ f ∗(w)] = [ f ∗(v)]
if and only if [w] = [v], where the first equivalence follows from Theorems 5.1 and 5.2, the second

equivalence follows from Theorem 4.1, and the last equivalence holds because the function f respects

the interpretation.

5.2 The formal proof

Soundness and completeness are formally proved in the Agda code accompanying this paper [8]. We

organized the code to make it hopefully as easy as possible to verify the result. The code consists of 67

files that are listed in Figure 4, and which we now briefly describe.

(a) Background. The eight files in the “background” section contain general-purpose definitions of

the kind that are usually found in the Agda standard library, i.e., basic properties of booleans, integers,

equality, propositional connectives, etc. The reason we did not use the actual Agda standard library is

that it is very large and changes frequently. We felt that it is better for our code to be self-contained rather

than depending on a particular library version.
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(b) Statement of the result. In these two files, we give a minimal set of definitions that allows us to

state the soundness and completeness theorems. The file Word.agda defines what it means to be a word

over a set of generators, as well as the inference rules we use for deriving relations from a set of axioms

(such as reflexivity, symmetry, transitivity, congruence, associativity, and the left and right unit laws).

Note that in the Agda code, we define a word as a term in the language of monoids, rather than as a

sequence of generators. In other words, associativity and the unit laws are treated as laws, rather than

being built into the definition. The file Word.agda also defines the f ∗ operation used in the statement of

the soundness and completeness theorems. The file Generator.agda defines the Clifford+T generators

and the relations from Figure 1, Greylyn’s generators and the relations from Figure 3, and the translation

function f from Section 5.1. It also contains the statement of the soundness and completeness theorems,

but not their proofs. The reason we state these theorems separately from their proofs is to make sure

that Agda (and a human reviewer) can verify that the statement of these theorems only depends on the

relatively small number of definitions given so far, and not on the much larger number of definitions and

tactics used in the proof.

(c) Details of the proof. The proof of the soundness and completeness theorems relies on a large

number of auxiliary definitions and lemmas, and comprises the bulk of our code with 56 files. This

includes a formal proof of the Reidemeister-Schreier theorem; several tactics for automating steps in

certain equational proofs; a simplified presentation of Greylyn’s generators and relations, using only 5

generators and 19 relations (instead of Greylyn’s original 16 generators and 123 relations), along with the

proof of its completeness; a formalization of Pauli rotations and their relevant properties; as well as 46

step-by-step proofs of individual relations. These details are primarily intended to be machine-readable,

and can safely be skipped by readers who trust Agda and merely want to check the proof rather than

reading it. However, all of the files are documented and human-readable.

The relations in the files Equation1.agda to Equation46.agda are at the heart of the completeness

proof. These are the relations that must be proved to satisfy the hypotheses of the Reidemeister-Schreier

theorem. Some of these relations are trivial, such as Equation13.agda. Others are highly non-trivial

and require almost a thousand proof steps, such as Equation44.agda. In particular, the proofs that

require relations (C18)–(C20) from Figure 1 tend to be non-obvious; in fact, this is how we discovered

relations (C18)–(C20) in the first place. We did not write these equational proofs by hand; instead, we

used a semi-automated process where most of the proofs were generated by a separate Haskell program

and output in a format that is convenient and efficient for Agda to check. Originally, we also attempted

to write Agda tactics that would allow Agda to derive these relations fully automatically; however, this

failed due to performance issues with Agda.

(d) Proof witness. Finally, the file Proof.agda contains nothing but a witness of the fact that the

soundness and completeness theorems have been formally proven. A reader who wants to skip the details

of the formal proof only needs to check two things: the statement of the main result in Generator.agda

(to make sure the statement correctly captures what we said it does), and the fact that the Agda proof

checker accepts Proof.agda.

6 Discussion of the axioms

Here, we give some further perspectives on what the axioms of Figure 1 might “mean”, and in particular,

how one might convince oneself that the relations are true without having to compute the corresponding
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(a) Background:

Boolean.agda The type of booleans.

Proposition.agda Basic definitions in propositional logic.

Equality.agda Basic properties of equality.

Decidable.agda Some definitions to deal with decidable properties.

Inspect.agda Agda’s “inspect” paradigm, to assist with pattern matching.

Nat.agda Basic properties of the natural numbers.

Maybe.agda The “Maybe” type.

List.agda Basic properties of lists.

(b) Statement of the result

Word.agda Basic properties of words.

Generator.agda Generators and relations for our two groups, and statement of main result.

(c) Proof of the result

Word-Lemmas.agda Basic lemmas about monoids and groups, and equational reasoning.

Reidemeister-Schreier.agda Two versions of the Reidemeister-Schreier theorem.

Word-Tactics.agda Some tactics for proving properties of words.

Clifford-Lemmas.agda A decision procedure for equality of 2-qubit Clifford operators.

CliffordT-Lemmas.agda Properties and tactics for Clifford+T operators.

Greylyn-Lemmas.agda Some automation for Greylyn’s 1- and 2-level operators.

Soundness.agda Proof of soundness.

Greylyn-Simplified.agda A smaller set of generators and relations for Greylyn’s operators.

PauliRotations.agda Definitions, properties, and tactics for Pauli rotations.

Equation1.agda – Equation46.agda Explicit proofs of 46 relations required for completeness.

Completeness.agda Proof of completeness.

(d) Top-level proof witness

Proof.agda The final witness for soundness and completeness.

Figure 4: List of Agda files. The files are listed in order of dependency, i.e., each file only imports earlier

files.
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matrices.

Note that we are not claiming that axioms (C1)–(C20) are independent; for example, (C8) clearly

follows from (C14) and (C16); however, we found it useful to separate the Clifford relations from the rest,

which is why (C8) was included. It would be nice to know whether axioms (C18)–(C20) are independent

from the others and from each other, and this seems likely to be true, but we do not know.

The axioms in groups (a)–(c) are well-known; they merely express the Clifford relations [21] and the

fact that operators on disjoint qubits commute. Relations (C14) and (C15) express the well-known facts

that T 2 = S and (T X)2 = ω , whereas relation (C16) holds because diagonal operators commute. Note

that the upside-down version of relation (C16) was not included among our axioms; this is because it is

actually derivable from the remaining axioms. Relation (C17) becomes obvious once one realizes that

the swap gate can be expressed as a sequence of three controlled-not gates:

=

Relation (C17) is then obtained by simplifying the following, which expresses the fact that a T -gate can

be moved past a swap-gate:

T =
T

We will now focus on the “non-obvious” relations (C18)–(C20). Relations (C18) and (C19) are of

the form

A A† =
A A† . (4)

They hold because positively controlled gates commute with negatively controlled gates. Note that there

are infinitely many relations of the form (4), where A is any single-qubit Clifford+T operator, but our

completeness proof shows that, in the presence of the remaining axioms, two of them are sufficient to

prove all the others.

Relation (C20) is more interesting. It, too, states that two operators commute, but it is less obvious

why this is so. Ideally, we would be able to find some simpler and more obvious relations that imply

(C20). While we have not been able to find such simpler relations in the Clifford+T generators, we can do

this if we permit ourselves a controlled T -gate. Note that the controlled T -gate is not itself a member of

the 2-qubit Clifford+T group, since representing it as a Clifford+T operator requires an ancilla [10]. But

the use of controlled T -gates is nevertheless helpful in explaining relation (C20). We start by noting that

the controlled T -gate satisfies the following obvious circuit identities (and their upside-down versions):

T
= T (5)

T T
=

T
(6)

T

T
=

T

T
(7)

H T H
=

T H T
. (8)

Identities (5)–(7) are obvious because all of the operators in them are diagonal. Identity (8) holds by case

distinction: this circuit applies either HT or T H to the bottom qubit, depending on whether the top qubit
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is |0〉 or |1〉. Using these identities, we can easily prove (C20):

H T H

H T H (8)
=

T H T

T H T

(5)
=

T H T T

H T

(6)
=

T H T

H T

=
T H T

H T

(5),(7)
= T H T

H T

= T H T

H T

(6)
= T H

H

T T

T

(5)
= T H

H

T

T T

(8)
= H T H

H T H
.

Note that there is again an infinite family of such relations, because in the above derivation, we could have

used any gate in place of H . However, due to completeness, all other such relations are consequences of

(C18)–(C20) and the remaining axioms.

Another way to look at relations (C18)–(C20) is in terms of their Pauli rotation representations. As

we already mentioned in Section 4.3, up to basis changes, the three relations can be written in terms of

Pauli rotations, respectively as follows:

RIX RIZRZZRZX = RZX RIZRZZRIX ,
RIX RIZRIX RZX RZZRZX = RZX RIZRIX RZX RZZRIX ,

RXY RYZRXZRIX RZIRYX RZY RZX RXIRIZ = RYX RZY RZX RXIRIZRXY RYZRXZRIX RZI.

When written in this form, the first two of these relations only use X and Z Paulis, and use only Z on

the left qubit. This indicates that these relations are about controlled gates. We can also see that in both

cases, the relation exchanges the positions of the leftmost RIX and the rightmost RZX . The first relation

can also be seen to express the fact that RIZRZZ commutes with RZX R−1
IX , and similarly for the second

relation. The third relation again takes the form of an operator commuting with its upside-down version.

7 Conclusion and future work

We gave a presentation of the 2-qubit Clifford+T group by generators and relations. We did this by

applying the Reidemeister-Schreier theorem to Greylyn’s presentation of the group of unitary 4 × 4-

matrices over the ring Z[ 1√
2
, i]. Since there is a very large number of relations to check and simplify, and

checking them by hand or by an unverified computer program would be error-prone, we used the proof

assistant Agda to formalize our proof. The latter process is painstaking and took us more than 5 years to

complete after our result was first announced in [7].
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An obvious candidate for future work would be to find a complete set of relations for the Clifford+T

group with 3 or more qubits. This is currently out of reach for two reasons: first, the computations

required to simplify any potential set of relations will be even more labor-intensive than in the 2-qubit

case. Second, and more seriously, there is no known presentation of the group of unitary n×n-matrices

over the ring Z[ 1√
2
, i] for n > 4.

Another project that is currently in progress is to apply the method of this paper to restrictions of the

Clifford+T group for which presentations of the corresponding matrix group are known. This includes

the Clifford+Toffoli gate set and the Clifford+controlled-S gate set.
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