
Math. Struct. in Comp. Science(2001),vol. 11,pp.207–260. Printed in the United Kingdom

c© 2001 Cambridge University Press

Control Categories and Duality: on the Categorical
Semantics of the Lambda-Mu Calculus

P E T E R S E L I N G E R

Department of Mathematics,
University of Michigan,
Ann Arbor, MI 48109-1109, U.S.A.
Email: selinger@umich.edu

Received 12 September 1998; revised 2 November 1999

We give a categorical semantics to the call-by-name and call-by-value versions of Parigot’s
λµ-calculus with disjunction types. We introduce the class of control categories, which combine a
cartesian-closed structure with a premonoidal structure in the sense of Power and Robinson. We
prove, via a categorical structure theorem, that the categorical semantics is equivalent to a CPS
semantics in the style of Hofmann and Streicher. We show that the call-by-nameλµ-calculus forms
an internal language for control categories, and that the call-by-valueλµ-calculus forms an internal
language for the dual co-control categories. As a corollary, we obtain a syntactic duality result: there
exist syntactic translations between call-by-name and call-by-value which are mutually inverse and
which preserve the operational semantics. This answers a question of Streicher and Reus.

1. Introduction

The discussion about the relative advantages and disadvantages of the two parameter passing
techniques, call-by-name and call-by-value, is almost as old as the theory of programming lan-
guages itself. While many modern functional programming languages use the call-by-value
paradigm, which is easy to implement and semantically intuitive, Felleisen and Hieb write in
their “Revised report on the syntactic theories of sequential control and state” that there is “no
theoreticalreason for choosing one over the other, even in the presence of control operators and
assignments” (Felleisen and Hieb 1992).

In this paper, we study the relationship between the call-by-name and call-by-value paradigms
for Parigot’sλµ-calculus. Theλµ-calculus is an extension of the simply-typed lambda calculus
with certain sequential control operators. We show that, in the presence of product and disjunc-
tion types, the call-by-name and call-by-valueλµ-calculi areisomorphicto each other, in the
sense that there exist syntactic translations between them that preserve the operational semantics
and that are mutually inverse up to isomorphism of types. These translations take the form of a
duality: they turn argument-driven computation into demand-driven computation by exchanging
input and output throughout, turning terms “inside out”. The presence of disjunction types makes
this possible: we can regard a termM : A1 ∧ . . .∧An → B1 ∨ . . .∨Bm as a function inn argu-
ments withm possible result types. Under the duality between call-by-value and call-by-name,
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M is mapped to a function inm arguments withn possible result types. The existence of such a
duality in the context of theλµ-calculus was conjectured by Streicher and Reus (1998).

An interesting aspect of this duality is that it exchanges functional and imperative features.
For instance, a purely functional call-by-value term is mapped to a call-by-name term that relies
almost exclusively on control operators, and vice versa. This observation suggests that, from
a practical point of view, certain algorithms are more naturally formulated in a call-by-value
paradigm, and others in call-by-name. It is interesting to compare this with Filinski’s work, in
which he obtains a duality result by working with a larger and more symmetric syntax, in which
the dual of a term is essentially its mirror image (Filinski 1989).

The main contribution of this paper, and the basis for the above-mentioned duality result, is
a sound and complete categorical semantics for both the call-by-name and call-by-valueλµ-
calculus. We introduce the class ofcontrol categories, in which the call-by-nameλµ-calculus
can be interpreted in much the same way as the simply-typed lambda calculus is interpreted in a
cartesian-closed category. We prove a categorical structure theorem that shows that every control
category is equivalent to a “category of continuations”, in the sense of Hofmann and Streicher
(1997). This structure theorem implies the soundness and completeness of the categorical inter-
pretation of theλµ-calculus with respect to a natural CPS semantics. But more is true: we show
that the call-by-nameλµ-calculus forms aninternal languagefor the class of control categories.

We then repeat this process for the call-by-value calculus. We show that the call-by-value
λµ-calculus forms an internal language for the class ofco-control categories, which are simply
the categorical duals of control categories. The syntactic duality result is then a corollary of the
syntax-free categorical duality.

It should be stressed that the results of this paper are not particular to theλµ-calculus. They
apply equally well to other, more traditional languages with continuation-like control constructs,
such ascall/cc in ML or Scheme, or Felleisen’sC operator (Felleisen 1986). Operationally, all
these calculi are equivalent; for instance, the equivalence between theλµ-calculus and a call-by-
name version of Felleisen’sC was shown by De Groote (1994b). One of the reasons that we have
chosen theλµ-calculus as the basis for the semantics in this paper is because it is technically
convenient to work with two separate name spaces, and thus with two-sided sequents, rather than
with explicit negation types. This two-sidedness also facilitates our statement of duality.

Related Work

This work draws on several recent developments in the categorical semantics of control operators.
The starting point of our work is Hofmann and Streicher’s categorical semantics of the call-by-
nameλµ-calculus in terms of categorical continuation models (Hofmann and Streicher 1997).
Our control categories are an abstraction of these models. Unlike categories of continuations,
control categories are defined as categories with algebraic structure, and they allow a covariant
interpretation of theλµ-calculus without any explicit reference to continuations. The crucial
ingredient in defining the structure of a control category is the realization that disjunction is not
bifunctorial, but that it forms a premonoidal structure in the sense of Power and Robinson (1997).
Our structure theorem relates this abstract approach to Hofmann and Streicher’s more concrete
semantics by showing that any control category is equivalent to a category of continuations.

In the call-by-value case, our model is almost identical to Thielecke’s interpretation in a⊗¬-
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category (Thielecke 1997). Indeed, a co-control category is a⊗¬-category with additional struc-
ture. Thielecke’s semantics does not include disjunction types, maybe because they are not cen-
tral to the computational phenomena and real-life programming languages that he is interested
in modeling. However, for this present work, the disjunction types are crucial, because they are
indispensable for the statement of duality. In particular, our call-by-name semantics is strictly
different from that of Thielecke, and cannot be expressed purely in terms of⊗¬-categories.
Also, the presence of disjunction types reveals the nature of Thielecke’s “self-adjointness” prop-
erty, which becomes a special instance of a co-cartesian-closed structure. A structure theorem
similar to ours was shown independently by Führmann (1998) for the case of⊗¬-categories.
Also, in a more recent development, Führmann has given a more general account of the relation-
ship between direct and monadic models, which generalizes some aspects of the present work to
arbitrary computational effects in place of continuations (Führmann 1999).

A different class of models for the call-by-nameλµ-calculus, based on fibrations, was defined
by Ong and Ritter and later generalized to the disjunctive case by Pym and Ritter (Ong 1996;
Pym and Ritter 1998). The focus of these models is different from ours, as they stress the fibered
nature of theλµ-calculus with respect to control contexts, and thus they are, in a sense, higher-
order. However, these models are rich in algebraic structure, and indeed, theλµ-calculus forms
an internal language for them, in the suitable fibered sense. One may go back and forth between
Ong/Ritter models and control categories by identifying the objectA at the fiber∆ with the
objectA#∆ in a control category. This appears to be an instance of a more general construction
of obtaining a fibration from a premonoidal structure, see also (Power and Robinson 1997).

Sometimes the question is raised what, if anything, is the computational significance of the
disjunction types in theλµ-calculus. The question arises because these types are originally moti-
vated mainly by logical and categorical concerns, and not by computational considerations. But
it turns out that the disjunction types do indeed have a computational interpretation, in terms of
certain manipulations with stacks. This is best seen in an abstract machine model. From the CPS
semantics of this paper, one can derive a Krivine-style abstract machine, as was done for the
fragment without disjunction in (Streicher and Reus 1998). The abstract machine model for the
disjunctive call-by-nameλµ-calculus, and an implementation, is described in detail in a sepa-
rate paper (Selinger 1998). For the purposes of this present paper, we emphasize the logical and
categorical perspective.

Outline

In Sections 2 through 4, we introduce control categories and exhibit their basic structure. In
Sections 5 through 7, we discuss the interpretation of the call-by-name and call-by-valueλµ-
calculi. In Section 8, we discuss duality. Some technical proofs from Section 3 are given in the
Appendix.

2. Control categories

In a cartesian-closed category, we use the notation3A : A → 1 for the terminal arrow,π1, π2

for the first and second projections,〈f, g〉 for pairing,εA,B : BA × A→ B for application, and
f? : B → CA for the curry of a mapf : B × A → C. We also use the internal language of a
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ccc to denote morphisms: thus a morphismf : A → B will be denoted by a typing judgment
x:A � M : B in the usual way. Obvious subscripts are often omitted. Sometimes, we use the
notation

ccc−−→ to label evident ccc isomorphisms.

2.1. Premonoidal categories

Premonoidal categories were introduced by Power and Robinson (1997). We summarize the
definition here. A premonoidal category is similar to a monoidal category, except that the tensor
product is only assumed to be functorial in each argumentseparately, but not necessarilyjointly.
Thus, the tensor product in a premonoidal category is not in general bifunctorial; for lack of a
better term we call such an operation a binoidal functor. The formal definition follows, where
|A| denotes the class of objects of a categoryA, regarded as a discrete subcategory.

Definition 2.1. Let A, B, andC be categories. Abinoidal functorF : A⊗B→ C is given by
two bifunctorsF0 : A× |B| → C andF1 : |A| ×B→ C, such thatF0(A,B) = F1(A,B) for
all pairs of objectsA,B.

SinceF0 andF1 agree where they are both defined (namely on objects), there is no harm in
denoting both of them byF and thus writingF (A,B), F (f,B), andF (A, g), whereA,B are
objects andf, g are morphisms. However, it does not in general make sense to writeF (f, g),
because the two compositesF (f,B′) ◦ F (A, g) andF (A′, g) ◦ F (f,B) may not coincide. A
bifunctor is just a binoidal functor where the latter two compositions are equal.

The notationF : A ⊗ B → C is justified because the following pushout defines a tensor
product inCat:

|A| × |B| //

��

A× |B|

��
|A| ×B // A⊗B

Thus, a binoidal functor can be regarded as a functor fromA⊗B to C. An explicit description
of the categoryA ⊗ B is given in (Power and Robinson 1997). More generally, we can define
n-oidal functorsF : A1 ⊗ . . .⊗An → C for everyn.

When we speak of natural transformations between binoidal functors, we always mean trans-
formations that are natural in each component separately. For bifunctors, this coincides with the
usual definition.

Definition 2.2. A binoidal categoryis a categoryP together with a binoidal functor# : P ⊗
P→ P. We use the usual infix notationA#B. A morphismf : A→ A′ in a binoidal category
is central if for every morphismg : B → B′, the two composites(f # B′) ◦ (A # g) and
(A′ # g) ◦ (f # B) agree, and the two composites(B′ # f) ◦ (g # A) and(g # A′) ◦ (B # f)
agree. In this case, we also use the notationf # g, respectively,g # f .

Premonoidal categories are defined by analogy with monoidal categories. Notice that the struc-
tural isomorphisms are required to be central.

Definition 2.3. A premonoidal categoryis a binoidal categoryP, together with an object⊥ and
central natural isomorphismsaA,B,C : (A # B) # C → A # (B # C), lA : A → A # ⊥, and
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rA : A→ ⊥# A, subject to the usual coherence conditions:

((A# B)# C)#D a //

a#D ""FFFFFFFF
(A# B)# (C #D) a // A# (B # (C #D))

(A# (B # C))#D a // A# ((B # C)#D),
A#a

<<xxxxxxxx

A# B

l#B

���������
A#r

��=======

(A#⊥)# B a // A# (⊥# B).

A symmetric premonoidal categoryhas in addition a family of central natural isomorphisms
cA,B : A# B → B # A, satisfyingc ◦ c = id and coherence:

(A# B)# C a //

c#C
��

A# (B # C) c // (B # C)# A

a

��
(B # A)# C a // B # (A# C) B#c // B # (C # A),

A
l

���������
r

��>>>>>>>

A#⊥ c // ⊥# A.

The operation# is also called a (symmetric)pretensor.

The central morphisms of a premonoidal categoryP form a monoidal subcategory, called
the centerof P, and denoted byP•. Clearly, the center is the largest subcategory on which#

restricts to a proper (bifunctorial) tensor product. Coherence for premonoidal categories follows
easily from Mac Lane’s result for monoidal categories (Mac Lane 1963; Kelly 1964), since all
the relevant coherence diagrams are contained in the center.

Premonoidal categories share many properties of monoidal categories, but some special care
is necessary when manipulating them. For instance, one should keep in mind that there are
innocent-looking expressions, such asA # A, that are not functorial. Also notice that iff :
A → A′ is a morphism, then the induced family of arrowsA # B → A′ # B is not in general
natural inB. We say that a family of mapsηB : F (B) → G(B) is natural in centralB if it is
natural with respect to centralg : B → B′, and analogously for dinaturality.

A remark on the choice of symbols: I originally chose the upside-down ampersand “#” be-
cause it suggests a tensor product with a disjunctive flavor. I did not intend to imply a connection
to linear logic by this choice. However, in recent work with O. Laurent and L. Regnier, it turned
out that control categories are a model of proof-nets for polarized linear logic, and, to my sur-
prise, the connective “#” indeed corresponds to the “par” of linear logic under this interpretation.
A more detailed account of this connection will appear elsewhere.

2.2. Codiagonals and focus

Definition 2.4. Let P be a symmetric premonoidal category. Asymmetric monoidin P is given
by an objectA, together with two central morphismsiA : ⊥ → A and∇A : A # A → A,
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satisfying the usual equations:

A#⊥ A#i //

l−1
$$JJJJJJJJJJ A# A

∇
��

⊥# Ai#Aoo

r−1
zztttttttttt

A,

(A# A)# A ∇#A //

a

��

A# A ∇
((QQQQQQ

A,

A# (A# A) A#∇ // A# A
∇

66mmmmmm

A# A ∇
))SSSSSS

c

��
A.

A# A
∇

55kkkkkk

A symmetric premonoidal categoryhas codiagonalsif there is a chosen symmetric monoid
〈A, iA,∇A〉 for each objectA, compatible with the premonoidal structure in the following sense:

i⊥ = id⊥ : ⊥ → ⊥,

⊥ iA#B
))TTTTTTTT

l=r

��
A# B,

⊥#⊥ iA#iB

55jjjjjj

A# B # A# B

A#c#B

��

∇A#B
,,YYYYYYYYYY

A# B.

A# A# B # B
∇A#∇B

22eeeeeeeeee

In the last diagram, some obvious associativity isomorphisms have been omitted. Since every
premonoidal category can be shown to be equivalent to a strict one (Power and Robinson 1997),
we will henceforth and without loss of generality treat associativity as if it were an identity map.

Notice we do not require that the families of mapsiA : ⊥ → A and∇A : A # A → A are
natural inA; in fact, it is not even obvious how one would state the naturality of∇A. Instead, we
will call a central morphismf : A→ B discardableif

⊥
iA

��






iB

��444444

A
f // B,

andcopyableif

A# A
f#f //

∇A
��

B # B

∇B
��

A
f // B.

This terminology is taken from (Thielecke 1997). Strictly speaking, we should use the terms
co-discardableandco-copyable, but this would be cumbersome. Discardability and copyability,
like centrality, are notions of “well-behavedness”.

Definition 2.5. A morphism is calledfocal if it is central, discardable, and copyable.

Remark 2.6. The focal morphisms form a subcategory ofP, called thefocusof P, which we
denote byP]. The focus is contained in the center. It is closed under#. All the structural maps
(a, l, r, c, i, and∇) are focal, and so are the left and right weakening maps defined by

wl
A,B = A

l−→ A#⊥ A#iB−−−→ A# B,

wr
A,B = B

r−→ ⊥# B iA#B−−−→ A# B.

Sometimes, we denote either of these maps byw. The focus has a canonical finite coproduct
structure:
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Lemma 2.7. In P], the object⊥ is initial, and# is a coproduct with the following injections
and co-pairing:

inl = A
wl

−→ A# B,

inr = B
wr

−→ A# B,

[f, g] = A# B
f#g−−−→ C # C

∇C−−→ C.

In fact,P] is the largest subcategory ofP on which# restricts to a coproduct.

Remark 2.8. One hasP] ⊆ P• ⊆ P. In general, the focus of a symmetric premonoidal category
with codiagonals is strictly contained in the center: for instance, ifP is a monoidal category
where the tensor is not given by a coproduct, then the the center is all ofP, whereas the focus is
not. However, in the case of a control category, to be defined shortly, we will see that the center
and the focus always coincide.

2.3. Distributivity

Definition 2.9. SupposeP is a symmetric premonoidal category with codiagonals. Suppose that
P also has finite products. We say thatP is distributive if the projectionsπ1 : A× B → A and
π2 : A×B → B are focal, and if for all objectsC, the functor−# C preserves finite products.

Note that the functor−#C preserves finite products iff for all objectsA,B, andC, the natural
maps

(A×B)# C
〈π1#C,π2#C〉−−−−−−−−−→ (A# C)× (B # C) and 1# C 3−→ 1

are isomorphisms. We denote the inverse of the first map bydA,B,C : (A # C) × (B # C) →
(A×B)# C.

Lemma 2.10. If P is a distributive, symmetric premonoidal category with codiagonals, then the
focus ofP is closed under the finite product structure.

Proof. First, it is trivial to see that3A : A → 1 is focal. Second, wheneverf : C → A and
g : C → B are central andh : D → E, then

C #D
〈f#D,g#D〉 //

C#h

��

(A#D)× (B #D) d //

(A#h)×(B#h)

��

(A×B)#D

(A×B)#h

��
C # E

〈f#E,g#E〉 // (A# E)× (B # E) d // (A×B)# E.

The left square commutes by hypothesis, the right one by naturality ofd. It follows from the
definition ofd that the map along the top is〈f, g〉 # D, and similarly along the bottom. Thus,
the perimeter of the diagram shows that〈f, g〉 is central. Next, assume thatf andg are also
discardable and copyable. The commutativity of the following two diagrams follows by post-
composing each of them withπ1 and withπ2, and by using the fact thatπ1 andπ2 are focal.
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Thus,〈f, g〉 is discardable and copyable as well.

⊥
iC

}}{{{{{{{{
iA×B

!!CCCCCCCC

C
〈f,g〉 // A×B

C # C
〈f,g〉#〈f,g〉 //

∇C
��

(A×B)# (A×B)

∇A×B
��

C
〈f,g〉 // A×B.

Notice that sinced−1 was defined in terms of pairing, the lemma also implies thatd−1, and
thusd, is focal.

2.4. Control categories

To the structure that we have considered so far, we now add cartesian-closedness, along with
some conditions that relate the cartesian-closed structure and the premonoidal structure.

Definition 2.11. SupposeP is a distributive symmetric premonoidal category with codiagonals.
SupposeP is also cartesian-closed. LetsA,B,C : BA # C → (B # C)A be the canonical
morphism obtained by currying

ε̂A,B,C : (BA # C)×A (BA#C)×w−−−−−−−→ (BA # C)× (A# C) d−→ (BA ×A)# C ε#C−−−→ B # C.

The categoryP is called acontrol categoryif sA,B,C : BA # C → (B # C)A is a natural
isomorphism inA,B, andC, satisfying the following coherence conditions:

1. The following diagram commutes, wheres′A,B,C = B#CA
c−→ CA#B

sA,C,B−−−−→ (C#B)A cA−→
(B # C)A,

BA # CD
s′ //

s

��

(BA # C)D

sD

��
(B # CD)A s′A // ((B # C)D)A ccc // ((B # C)A)D.

2. The following two diagrams commute, where∆A : A→ A×A is 〈idA, idA〉:

BA # BA
s′ //

∇BA &&NNNNNNNNNNNN (BA # B)A sA // (B # B)A×A

∇B∆A
wwoooooooooooo

BA,

⊥ ccc //

iBA ��555555 ⊥1

(iB)3A

��						

BA.

Remark 2.12. While it automatically follows from the definition ofsA,B,C that it is natural in
A andB, the requirement that it is natural inC is needed as a separate axiom.

The isomorphismsA,B,C : BA#C → (B#C)A is calledexponential strength. The require-
ment thats is an isomorphism is equivalent to the requirement that for everyf : D×A→ B#C,
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there exists a uniquef? : D → BA # C such that

(BA # C)×A ε̂ // B # C.

D ×A

f?×A

OO

f

77oooooooooooo

Thus, one has a natural isomorphism of hom-sets(D ×A,B # C) ∼= (D,BA # C), giving rise
to afibered ccc-structureonP.

Remark 2.13. So far, all the structural maps (of the premonoidal structure, the codiagonals, and
the finite product structure) have been focal. However, we do not require the application map
ε : BA × A → B to be focal, nor for the focus to be closed under currying. On the other hand,
the exponential strengthsA,B,C : BA # C → (B # C)A turns out to be focal, as we will show
in Lemma 3.5 below.

2.5. Example: Categories of continuations

As an example of a control category, we consider a category of continuations in the style of
Hofmann and Streicher (1997). We begin with a categoryC with distributive finite products
and coproducts, and with a distinguished objectR, such that for all objectsA, an exponential
RA exists. For example, one may takeC to be a bicartesian closed category (Lambek and Scott
1986), although in general, we do not require arbitrary exponentials to exist. We say thatC
satisfies themono requirementif the canonical morphism∂A : A→ RR

A

is monic for allA. In
this case, we call the categoryC a response category, and the objectR its object of responses.
This terminology is borrowed from continuation semantics. For simplicity and without loss of
generality, we assume that the exponentials are chosen such thatA 6= B impliesRA 6= RB .

Given a response categoryC, we define itscategory of continuations, denotedRC, to be the
full subcategory ofC consisting of the objects of the formRA. The crucial observation under-
lying continuation semantics is that the categoryRC is cartesian-closed (Agapiev and Moggi
1991; Lafont, Reus, and Streicher 1993). Indeed, inC, one has

1 ∼= R0, RA ×RB ∼= RA+B , (RB)R
A ∼= RB×R

A

,

and, being a full subcategory,RC inherits this structure fromC. Moreover, the categoryRC has
a canonical premonoidal structure, given on objects by

⊥ := R1 ∼= R, RA # RB := RA×B .

The operation# is functorial in the first argument viaRA×B ∼= (RA)B , and in the second
argument viaRA×B ∼= (RB)A. Notice that the operation# is not functorial in both arguments
jointly. All maps of the formRf are focal. The structural mapsa, l, r, c, i, and∇ are defined in
the obvious way.

Lemma 2.14. The category of continuationsRC is a control category.

Proof. The axioms are easily checked. For instance, exponential strength holds because

(RB)R
A

# RC ∼= RB×R
A×C ∼= (RB # RC)R

A

.
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A converse is also true: in Section 3.9, we will prove the main theorem about control cate-
gories: every control category is equivalent to a category of continuations.

3. The structure of a control category

3.1. Coherence

Lemma 3.1. The following hold in a control category:

(1) BA # C #D

sA,B,C#D

��

sA,B,C#D

((RRRRRRRRRRRR

(B # C)A #D
sA,B#C,D//(B # C #D)A.

(2) BA

lBA

��

(lB)A

&&MMMMMMMMMMM

BA #⊥
sA,B,⊥//(B #⊥)A.

(3) B # CA #D
B#sA,C,D//

s′A,B,C#D

��

B # (C #D)A

s′A,B,C#D
��

(B # C)A #D
sA,B#C,D//(B # C #D)A.

(4) B # C

ccc

��

ccc

&&MMMMMMMMM

B1 # C
s1,B,C //(B # C)1.

(5) (BA)A
′
# C

sA′,BA,C //

ccc

��

(BA # C)A
′(sA,B,C)A

′

//((B # C)A)A
′

ccc

��
BA×A

′
# C

sA×A′,B,C //(B # C)A×A
′
.

Proof. See appendix.

3.2. Centrality and discardability

We show here that any central map is discardable. In Section 3.6, we will be able to show that
any central map is also copyable, and thus the center and the focus coincide in a control category.

Lemma 3.2. In a control category, any central morphism is discardable.

Proof. Let f : A→ B be central. Letid? : 1→ ⊥⊥ be the curry of the identity map. Then the
first of the following three diagrams commutes by centrality. The second diagram is the same as
the first one up to coherent isomorphisms, and thus it also commutes. Finally, the third diagram
is obtained by uncurrying. Thus,f is discardable.

1# A
id?#A //

1#f

��

⊥⊥ # A

⊥⊥#f
��

1# B
id?#B // ⊥⊥ # B

⇒
1

i?A //

id

��

A⊥

f⊥

��
1

i?B // B⊥

⇒
⊥

iA //

iB ��@@@@@@@ A

f

��
B
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3.3. Some focal structural maps

Lemma 3.3. In a control category, any morphism of the formCf : CB → CA is focal, where
f : A→ B.

Proof. The commutativity of the two diagrams

CB #D
Cf#D //

CB#g

��

CA #D

CA#g

��
CB # E

Cf#E // CA # E

and

CB # CB
Cf#Cf //

∇CB
��

CA # CA

∇CA
��

CB
Cf // CA

follows from that of

(C #D)B
(C#D)f //

(C#g)B

��

(C #D)A

(C#g)A

��
(C # E)B

(C#E)f // (C # E)A

and

(C # C)B×B
(C#C)f×f //

∇C∆B

��

(C # C)A×A

∇C∆A

��
CB

Cf // CA

respectively, by naturality ofCB #D ∼= (C #D)B and ofCB # CB ∼= (C # C)B×B .

Lemma 3.4. In a control category, the natural ccc isomorphismsB1 ∼= B and (BA)A
′ ∼=

BA×A
′

are focal.

Proof. This follows from Lemma 3.1(4) and (5).

Lemma 3.5. In a control category, the exponential strength sA,B,C : BA # C → (B # C)A is
focal.

Proof. To see that it is central, consider the diagram

BA # C #D
(sA,B,C)#D //

BA#C#h

��

(B # C)A #D
sA,B#C,D //

(B#C)A#h

��

(B # C #D)A

(B#C#h)A

��
BA # C # E

(sA,B,C)#E // (B # C)A # E
sA,B#C,E // (B # C # E)A.

By coherence, the morphism along the top is equal tosA,B,C#D, and similarly along the bottom.
The right square commutes by naturality of strength, and so does the perimeter. The left square,
then, implies thatsA,B,C is central. Showing thatsA,B,C is copyable comes down, modulo co-
herence, to showing that

(B # B)A×A # C # C s //

∇∆
#∇
��

(B # B # C # C)A×A

(∇#∇)∆

��
BA # C

s // (B # C)A,

which follows by naturality ofs.
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Lemma 3.6. For all A,B,C, the canonical morphism pA,B,C : BA → (C # B)C#A, which is
obtained by currying

ε̃A,B,C : BA × (C # A)
w×(C#A)−−−−−−→ (C # BA)× (C # A) d−→ C # (BA ×A) C#ε−−−→ C # B,

is focal. Moreover, p is natural inA,B and dinatural in centralC, and it satisfies the following
coherence properties:

(1) BA
p //

p
((PPPPPPPPPPPPP (C # B)C#A

p

��
(D # C # B)D#C#A.

(2) BA #D
p#D //

s

��

(C # B)C#A #D

s

��
(B #D)A

p //(C # B #D)C#A.

(3) BA
p //

f�λg.λc.f(gc)
&&MMMMMMMMMMM (⊥C # B)⊥

C
#A

∼=
��

(BC)A
C

.

(4) 1
id?A //

id?B#A %%JJJJJJJJJJ AA

p

��
(B # A)B#A.

Proof. See appendix.

3.4. A remark on consistency

One may ask whether it is consistent to trivialize the structure of#, i.e. to assume that# is
bifunctorial. It turns out that any control category in which# is bifunctorial is equivalent to a
boolean algebra. The reader may find it instructive to compare the following lemma to the fact,
proved in (Lambek and Scott 1986, p.67), that in a bicartesian closed category, there is no arrow
A→ 0 unlessA ∼= 0.

Lemma 3.7. There is no central morphismf : 1→ A, unlessA ∼= 1.

Proof. First, we claim that iff, g : 1→ A andf is central, thenf = g. Consider the diagram

1# 1
f#1 //

1#g

��

A# 1

A#g

��

1
wl

oo

g

��
1# A

f#A // A# A
∇

##GGGGGGGGG A
wl
oo

id

��
1

wr

OO

f // A

wr

OO

id // A.

All cells commute, and the morphisms along the top and left sides are isomorphisms. Hence it
follows thatf = g, proving the first claim. Now suppose thatf : 1→ A is central, and letB be
any object. Thenf3 : 1 ∼= 11 → AB is central by Lemma 3.3. By our first claim, the hom-set
(1, AB) ∼= 1, and hence(B,A) ∼= 1, showing thatA is terminal.

Corollary 3.8. A control category in which# is bifunctorial is equivalent to a boolean algebra.
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Proof. If # is bifunctorial, then all morphisms are central. Thus, any hom-set(B,A) ∼=
(1, AB) has at most one element by Lemma 3.7. It follows that the category is equivalent to
a poset, and the control category structure trivializes to a boolean algebra structure.

3.5. Classical features: excluded middle and double negation

It is well-known that lambda calculi with control operators, such as theλµ-calculus, correspond
to classical logic under a propositions-as-types correspondence. This fact was first discovered
by Griffin (1990). Since control categories are going to be models for such calculi, it should
therefore not be surprising that control categories are models of propositional classical logic.
Objects correspond to propositions, and arrows correspond to proofs. The operation# models
disjunction. Note that all the axioms of control categories are intuitionistically valid, except for
the existence of an inverse to the maps : BA # C → (B # C)A. The latter makes the logic
classical. We can define arrows for excluded middle and double negation:

tndA : 1
r?A−→ (⊥# A)A s−1

−−→ ⊥A # A (excluded middle)

∂A : A ε?−→ ⊥⊥A (double negation introduction)

θA : ⊥⊥A p−→ (A#⊥)A#⊥
A ∼=−→ AA#⊥

A Atnd

−−→ A (double negation elimination)

Of course,∂A is just the natural map that can be defined in any ccc.

Lemma 3.9. In a non-trivial control category:

(1) θ⊥A = ⊥∂A : ⊥⊥⊥
A

→ ⊥A.
(2) θA ◦ ∂A = idA : A→ A.
(3) tndA is dinatural inA, but not in general central.
(4) ∂A is natural inA, but not in general central.
(5) θA is focal, but not natural inA. However,θA is natural in centralA.

Proof. (1): This follows from Lemma 3.6(3). (2): An easy diagram chase. (3): Dinaturality
follows from naturality ofr ands. Notice that by Lemma 3.7,tndA is not central unless⊥A#A ∼=
1. (4): The map∂A is natural in any ccc. If∂A : A→ ⊥⊥A is central, then any mapf : A→ B

is central, becausef = θB ◦ ∂B ◦ f = θB ◦ ⊥⊥
f ◦ ∂A by (2), which is central by (5) and

Lemma 3.3. (5):θA is focal by its definition, becausep is focal by Lemma 3.6 andAtnd is focal
by Lemma 3.3. The naturality ofθA in centralA follows from the dinaturality oftnd andp in
centralA.

The central morphisms are characterized by the fact thatθA is natural in centralA:

Lemma 3.10. A morphismf : A→ B is central if and only iff ◦ θA = θB ◦ ⊥⊥
f

.
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Proof. “Only if” follows from Lemma 3.9. For “if”, supposef ◦ θA = θB ◦ ⊥⊥
f

, and let
g : C → D. Consider the following cube:

A# C
f#C //

A#g

��

B # C

B#g

��

⊥⊥A # C
⊥⊥

f
#C //

⊥⊥
A
#g

��

θA#C

99rrrrrrrrrr

⊥⊥B # C

⊥⊥
B
#g

��

θB#C

88rrrrrrrrrr

A#D
f#D // B #D.

⊥⊥A #D
⊥⊥

f
#D //

θA#D

99rrrrrrrrrr

⊥⊥B #D
θB#D

88rrrrrrrrrr

The top and bottom faces commute by assumption. The left, right, and front faces commute
becauseθA, θB , and⊥⊥f are central. Moreover, the top left arrowθA # C is a split epic by
Lemma 3.9(2), and thus the back face commutes, showing thatf is central.

3.6. The center and the focus coincide

From Lemma 3.2, we know that any central map is discardable. We can now show that in a
control category, the center and the focus coincide:

Lemma 3.11. In a control category, any central morphism is copyable.

Proof. The proof is adopted from Thielecke (1997). Supposef : A→ B is central. Consider
the following cube:

A# A
f#f //

∇

��

B # B

∇

��

⊥⊥A #⊥⊥A
⊥⊥

f
#⊥⊥

f

//

∇

��

θA#θA

88qqqqqqqqqqq

⊥⊥B #⊥⊥B

∇

��

θB#θB

88pppppppppp

A
f // B.

⊥⊥A
⊥⊥

f

//

θA

88qqqqqqqqqqqq
⊥⊥B

θB

88pppppppppppp

The front face and the two sides commute because⊥⊥f , θA, andθB are copyable by Lemmas 3.3
and 3.9. The top and bottom faces commute becauseθA is natural in centralA by Lemma 3.9.
Moreover, the top left arrowθA # θA is a split epic with right inverse(∂A #⊥⊥

A

) ◦ (A# ∂A).
Thus, it follows that the back face commutes, showing thatf is copyable.
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3.7. The basic adjunctions of the center

Let P be a control category. Recall that the center ofP was denoted byP•. We use the usual
notation for hom-sets. Thus,P(A,B) is the set of all morphisms, andP•(A,B) is the set of
central morphisms fromA toB.

Lemma 3.12. P(1, B # A) ∼= P•(⊥A, B), naturally inA and centralB.

Proof. Writing pA,B for ⊥A pA,⊥,B−−−−→ (B # ⊥)B#A
∼=−→ BB#A, we defineφA,B : P(1, B #

A)→ P•(⊥A, B) andψA,B : P•(⊥A, B)→ P(1, B # A) by

φA,B(f) = ⊥A
pA,B−−−→ BB#A

Bf−−→ B1 ccc−−→ B,

ψA,B(g) = 1 tndA−−−→ ⊥A # A g#A−−−→ B # A.

Notice thatφ(f) is indeed central by Lemmas 3.3, 3.4, and 3.6.ψ is clearly natural in central
B. The naturality ofφ in A follows from that ofpA,B . To see thatψ(φ(f)) = f holds for all
f : 1→ B # A, consider the following diagram:

1
tnd //

id?
&&LLLLLLLLLLLLL ⊥A # A

p#A //

s

��

BB#A # A
Bf#A //

s

��

B1 # A
ccc //

s

��

B # A.

AA
p // (B # A)B#A

(B#A)f // (B # A)1

ccc

77nnnnnnnnnnnn

The diagram commutes, from left to right, by definition oftnd, Lemma 3.6(2), naturality ofs, and
Lemma 3.1(4), respectively. The composition along the top isψ(φ(f)). The composition along
the bottom isf by Lemma 3.6(4) and standard ccc manipulations. To show thatφ(ψ(g)) = g

holds for centralg, consider

BB#A
Bg#A //

B⊥
A
#A

Btnd
// B1 ccc // B.

⊥A

p

OO

p //

f�λg.λa.f(ga) &&NNNNNNNNNNNN (⊥A)⊥
A
#A

(⊥A)tnd

//

g⊥
A#A

OO

(⊥A)1 ccc //

g1

OO

⊥A

g

OO

(⊥A)A
A

(⊥A)id?

88ppppppppppp
(⊥A)s

OO

The leftmost square commutes by dinaturality ofp in centralg. The leftmost triangle commutes
by Lemma 3.6. The other parts commute by definition oftnd and by ccc calculations. Clockwise
along the top, we haveφ(ψ(g)), and counterclockwise along the bottom, we haveg.

Lemma 3.13. P(A,B) ∼= P•(⊥B ,⊥A) ∼= P•(⊥⊥A , B). The first isomorphism is natural inA
andB, and the second isomorphism is natural inA in centralB.

Proof. Define

φA,B : P(A,B) → P•(⊥B ,⊥A) by φ(f) = ⊥B ⊥f−−→ ⊥A,
ψA,B : P•(⊥B ,⊥A)→ P•(⊥⊥A , B) by ψ(g) = ⊥⊥A ⊥g−−→ ⊥⊥B θB−−→ B,

ϑA,B : P•(⊥⊥A , B)→ P(A,B) by ϑ(h) = A
∂A−−→ ⊥⊥A h−→ B.
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Notice thatφ(f) andψ(g) are indeed central, by Lemmas 3.3 and 3.9(5). Clearly,φ is natural in
A andB. Moreover,ψ is natural inA and in centralB becauseθB is. We need to show that all
three maps are isomorphisms:

ϑ(ψ(φ(f))) = A
∂A //

f
  AAAAAAAA ⊥⊥A ⊥⊥

f

//⊥⊥B
θB //B,

B

∂B

<<yyyyyyyy idB

66mmmmmmmmmmmmmmmmm

φ(ϑ(ψ(g))) = ⊥B ⊥θB //

id
))RRRRRRRRRRRRRRRRRR ⊥⊥⊥

B ⊥⊥
g

//

⊥∂B

##GGGGGGGG
⊥⊥⊥

A ⊥∂A //⊥A,

⊥B
g

<<yyyyyyyy

ψ(φ(ϑ(h))) = ⊥⊥A ⊥
⊥∂A
//

id
))SSSSSSSSSSSSSSSSSS ⊥⊥⊥

⊥A ⊥⊥
h

//

θ
⊥⊥A

##FFFFFFFF
⊥⊥B

θB //B.

⊥⊥A
h

??~~~~~~~~

The commutativity of these diagrams follows from Lemma 3.9.

Putting the last two lemmas together, we immediately get:

Corollary 3.14. P•(⊥⊥, B # A) ∼= P(1, B # A) ∼= P•(⊥A, B), naturally in centralA and
centralB.

3.8. Functors and equivalences of control categories

Let P andP′ be control categories. Astrict functor of control categoriesF : P → P′ is a
functor that preserves chosen structure, i.e., it preserves chosen binary products,#, 1, ⊥, and
exponentials, as well as the chosen morphisms associated with that structure. Notice that it fol-
lows from Lemma 3.10 that such a functor preserves central maps; thus, we do not need this as a
special requirement.

In practice, we are usually more interested in functors that preserve the structureup to isomor-
phism. In the context of control categories, it is sensible to require the structure to be preserved
up tocentral isomorphism, as expressed in the following definition:

Definition 3.15. A (weak) functor of control categoriesis a functorF : P→ P′, together with
central natural isomorphisms

η×A,B : FA× FB ∼=−→ F (A×B)
η#A,B : FA# FB

∼=−→ F (A# B)
η1 : 1

∼=−→ F1
η⊥ : ⊥ ∼=−→ F⊥
ηexp
A,B : FBFA

∼=−→ F (BA),
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commuting with the morphism structure in all the evident ways, for instance:

FA× FB
η× //

π1
&&NNNNNNNNNNNN F (A×B)

Fπ1

��
FA,

FA#⊥
FA#η⊥// FA# F⊥

η#

��
FA

l

OO

F l
// F (A#⊥).

It follows from Lemma 3.10 that weak functors of control categories preserve the center. Note
that this in particular implies that weak functors of control categories can be composed.

We will also need a notion of equivalence of control categories. Here, too, it is appropriate to
modify the standard definition to take into account the concept of centrality.

Definition 3.16. An equivalence of control categoriesP andP′ is given by a pair of weak
functors of control categories,F : P → P′ andG : P′ → P, together with twocentralnatural
isomorphismsG ◦ F ∼= idP andF ◦ G ∼= idP′ . If two control categories are equivalent in this
sense, we also writeP ' P′.

We say that a functorF : P → P′ is centrally essentially onto objectsif for eachB ∈ |P′|,
there exists anA ∈ |P| and a central isomorphismB ∼= FA.

Lemma 3.17. Assuming the axiom of choice, a weak functor of control categoriesF : P → P′

is part of an equivalence if and only ifF is full, faithful, and centrally essentially onto objects.

Proof. A very slight modification of the usual argument for categories with structure.

3.9. The structure theorem for control categories

The fundamental theorem about control categories is the following structure theorem:

Theorem 3.18 (Structure Theorem).Any control categoryP is equivalent to a category of
continuationsRC.

SupposeP is a control category. LetC = (P•)op be the dual of the center ofP. Thus, the
objects ofC are those ofP, and a morphism inC fromA toB is a central morphism fromB to
A in P. To avoid confusion, we will writêA for the objectA, when considered as an object of
C. Similarly, we will write f̂ : Â→ B̂ for a central morphismf : B → A, when considered as
a morphism ofC.

Lemma 3.19. The categoryC has distributive finite products and coproducts.

Proof. The centerP• is closed under finite products by Lemma 2.10. Moreover, since center
and focus coincide, the premonoidal structure ofP restricts to a finite-coproduct structure onP•

by Lemma 2.7. Thus,C has finite products and coproducts. The distributivity ofC follows from
that ofP.

In C, define an object of responsesR := ⊥̂⊥.

Lemma 3.20. The categoryC has exponentials of the formRÂ for every objectÂ. Moreover,

the canonical morphism∂Â : Â→ RR
Â

is monic. Thus,C is a response category.
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Proof. Using the natural equivalence of Corollary 3.14, we have

C(B̂ × Â, R) ∼= P•(⊥⊥, B # A) ∼= P•(⊥A, B) ∼= C(B̂, ⊥̂A),

naturally inÂ, B̂. Thus, we can defineRÂ := ⊥̂A in C. Moreover,∂Â : Â→ RR
Â

is θ̂A : Â→
̂⊥⊥A , which is monic becauseθA is a split epic inP by Lemma 3.9(2).

Proof of Theorem 3.18.It remains to be shown that the category of continuationsRC is
equivalent toP as a control category. By Lemma 3.13, we know that the contravariant functor
F : P→ P• given byF (A) = ⊥A andF (f) = ⊥f is full and faithful. Thus,F op : P→ C is a
full and faithful covariant functor. Moreover, the objects in the image ofF op are precisely those

of the form⊥̂A = RÂ. Thus,F op restricts to an equivalence of categoriesP → RC. We must
show that it preserves control category structure. Being an equivalence,F op clearly preserves
finite products and exponentials. We calculate that it preserves the premonoidal structure:

F op(A# B) = ̂⊥A#B = RÂ×B̂ = RÂ # RB̂ = ⊥̂A # ⊥̂B = F op(A)# F op(B),
F op(⊥) = ⊥̂⊥ = R = ⊥.

One must also check that forf : B → B′ in P, one hasF op(A # f) = F op(A) # F op(f), i.e.,
̂⊥A#f = ⊥̂f Â : RÂ×B̂ → RÂ×B̂

′
. Unwinding the definition of exponentiation inC, one finds

that this holds if the following commutes:

P•(⊥A#B , C)
∼= //

P•(⊥A#f ,C)

��

P(1, C # A# B)
∼= // P•(⊥B , C # A)

P•(⊥f ,C#A)

��
P•(⊥A#B′ , C)

∼= // P(1, C # A# B′)
∼= // P•(⊥B′ , C # A)

But the isomorphisms, from Lemma 3.12, are natural inB, and thus this commutes. Finally, it
is routine to check thatF op preserves the structural mapsa, l, r, c, i, and∇. This proves the
theorem.

4. More on the structure of a control category

In this section, we examine the structure of control categories further. The material of Subsec-
tions 4.1 and 4.2 is needed in preparation for the interpretation of the call-by-valueλµ-calculus;
the rest of this section may be skipped in the first reading.

4.1. The weak co-closed structure of a control category

By combining the cartesian-closed structure with Lemma 3.12, we get the following sequence of
isomorphisms:

P(B,C # A) ∼= P(1, (C # A)B) ∼= P(1, C # AB) ∼= P•(⊥A
B

, C),

naturally inA, B, and centralC. Thus, for any objectA, the functorF : P• → P given by
F (C) = C # A has a left adjointG : P → P•, given byG(B) = ⊥AB . The unit of this
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adjunction is

coapp: B ∂−→ AA
B ∼=−→ ⊥A

B

# A.

We denote the image of a mapf : B → C#A under the adjunction bycocurry(f) : ⊥AB → C.
The mapscoappandcocurrydo neither define a co-closed structure onP, nor onP•. However,
from the adjunction, one has

B
coapp //

f $$HHHHHHHHHH ⊥AB # A
cocurry(f)#A

��
C # A

for all f : B → C # A, and moreovercocurry(f) is the uniquecentralmorphism making this

diagram commute. Thus,⊥AB defines aweakco-closed structure onP, and we write

B ◦−A := ⊥A
B

.

4.2. Co-control categories and⊗¬-categories

For the interpretation of the call-by-valueλµ-calculus, it will be convenient to dualize the notion
of a control category. Aco-control categoryis the categorical dual of a control category. In
particular, it has finite coproductsA + B with initial object0, co-exponentials which we write
asBA, a pretensorA⊗B with unit I, and a weak closed structureA −◦ B. The following table
lists some notation that we are going to use for objects and morphisms of a co-control category:

On objects
Control Co-control

1 0
A×B A+B

⊥ I

A# B A⊗B
BA BA

B ◦−A A −◦ B

On morphisms
Control categories Co-control categories

3 : A→ 1 2 : 0→ A

i : ⊥ → A t : A→ I

∇ : A# A→ A ∆ : A→ A⊗A
ε : BA ×A→ B �: B → BA +A

f? : C → BA ?f : BA → C

coapp: B → (B ◦−A)# A app : (A −◦ B)⊗A→ B

cocurry(f) : (B ◦−A)→ C curry(f) : C → (A −◦ B)

We use the usual notation for coproducts. Following Thielecke (1997), the dual of the mapθ

is calledthunk, and the dual of∂ is calledforce. The remaining structural maps keep the same
names as their duals.

Every co-control category is a⊗¬-category in the sense of Thielecke (1997), where¬A is
defined asIA ∼= A −◦ 0. Notice that one hasBA ∼= (¬A) ⊗ B andA −◦ B ∼= ¬(A ⊗ ¬B);
thus each two of the constructsBA, A −◦ B, and¬A can be defined in terms of the third.
Conversely, one can show that every⊗¬-category can be fully and faithfully embedded in a co-
control category. Thus, co-control categories can be seen as a natural extension of⊗¬-categories
with finite coproducts. The presence of finite coproducts is important for the duality result in
Section 8.
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Table 1.The signature of control categories

Nullary morphism constructors:

id : A→ A
3 : A→ 1
π1 : A×B → A
π2 : A×B → B

ε : BA ×A→ B
a : (A# B)# C → A# (B # C)
l : A→ A# ⊥
c : A# B → B # A
i : ⊥ → A

∇ : A# A→ A

d : (A# C)× (B # C)→ (A×B)# C
s−1 : (B # C)A → BA # C

Object constructors:

1 ⊥ A×B A→ B A# B

Binary and unary morphism constructors:

f : A→ B g : B → C

g ◦ f : A→ C

f : A→ B g : A→ C

〈f, g〉 : A→ B × C
f : A×B → C

f? : A→ CB

f : A→ B

f # C : A# C → B # C

4.3. Control categories as algebras

The structure of control categories, like that of cartesian-closed categories, is equational in the
sense of Lambek and Scott (1986). This means that the structure can be given by object construc-
tors, morphism constructors, and universally quantified equations on hom-sets. Any categorical
structure that is given in this way enjoys good properties, because the usual algebraic construc-
tions, such as constructing a free algebra or a quotient, have categorical equivalents. Thus, it
makes sense to speak of a congruence relation on a control category, to take a quotient, or to
freely adjoin a class of arrows.

The object and morphism constructors of control categories are shown in Table 1. Here, it is
understood that each given morphism constructor actually stands for a family of constructors,
indexed by objects. Some constructors that appear in our definition of control categories are not
shown here; they are definable in terms of the remaining ones, and are thus redundant.

The structure of control categories is given by type-indexed equations (with variables) on hom-
sets over this signature. These equations can be found in the definitions in Sections 2.1 through
2.4, and we do not repeat them here. For illustration, let us only point out that the requirement
that a certain morphism is focal can indeed be expressed equationally. For instance, the focality
of π1 : A×B → A is expressed by the following three equations:

π1 ◦ iA×B = iA,
π1 ◦ ∇A×B = ∇A ◦ (A# π1) ◦ (π1 # (A×B)),

(π1 #D) ◦ ((A×B)# g) = (A# g) ◦ (π1 # C), for all g : C → D.

4.4. The center of a category of continuations

We have remarked in Section 2.5 that in a category of continuationsRC, any morphism of the
formRg : RA → RB , for g : B → A in C, is central. As F̈uhrmann has shown, the converse is
true iff C satisfies Moggi’sequalizing requirement(Moggi 1988; F̈uhrmann 1999). We say that
an objectA ∈ |C| satisfies the equalizing requirement if the canonical morphism∂A : A→ RR

A
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is an equalizer in the following diagram:

A
∂A //

RR
A

∂
RR

A
//

RR
∂A

// RR
RR

A

.

We say thatC satisfies the equalizing requirement if all of its objects do.

Remark 4.1. The equalizing requirement is satisfied if∂A is a split monic, which is the case,
for instance, ifC is the category of non-empty sets and|R| ≥ 2.

Lemma 4.2. LetRC be a category of continuations. For any objectA ∈ |C|, the following are
equivalent:

(1) Every central morphismf : RA → RB is of the formRg, for someg : B → A.
(2) The objectA satisfies the equalizing requirement.

Proof. Denote byf?? : B → RR
A

the curry and uncurry of a mapf : RA → RB . Notice that
if g : B → A, thenf = Rg if and only if f?? = ∂A ◦ g. Also note that suchg is necessarily
unique, since we have assumed, in the definition of a response category, that∂A is monic. By
Lemma 3.10,f is central if and only iff ◦ θRA = θRB ◦RR

f

. In a category of continuations, we
haveθRA = R∂A , and by ccc manipulations, it follows thatf is central if and only if∂RRA ◦f

?
? =

RR
∂A ◦ f?? . It follows that every central morphismf : RA → RB is of the formRg, for someg,

if and only if for everyf , it is the case that∂RRA ◦ f
?
? = RR

∂A ◦ f?? impliesf?? = ∂A ◦ g, for
someg, if and only ifA satisfies the equalizing requirement.

Remark 4.3. Not every response category satisfies the equalizing requirement. For a trivial
counterexample, letC be the full sub-ccc{0, 1} of the category of sets. LetR = 1 be the
terminal object. Notice that, sinceC is a poset,∂A is monic for allA. However,A = 0 does not
satisfy the equalizing requirement. Indeed, the unique mapf : R0 → R1 is central, but not of
the formRg for g : 1→ 0.

4.5. On explicitly chosen value categories

In our definition of control categories, the center is a derived notion: a morphism is central if it
satisfies certain equations. Thus, the center is not an explicitly given part of the structure. Com-
putationally, the central morphisms are used to model effect-free computations, orvalues, as we
will see in our interpretation of the call-by-valueλµ-calculus in Section 7. Some authors, such as
Jeffrey (1997), prefer to present premonoidal categories together with an explicitly chosenvalue
category, which is a fixed subcategory of the center. In the context of premonoidal categories,
there is a clear advantage in working with chosen value categories, because functors that pre-
serve the algebraic structure of premonoidal categories do not in general preserve centrality; but
by making values part of the given structure, one can require functors to preserve them. Since,
on the other hand, functors of control categories automatically preserve the center, the need for
value categories is not so clear in this context. Still, it is possible to accommodate this point of
view if desired, and in this section we will show that this leads to a slightly improved statement
of the Structure Theorem.
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Definition 4.4. Let P be a control category. A subcategoryV is called avalue categoryif
|P| ⊆ V ⊆ P•, and ifV is closed under all the structural operations of control categories (shown
in Table 1), exceptε and currying. We further require thatV contains the mapssA,B,C and
pA,B,C , and all maps of the formAf . If V is a chosen value category ofP, then the morphisms
of V are calledvalues.

SupposeP andP′ are control categories with respective chosen value categoriesV andV′.
We say that a (weak) functor of control categoriesF : P → P′ preserves valuesif it restricts
to a functor fromV to V′, i.e., if f ∈ V impliesF (f) ∈ V′. In this case, we also writeF :
(P,V)→ (P′,V′). We say that an equivalenceF : P→ P′,G : P′ → P of control categories
respects valuesif it restricts to an equivalence of the categoriesV andV′. This means not only
that bothF andG preserve values, but also that each component of the natural isomorphisms
G ◦F ∼= idP andF ◦G ∼= idP′ is a value. IfP andP′ are equivalent in this sense, we also write
(P,V) ' (P′,V′).

If RC is a category of continuations, letRC
v be the subcategory consisting of morphisms of

the formRf . ThenRC
v is a value category ofRC, and we call it thecanonical value category.

Note that in Remark 4.3, we gave an example of a category of continuations whose canonical
value category was strictly contained in the center. Since the center of any control category is
itself a value category, this shows that value categories are not in general unique. However, the
following lemma shows that at certain types, the values are uniquely determined.

Lemma 4.5. If P is a control category with chosen value categoryV, then V(⊥A, B) =
P•(⊥A, B).

Proof. By the proof of Lemma 3.12, any central mapf : ⊥A → B is of the formBg ◦ p, and
hence a value.

Notice that this implies that in a co-control category, the values at the call-by-value function
typeA −◦ B = ¬(AB) are uniquely determined. The valuesf : C → (A −◦ B) are precisely
the maps of the formf = curry(g). Under our interpretation of theλµ-calculus in Section 7,
these maps are precisely the lambda abstractions.

In the context of chosen value categories, we can give an improved version of the Structure
Theorem. In Theorem 3.18, we have shown that every control categoryP is equivalent to a cat-
egory of continuationsRC. However,C is not in general uniquely determined byP. It turns out
that with respect to a chosen value categoryV of P, the categoryC is unique up to equivalence.
This is made precise in the following theorem:

Theorem 4.6 (Second Structure Theorem). Let P be a control category with chosen value
categoryV. Then there is a response categoryC such that(P,V) ' (RC, RC

v ). Moreover,C is
unique up to equivalence of response categories.

Proof. Existence: LetC = Vop. One provesP ' RC exactly as in the proof of Theorem 3.18,
takingV in place ofP•. Lemma 4.5 serves to ensure thatV has all the properties ofP• that were
relevant to the proof. Moreover, under the equivalence, the images of valuesf ∈ V are precisely
the valuesRf̂ ∈ RC

v . Uniqueness: First, observe that any response categoryD is equivalent to
the dual ofRD

v via the contravariant functor that mapsA toRA andf toRf . Clearly, this functor
is full and onto objects; it is also faithful sinceD satisfies the mono requirement. Now suppose
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Table 2.The typing rules for theλµ-calculus

(var)
Γ ` x : A | ∆

if x:A ∈ Γ

(const)
Γ ` cA : A | ∆

(∗)
Γ ` ∗ : > | ∆

(pair)
Γ `M : A | ∆ Γ ` N : B | ∆

Γ ` 〈M,N〉 : A ∧B | ∆

(π1)
Γ `M : A ∧B | ∆

Γ ` π1M : A | ∆

(π2)
Γ `M : A ∧B | ∆

Γ ` π2M : B | ∆

(app)
Γ `M : A→ B | ∆ Γ ` N : A | ∆

Γ `MN : B | ∆

(abs)
Γ, x:A `M : B | ∆

Γ ` λxA.M : A→ B | ∆

(name)
Γ `M : A | ∆

Γ ` [α]M : ⊥ | ∆
if α:A ∈ ∆

(µ)
Γ `M : ⊥ | α:A,∆

Γ ` µαA.M : A | ∆

(weaken)
Γ `M : A | ∆

Γ′ `M : A | ∆′
if Γ ⊆ Γ′,∆ ⊆ ∆′

(P,V) ' (RD, RD
v ). Then we haveD ' (RD

v )op ' Vop = C; moreover, this equivalence

identifies the response objectR ∈ D with R = ⊥̂⊥ ∈ C. Thus,D andC are equivalent as
response categories.

5. Theλµ-calculus

5.1. The syntax of theλµ-calculus

We will show how to interpret Parigot’sλµ-calculus (Parigot 1992) in a control category. We
begin by reviewing the syntax of theλµ-calculus with finite products. Letσ, τ, . . . range over a
setB of type constants. Types, ranged over byA,B, . . ., are constructed by the grammar:

A ::= σ > A ∧B A→ B ⊥

LetV andN be two given, infinite, disjoint sets ofobject variablesx, y, . . . andcontrol variables
α, β, . . ., respectively. Control variables are also callednames. Let K be a set of typedobject
constantscA, dB , . . .. The pair(B,K) is called asignature of theλµ-calculus, and sometimes
denoted byΣ. Raw termsM,N, . . . are constructed by the grammar:

M ::= x cA ∗ 〈M,N〉 π1M π2M MN λxA.M [α]M µαA.M

A term of the formµαA.M is called aµ-abstraction, and a term of the form[α]M is called a
named term. In the termsλxA.M andµαA.M , the object variablex, respectively the control
variableα, is bound. As usual, we identify raw terms up to renaming of bound object and control
variables.

The typing of theλµ-calculus is defined as follows. Anobject contextis a finite, possibly
empty sequenceΓ = x1:B1, x2:B2, . . . , xn:Bn of pairs of an object variable and a type, such
thatxi 6= xj for all i 6= j. We writeΓ ⊆ Γ′ if Γ is contained inΓ′ as a set. Acontrol context
∆ = α1:A1, α2:A2, . . . , αm:Am is defined analogously. Atyping judgmentis an expression
of the formΓ ` M : A | ∆, i.e., a quadruple consisting of an object context, a term, a type,
and a control context. In the logical interpretation of a sequent, the symbol “`” stands for an
implication, and the symbol “| ” stands for a disjunction.Valid typing judgmentsare derived by
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the rules in Table 2. Anequation is an expression of the formΓ ` M = N : A | ∆, where
Γ `M : A | ∆ andΓ ` N : A | ∆ are valid typing judgments.

5.2. An informal description of the semantics of theλµ-calculus

To motivate the constructs of theλµ-calculus, we first give an informal discussion of the intended
semantics. A formal semantics will be given by means of CPS translations in Sections 6 and 7.

Theµ-abstractions and named terms of theλµ-calculus are operators that influence the se-
quential flow of control during the evaluation of a term. Informally, when a subterm is evaluated,
one of two things could happen: it could return a value to its environment, or it could cause the
control flow to jump to some other part of the program. A term that contains such a jump may
never return a value to its environment at all, in which case it can be given the type⊥, which is
the “empty type” of which there are no values.

In theλµ-calculus, a prototypical term of type⊥ is the term[α]M . It does not return anything,
but passes the value ofM to a control variable namedα instead. One can think ofα as a named
channel, and of the value ofM as being sent along this channel. One also says thatM is thrown
toα. Channels are typed: ifα has typeA, then this means that values of typeA can be thrown to
α.

We also need a binding construct for channels. Theµ-abstractionN = µαA.M creates a
named channelα and then begins to evaluateM . If in the process of evaluatingM , some value
gets thrown toα, then this value immediately becomes the value of the whole expressionN . The
evaluation ofM is not continued in this case. Thus, sinceα is declared to be of typeA, the term
N must have typeA as well. What should the type ofM be? In theλµ-calculus, the bodyM of
a µ-abstraction has type⊥. Thus, the question of what to do whenM returns a value does not
arise. However, this is not a serious restriction: one can easily deal with termsM of arbitrary
type by using the idiomµαA.[β]M , or evenµαA.[α]M whenM has typeA.

A typing judgmentx1:B1, . . . , xn:Bn ` M : A | α1:A1, . . . , αm:Am means thatM is a
well-typed term with at mostn free typed object variables and at mostm free typed control
variables. One can think ofM as a function inn arguments which hasm + 1 possible result
channels: it may return an ordinary value of typeA, or it may return an exceptional value of type
Ai on some channelαi.

On the surface, there is a certain similarity between the control constructs of theλµ-calculus
and the exception handling mechanism of ML. As a first approximation, one may think of throw-
ing a valueV to α as raising an exceptionα with valueV . Similarly, one may think of the term
µαA.M as providing a handler for the exceptionα. However, this analogy is only superficial,
and there is an important difference between ML exception handling and theλµ-calculus: the
latter isstatically scoped. This means, the termN = µαA.M binds those occurrences ofα in
M in its syntacticscope. Occurrences ofα that are substituted intoM (for instance as the result
of reducing aλ-redex) arenot bound inN . On the other hand, ML exceptions aredynamically
scoped, which allows a function, among other things, to handle an exception that one of its ar-
guments throws. Because of its static scoping, theλµ-calculus is a calculus ofcontinuations,
not exceptions, and theµ-abstraction mechanism is closely related to control operators such as
callcc in Scheme, or Felleisen’sC.
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5.3. Adding classical disjunction to theλµ-calculus

The λµ-calculus can be regarded, and was originally conceived, as a term calculus for multi-
conclusioned classical sequent calculus proofs. This connection to logic suggests that one should
be able to extend the calculus to include a disjunction type constructor. Indeed, there is a standard
way of adding disjoint sum types to the lambda calculus via left and right injections and a case
construct. However, the proof theory of disjunction in classical logic is quite different from that in
intuitionistic logic, and Pym and Ritter (1998) show how to add a different, classical, disjunction
type to theλµ-calculus. They also show that these classical disjunction types are strictly different
from the disjoint sum type under the call-by-name semantics. On the other hand, we shall see
that under call-by-value, the two disjunction types coincide.

In the following, we essentially adopt Pym and Ritter’s classical disjunction type, although we
use a slightly different, more symmetric syntax for terms. Formally, we add one type constructor
and two term constructors to theλµ-calculus:

A ::= . . . A ∨B

M ::= . . . [α, β]M µ(αA, βB).M

The two new term constructors are generalizations ofµ-abstraction and naming that deal with
two control variables, rather than one. Informally, one may think of a value of typeA ∨ B as
being either a value of typeA or a value of typeB. Depending on which is the case, the term
[α, β]M will throw the value ofM to α or β. Similarly, the termµ(αA, βB).M catches any
value that is thrown toα or β, and synthesizes it to a value of typeA ∨ B. The typing rules for
disjunction are:

(name′)
Γ `M : A ∨B | ∆
Γ ` [α, β]M : ⊥ | ∆

if α:A, β:B ∈ ∆,

(µ′)
Γ `M : ⊥ | α:A, β:B,∆

Γ ` µ(αA, βB).M : A ∨B | ∆
.

Notice that the typing rules imply that in the patternµ(αA, βB).M , the variablesα andβ are
different. When writing terms in the disjunctiveλµ-calculus, we will sometimes use a more
generous syntax forµ-abstractions and named terms. For instance,µ(αA, (βB , γC)).M is an
abbreviation forµ(αA, δB∨C).[δ]µ(βB , γC).M , and similarly[α, [β, γ]]M is syntactic sugar for
the term[β, γ]µδB∨C .[α, δ]M .

The disjunctionA ∨B is classical. For instance,

M = µ(αA, βA→⊥).[β]λxA.[α]x

is a closed term of typeA ∨ (A → ⊥). It is instructive to examine the behavior of this term,
because it is an illustration of how the static scoping works. Informally, when the termM is
initially evaluated, it will return a closureλxA.[α]x of typeA → ⊥ to its environment. Should
the environment ever attempt to apply this closure to some valuev of typeA, then the control
flow will jump back to the termM in the environment in which it was originally called. At that
point,M will evaluate tov.
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6. The call-by-name interpretation of theλµ-calculus

Theλµ-calculus was originally introduced as a call-by-name language (Parigot 1992; Ong 1996),
although Ong and Steward have later given it a call-by-value interpretation (Ong and Stewart
1997). We will first consider the call-by-name semantics, and leave the call-by-value semantics
for the next section.

The operational semantics of the call-by-nameλµ-calculus can be given in several different
familiar styles. Parigot gave a strongly normalizing system of reductions for his original calculus,
an approach that was generalized to the extensional and disjunctive case by Pym and Ritter
(1998). However, the reduction rules for the control operators are less than intuitive, and they
involve complex substitution operations and permutations of contexts.

For our purposes, it is more convenient to consider a continuation passing style (CPS) se-
mantics. One such semantics, based on Plotkin’s original call-by-name semantics for the simply-
typed lambda calculus (Plotkin 1975), was given by De Groote (1994a). We adopt a different
CPS translation which was given by Hofmann and Streicher (1997) and which takes advantage
of a richer target language with finite sums and products. Streicher and Reus (1998) demon-
strated that such a CPS translation can serve as the basis for an abstract machine model, yielding
a stack-based Krivine machine for the call-by-nameλµ-calculus. We extend the CPS translation
to include disjunction types, and take it as the basis for our categorical interpretation of the call-
by-name disjunctiveλµ-calculus in a control category. It is also possible to systematically extend
the Krivine machine semantics to account for disjunction types. This is carried out in (Selinger
1998).

6.1. The call-by-name CPS translation

Consider the disjunctiveλµ-calculus over some signature(B,K). We will give the call-by-name
semantics of this calculus by a CPS translation. The target language of the translation is a lambda
calculusλR×+ with sum, products, and a distinguished typeR of responses. Function types are
restricted to the caseA → R, and consequently, lambda abstractionsλx.M occur only when
M has typeR. Let =βη denote the usualβη-equivalence ofλR×+, with surjective pairing and
exhaustive sums.

To keep the notation brief, we use various forms of syntactic sugar for the sums and products of
the target calculus. We use patterned lambda abstractionλ〈x, y〉A×B .M , which is customarily
defined as an abbreviation forλzA×B .M [π1z/x, π2z/y]. We also use the co-pairing notation
[M,N ] as a shorthand for the expression(λkA+B .casek of inl k1 ⇒Mk1 | inr k2 ⇒ Nk2).
Notice that[M,N ] is the term that corresponds to〈M,N〉 under the canonical isomorphism
(A+B → R) ∼= (A→ R)× (B → R). We also use lambda abstraction patterns for co-pairing;
thusλ[x, y]A+B→R.M is a shorthand forλzA+B→R.M [λaA.z(inl a)/x, λbB .z(inr b)/y]. The
initial type 0 is equipped with a type cast operator: IfM has type0, then2AM has typeA. By
∗, we denote the canonical term of the unit type1.

Definition 6.1 (Call-by-name CPS translation). We assume that the target calculus has a type
constant̃σ for each type constantσ ∈ B of λµ. For each typeA of theλµ-calculus, we define
a pair of typesKA andCA of the target calculus, called, respectively, the type ofcontinuations
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Table 3.The CPS translation of the call-by-nameλµ-calculus

x = λkKA .x̃k wherex : A
cA = λkKA .c̃k

∗ = λkK> .2Rk
〈M,N〉 = λkKA∧B .[M,N ]k whereM : A,N : B

π1M = λkKA .M(inl k) whereM : A ∧B
π2M = λkKB .M(inr k) whereM : A ∧B
MN = λkKB .M〈N, k〉 whereM : A→ B,N : A

λxA.M = λ〈x̃, k〉KA→B .Mk whereM : B
[α]M = λkK⊥ .Mα̃ whereM : A

µαA.M = λα̃KA .M∗ whereM : ⊥
[α, β]M = λkK⊥ .M〈α̃, β̃〉 whereM : A ∨B
µ(αA, βB).M = λ〈α̃, β̃〉KA∨B .M∗ whereM : ⊥

and ofcomputationsof typeA:

Kσ = σ̃, whereσ is a type constant,
K> = 0,
KA∧B = KA +KB ,

KA→B = CA ×KB ,

K⊥ = 1,
KA∨B = KA ×KB ,

CA = KA → R.

For each object constantcA ∈ K of theλµ-calculus, we assume that the target calculus has a
constant̃c of typeCA. Moreover, for each object variablex and each control variableα of the
λµ-calculus, we assume a distinct variablex̃, respectivelỹα, of the target calculus. The call-by-
name CPS translationM of a typed termM is given in Table 3. It respects the typing in the
following sense:

x1:B1, . . . , xn:Bn `M : A | α1:A1, . . . , αm:Am
x̃1:CB1 , . . . , x̃n:CBn , α̃1:KA1 , . . . , α̃m:KAm `M : CA

. (1)

We also writeΓ `M : A | ∆ for the translation of a typing judgment, and similarly for equa-
tions.

This particular CPS translation, for the fragment without products and disjunction, was discov-
ered by Hofmann and Streicher (1997). It differs from Plotkin’s original call-by-name translation
(Plotkin 1975) by introducing one less double negation at function types, thus taking advantage
of the richer target language. We compare the two translations in detail in Section 6.5.

Notice that the translation of the control operators is straightforward: they simply exchange
current continuations. Thus, the translation reveals the nature of the control variables of theλµ-
calculus: they are essentially variables of the target language, to which the user of the source
language has limited access. One could take this idea further and allowarbitrary expressionse
of the target calculus to appear in the construct[e]M of the source calculus. A similar extension
was proposed by Streicher and Reus (1998). Such an extension would be in the spirit of Filinski’s
symmetric lambda calculus (Filinski 1989), as it would put terms and continuations on equal
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footing. However, such extensions also lead to an incomprehensible programming style, and
since they do not add any expressive power to the language, we do not consider them further.

Definition 6.2. Let M andN be terms of theλµ-calculus such thatΓ ` M : A | ∆ and
Γ ` N : A | ∆. We say thatM andN arecall-by-name equivalent, in symbolsM =n N , if
M =βη N . More generally, ifT is a theory of theλR×+-calculus, we define thecall-by-name
λµ-theorygenerated byT to be the set of equations{E | E ∈ T }.

Note that the class of call-by-nameλµ-theories is closed under arbitrary intersections. As a
matter of fact, it has a finite equational axiomatization. For the fragment without products and
disjunction, this follows from Hofmann and Streicher’s result (Hofmann and Streicher 1997).
We will show how to obtain a finite axiomatization of the theories of the full calculus as a
consequence of the Structure Theorem, after discussing the interpretation of the call-by-name
λµ-calculus in a control category.

6.2. The interpretation of the call-by-nameλµ-calculus in a control category

The target calculusλR×+ of our CPS translation can be interpreted directly in a response category
C. Recall that this was a category with distributive finite products and coproducts, a distinguished
objectR, and exponentials of the formRA. Let us momentarily identify the typesKA andCA
with their interpretation inC. Then by Property (1), the CPS translation of a typing judgment
x1:B1, . . . , xn:Bn `M : A | α1:A1, . . . , αm:Am gives rise to a morphism inC:

CB1 × . . .× CBn ×KA1 × . . .×KAm → CA.

UsingCA = RKA and currying, this amounts to a morphism

CB1 × . . .× CBn → RKA×KA1×...×KAm ,

which lies within the continuation categoryRC. Thus, we can use the standard premonoidal
structure onRC to write

CB1 × . . .× CBn → CA # CA1 # . . .# CAm .

We have thus eliminated any reference to the continuation typesKA from the interpretation of a
typing judgment. Indeed, one can interpret the call-by-nameλµ-calculus in a control categoryP
directly, without explicitly mentioning continuations. The interpretation is very natural:

Definition 6.3 (Categorical call-by-name interpretation). Let P be a control category. To in-
terpret theλµ-calculus with signature(B,K), assume a choice of an objectσ̃ for every type
constantσ ∈ B. Each type constructor is interpreted by the corresponding object constructor of
control categories:

[[σ]]n = σ̃, whereσ is a type constant,
[[>]]n = 1,
[[A ∧B]]n = [[A]]n × [[B]]n,
[[A→ B]]n = [[B]]n

[[A]]n ,

[[⊥]]n = ⊥,
[[A ∨B]]n = [[A]]n # [[B]]n.
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Table 4.The interpretation of the call-by-nameλµ-calculus in a control category

[[Γ ` xi : Bi | ∆]]n = Γ
πi−−→ Bi

w−→ Bi #∆

[[Γ ` cA : A | ∆]]n = Γ
3−→ 1

c̃−→ A
w−→ A#∆

[[Γ ` ∗ : > | ∆]]n = Γ
3−→ 1

∼=−→ 1#∆

[[Γ ` 〈M,N〉 : A ∧B | ∆]]n = Γ
〈[[M ]]n,[[N ]]n〉−−−−−−−−−→ (A#∆)×(B #∆)

d−→ (A×B)#∆

[[Γ ` π1M : A | ∆]]n = Γ
[[M ]]n−−−−→ (A×B)#∆

π1#∆−−−−→ A#∆

[[Γ ` π2M : B | ∆]]n = Γ
[[M ]]n−−−−→ (A×B)#∆

π2#∆−−−−→ B #∆

[[Γ `MN : B | ∆]]n = Γ
〈[[M ]]n,[[N ]]n〉−−−−−−−−−→ (BA #∆)×(A#∆)

d−→ (BA×A)#∆
ε#∆−−−→ B #∆

[[Γ ` λxA.M : A→ B | ∆]]n = Γ
[[M ]]?n−−−−→ (B #∆)A

s−1
−−→ BA #∆

[[Γ ` [αi]M : ⊥ | ∆]]n = Γ
[[M ]]n−−−−→ Ai #∆

wi#∆−−−−→ ∆#∆
∇−→ ∆

∼=−→ ⊥#∆

[[Γ ` µαA.M : A | ∆]]n = Γ
[[M ]]n−−−−→ ⊥# A#∆

∼=−→ A#∆

[[Γ ` [αi, αj ]M : ⊥ | ∆]]n = Γ
[[M ]]n−−−−→ Ai # Aj #∆

wi#wj#∆
−−−−−−−→ ∆#∆#∆

∇#∆;∇−−−−−→ ∆
∼=−→ ⊥#∆

[[Γ ` µ(αA, βB).M : A ∨B | ∆]]n = Γ
[[M ]]n−−−−→ ⊥# A# B #∆

∼=−→ (A# B)#∆

If Γ = x1:B1, . . . , xn:Bn is an object context, we write[[Γ]]n := [[B1]]n × . . .× [[Bn]]n, and we
denote theith projection map byπi : [[Γ]]n → [[Bi]]n. Similarly, if ∆ = α1:A1, . . . , αm:Am is a
control context, we write[[∆]]n := [[A1]]n# . . .# [[Am]]n, and we use the notationwj : [[Ai]]n →
[[∆]]n for the jth weakening map. Typing judgments are interpreted relative to a choice of a
morphismc̃ : 1→ [[A]]n for each object constantcA ∈ K. A typing judgmentΓ `M : A | ∆ is
interpreted as a morphism

[[Γ `M : A | ∆]]n : [[Γ]]n → [[A]]n # [[∆]]n,

which is also abbreviated to[[M ]]n. The interpretation is defined by recursion on the structure of
M , as shown in Table 4. To keep the notation reasonable, we have omitted the semantic brackets
from the interpretation of types, hoping that no confusion will arise.

Lemma 6.4. If P = RC is a category of continuations, then the call-by-name categorical
interpretation of theλµ-calculus inP coincides with the interpretation of the call-by-name CPS
translation inRC.

From the Lemma, which is easily checked by induction on terms, together with the Structure
Theorem 3.18, one immediately gets soundness and completeness for theories:

Proposition 6.5 (Soundness and Completeness).The theories induced on theλµ-calculus by
the call-by-name categorical interpretation are precisely the theories induced by the call-by-
name CPS translation.

6.3. The call-by-nameλµ-calculus is an internal language for control categories

Recall from Section 4.3 that the structure of a control category is given by operations on objects
and morphisms, and equations on hom-sets. On the image of any given call-by-name interpre-
tation of theλµ-calculus in a control category, all these structural operations, as they appear in
Table 1, are in fact definable by operations on types and typing judgments.
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Table 5.Control category operations on typing judgments

Nullary operations:

id = x:A ` x : A
3 = x:A ` ∗ : >
π1 = x:A ∧B ` π1x : A
π2 = x:A ∧B ` π2x : B
ε = x:(A→ B) ∧A ` (π1x)(π2x) : B
a = x:(A ∨B) ∨ C ` µ(αA, (βB , γC)).[[α, β], γ]x : A ∨ (B ∨ C)
l = x:A ` µ(αA, δ⊥).[α]x : A ∨ ⊥
c = x:A ∨B ` µ(βB , αA).[α, β]x : B ∨A
i = x:⊥ ` µαA.x : A

∇ = x:A ∨A ` µαA.[α, α]x : A
d = x:(A ∨ C) ∧ (B ∨ C) ` µ(δA∧B , γC).[δ]〈µαA.[α, γ]π1x, µβB .[β, γ]π2x〉 : (A ∧B) ∨ C
s−1 = x:A→ (B ∨ C) ` µ(δA→B , γC).[δ]λzA.µβB .[β, γ]xz : (A→ B) ∨ C

Binary and unary operations:

f = x:A `M : B g = x:B ` N : C

g ◦ f = x:A ` (λxB .N)M : C

f = x:A `M : B g = x:A ` N : C

〈f, g〉 = x:A ` 〈M,N〉 : B ∧ C
f = x:A ∧B `M : C

f? = x:A ` λyB .(λxA∧B .M)〈x, y〉 : B → C

f = x:A `M : B

f # C = x:A ∨ C ` µ(βB , γC).[β](λxA.M)µαA.[α, γ]x : B ∨ C

Let x be a fixed object variable. We say that a typing judgment is instandard form if the
object context declares exactly the one variablex, and the control context is empty. We abbreviate
standard form typing judgments tox:B ` M : A, i.e., we omit the empty object context. Note
that every typing judgmentx1:B1, . . . , xn:Bn `M : A | α1:A1, . . . , αm:Am is equivalent to a
standard form

x:B1 ∧ . . . ∧Bn ` µ(α, α1, . . . , αm).[α](λx1 . . . xn.M)(π1x) . . . (πnx) : A ∨A1 ∨ . . . ∨Am,

in the sense that the two denote the same morphism under any interpretation in a control category.
Table 5 defines the syntactic operations on standard form typing judgments which correspond to
the structural operations of control categories.

Lemma 6.6. Under the call-by-name interpretation, the structural operations of control cate-
gories are defined by the operations on typing judgments that are shown in Table 5.

Proof. It is easy to check this case by case. For instance, if the interpretation ofx:A ` N : B
is f : [[A]]n → [[B]]n and the interpretation ofx:B ` M : C is g : [[B]]n → [[C]]n, then the
interpretation ofx:A ` (λxB .M)N : C is

[[A]]n
g?×f−−−→ [[C]][[B]]n

n × [[B]]n
ε−→ [[C]]n,

which is indeedg ◦ f : [[A]]n → [[C]]n.

Definition 6.7 (Syntactic control category). For a givenλµ-signatureΣ and a call-by-name



Control Categories and Duality 31

theory T , we can construct thesyntactic control categoryPn
Σ,T as follows: The objects of

Pn
Σ,T are the types of the language, with the object constructors given by the corresponding

type constructors. Morphisms fromA toB are named by valid standard form typing judgments
x:A `M : B. Two typing judgmentsx:A `M : B andx:A ` N : B name the same morphism
if (x:A ` M = N : B) ∈ T . The operations of a control category on morphisms are defined as
in Table 5.

Lemma 6.8. Pn
Σ,T is a well-defined control category.

Proof. We must show thatPn
Σ,T satisfies all the defining equations of a control category, i.e.,

that the corresponding equations between typing judgments hold inT . By the fact thatT is a
theory, together with the completeness of the categorical interpretation, there is a control category
P together with a call-by-name interpretation[[− ]]n, such that(x:A ` M = N : B) ∈ T iff
[[x:A ` M : B]]n = [[x:A ` N : B]]n. By Lemma 6.6, the required equations hold inP, thus in
T .

There is a canonical call-by-name interpretation[[− ]]0n of theλµ-calculus with signatureΣ in
Pn

Σ,T , defined byσ̃ := σ and c̃ := x:> ` c : A. It has the property that the interpretation of
each typing judgment is call-by-name equivalent to its standard form. The pair(Pn

Σ,T , [[− ]]0n) is
determined up to isomorphism by the following universal property: For eachT -respecting call-
by-name interpretation[[− ]]n in a control categoryP, there is a unique strict functor of control
categoriesF : Pn

Σ,T → P such thatF [[A]]0n = [[A]]n for all typesA, andF [[Γ `M : A | ∆]]0n =
[[Γ `M : A | ∆]]n for all valid typing judgmentsΓ `M : A | ∆.

The construction ofPn
Σ,T allows us to pass from theories to categories. The opposite is also

possible:

Definition 6.9 (The internal language of a control category).Given a small control category
P, we can construct from it a signatureΣ and a call-by-name theoryT as follows:Σ has the
objects ofP as its type constants, and one object constantcf

A→B for each morphismf : A→ B.
Consider the canonical interpretation of this language inP, namely the one that interprets each
type constants by itself and each object constantcf

A→B by f? : 1 → BA. Let T by the call-
by-name theory induced by this interpretation. We call the pair(Σ, T ) theinternal call-by-name
languageof P.

Lemma 6.10. If (Σ, T ) is the internal call-by-name language of a control categoryP, then
Pn

Σ,T ' P.

Proof. Clearly, the canonical interpretation of the internal language inP is onto objects and
morphisms, as each morphismf : A → B is the denotation ofx:A ` cfx : B. Thus, the
canonical functor of control categoriesPn

Σ,T → P, given by the universal property ofPn
Σ,T , is

full and onto objects. It is faithful by definition ofT . Thus,Pn
Σ,T ' P by Lemma 3.17.

6.4. An axiomatization of the call-by-nameλµ-theories

We obtained soundness and completeness of the categorical call-by-name interpretation almost
“for free”, because of the way theories were defined; namely, in terms of a CPS translation, which
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Table 6.Axioms of the call-by-nameλµ-calculus

Axioms for the lambda calculus with products:
(β→) (λxA.M)N = M [N/x] : B
(η→) λxA.Mx = M : B if x 6∈ FV(M)
(β∧) πi〈M1,M2〉 = Mi : Ai
(η∧) 〈π1M,π2M〉 = M : A ∧B
(η>) ∗ = M : >

Axioms forλµ and disjunction:
(ζ→) (µαA→B .M)N = µβB .M [[β](−)N/[α](−)] : B if β 6∈ FN(M,N)
(ζ∧) πi(µα

A1×A2 .M) = µβAi .M [[β]πi(−)/[α](−)] : Ai if β 6∈ FN(M)

(ζ∨) [α, β]µγA∨B .M = M [[α, β](−)/[γ](−)] : ⊥

(βµ) [α′]µαA.M = M [α′/α] : ⊥
(ηµ) µαA.[α]M = M : A if α 6∈ FN(M)

(β∨) [α′, β′]µ(αA, βB).M = M [α′/α, β′/β] : ⊥
(η∨) µ(αA, βB).[α, β]M = M : A ∨B if α, β 6∈ FN(M)

(β⊥) [ξ⊥]M = M : ⊥

is already very close to the categorical semantics. Sometimes it is more convenient to have an
equational description of theories, for instance, as the basis of a rewrite semantics.

Having shown that the call-by-nameλµ-calculus forms an internal language for control cate-
gories, we can characterize the call-by-name theories as follows:

Proposition 6.11. Fix a signatureΣ. Then a congruence relationT on typing judgments is a
call-by-nameλµ-theory if and only if all of the following hold:

1. An equation is inT if and only if its standard form is inT .
2. Pn

Σ,T , as constructed in Lemma 6.8, is a well-defined control category.
3. The canonical interpretation[[− ]]0n : λµ→ Pn

Σ,T interprets each typing judgment by its own
standard form.

Proof. If T is a theory, then the three conditions hold by the results of the previous section.
Conversely, assume the conditions hold. Then[[− ]]0n : λµ → Pn

Σ,T is an interpretation in a
control category, and it validates exactly the equations inT . ThusT is a call-by-nameλµ-
theory.

One can use this characterization to give a sound and complete axiom axiomatization of the
call-by-nameλµ-theories as follows. We write FV(M), respectively FN(M), for the free object
and control variables of a termM . As before, we identify terms up toα-equivalence, renaming
bound variables as necessary to avoid captures. We consider three kinds of substitution. We write
M [N/x] for the usual substitution of a termN for an object variablex inM . We writeM [α′/α]
for the substitution of the context variableα′ for the context variableα inM , andM [α′/α, β′/β]
for two such substitutions performed simultaneously. Finally, we consider the so-calledmixed
substitution: If M is a term,C(−) is a context, andα a name, then themixed substitution
M [C(−)/[α](−)] is the result of recursively replacing inM any subterm of the form[α](−) by
C(−), and any subterm of the form[α1, α2](−), whereα ∈ {α1, α2}, by C(µαA.[α1, α2](−)).
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More formally,M [C(−)/[α](−)] is defined by recursion onM . The two important clauses are

([α]M)[C(−)/[α](−)] = C(M [C(−)/[α](−)]),
([α1, α2]M)[C(−)/[α](−)] = C(µαA.[α1, α2]M [C(−)/[α](−)]) if α ∈ {α1, α2}.

Mixed substitution commutes with all other term forming operations, avoiding captures as nec-
essary.

An axiomatization of the call-by-nameλµ-theories is shown in Table 6. To make the axioms
more readable, we have not shown the typing contexts explicitly; we assume each equation to
be placed in a typing context which makes the left-hand side and right-hand side well-typed.
By a congruence relation on terms we mean a set of equations which is reflexive, symmetric,
transitive, and closed under the term formation rules (ξ-rules) and under weakening.

Theorem 6.12 (Axiomatization of call-by-nameλµ-theories). LetT be a set of equations of
the disjunctiveλµ-calculus over some fixed signature. ThenT is a call-by-name theory if and
only if it is a congruence relation on terms that satisfies the equations in Table 6.

Proof. Soundness is easily verified, for instance via the CPS translation and Proposition 6.5,
together with appropriate substitution lemmas. The proof of completeness is a long and tedious
verification of the properties in Proposition 6.11.

Remark 6.13. Pym and Ritter (1998) have given a strongly normalizing, confluent reduction
semantics to the call-by-name disjunctiveλµ-calculus based on a similar set of axioms, using a
slightly different syntax.

6.5. Comparison with the Plotkin call-by-name translation

Our call-by-name CPS translation is based on that of Hofmann and Streicher (1997). It dif-
fers from Plotkin’s original call-by-name CPS translation for the simply-typed lambda calculus
(Plotkin 1975) by introducing fewer double negations. To obtain Plotkin’s call-by-name transla-
tion from ours, change the definition ofKA→B to

KA→B = (CA → CB)→ R.

Notice that this is isomorphic to((CA × KB) → R) → R, and thus to the double negation
of our definition ofKA→B . One can regard this as a way of working around the absence of
products in the target language. In the definition of the CPS translation, one changes the clauses
for application and lambda abstraction accordingly:

MN = λkKB .M(λmCA→CB .mNk) whereM : A→ B,N : A,
λxA.M = λkKA→B .k(λxCA .M) whereM : B.

This is precisely Plotkin’s 1975 call-by-name translation of the simply-typed lambda calculus.
Notice that it induces a different semantics than the Hofmann/Streicher translation: for instance,
Plotkin’s translation does not validate the fullη law, whereas the Hofmann/Streicher translation
does.

Plotkin’s translation, too, can be formulated categorically. The Plotkin call-by-name interpre-
tation[[− ]]p of theλµ-calculus in a control category is defined just like the standard one, except
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Table 7.The CPS translation of the call-by-valueλµ-calculus

x = λkKA .kx̃ wherex : A

cA = λkKA .kc̃
∗ = λkK> .k∗
〈M,N〉 = λkKA∧B .M(λmVA .N(λnVB .k〈m,n〉)) whereM : A,N : B

π1M = λkKA .M(λmVA∧B .kπ1m) whereM : A ∧B
π2M = λkKB .M(λmVA∧B .kπ2m) whereM : A ∧B
MN = λkKB .M(λmVA→B .N(λnVA .m〈n, k〉)) whereM : A→ B,N : A

λxA.M = λkKA→B .k(λ〈x̃, c〉VA×KB .Mc) whereM : B

[α]M = λkK⊥ .Mα̃ whereM : A

µαA.M = λα̃KA .M∗ whereM : ⊥
[α, β]M = λkK⊥ .M [α̃, β̃] whereM : A ∨B
µ(αA, βB).M = λ[α̃, β̃]KA∨B .M∗ whereM : A

for the following changes: the interpretation of the function type is changed to

[[A→ B]]p = ⊥⊥[[B]]
[[A]]p
p

,

and the interpretation of application and abstraction are changed to

[[Γ `MN : B | ∆]]p = Γ
〈[[M ]]p,[[N ]]p〉−−−−−−−−→ (⊥⊥B

A

#∆)×(A#∆)
(θBA#∆)×(A#∆)
−−−−−−−−−−−−→

(BA #∆)×(A#∆) d−→ (BA×A)#∆ ε#∆−−−→ B #∆,

[[Γ ` λxA.M : A→ B | ∆]]p = Γ
[[M ]]?p−−−→ (B #∆)A s−1

−−→ BA #∆
∂BA#∆
−−−−−→ ⊥⊥B

A

#∆.

One easily checks that the categorical definition coincides with the syntactic one. Thus, the
Plotkin call-by-name semantics can be seen to introduce “one extra thunk” for functional clo-
sures.

We remark that theλµ-calculus with Plotkin’s call-by-name semantics doesnot form an inter-
nal language for control categories; in particular, the interpretation of the object constructors is
not sufficient to span the category.

7. The call-by-value interpretation of theλµ-calculus

7.1. The call-by-value CPS translation

Using the same target calculus as before, we define a CPS translation for the call-by-valueλµ-
calculus over a signature(B,K).

Definition 7.1 (Call-by-value CPS translation). As before, we assume that the target calculus
has a type constant̃σ for each type constantσ ∈ B of λµ. For each typeA of theλµ-calculus, we
define three typesVA, KA, andCA of the target calculus, called respectively the type ofvalues,
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continuations, andcomputationsof typeA:

Vσ = σ̃, whereσ is a type constant,
V> = 1,
VA∧B = VA ×VB ,
VA→B = VA ×KB → R,

V⊥ = 0,
VA∨B = VA + VB ,
KA = VA → R,

CA = KA → R.

Again, we assume that for each object variablex and control variableα of theλµ-calculus, there
is a distinct variablẽx or α̃ of the target calculus. Further, we assume that the target calculus has
a constant̃c of typeVA for each object constantcA of λµ. The call-by-value CPS translationM
of a typed termM is given in Table 7. It respects types in the following sense:

x1:B1, . . . , xn:Bn `M : A | α1:A1, . . . , αm:Am
x̃1:VB1 , . . . , x̃n:VBn , α̃1:KA1 , . . . , α̃m:KAm `M : CA

. (2)

The difference between the call-by-name and call-by-value interpretations is that in the latter,
object variables are interpreted as values, and not as computations. We also writeΓ `M : A | ∆
for the translation of a typing judgment, and similarly for equations.

Notice that in the call-by-value CPS translation, the clauses for the control operators are identi-
cal to the ones for call-by-name, modulo the identification of[α, β] with 〈α, β〉 under the canon-
ical isomorphism(A + B → R) ∼= (A → R) × (B → R). The clauses for the pure lambda
calculus part are essentially Plotkin’s original ones for call-by-value (Plotkin 1975), except that
Plotkin did not use a target calculus with pairs and would have definedVA→B = VA → CB .
However, unlike in the call-by-name case, our call-by-value translation coincides with Plotkin’s
up to isomorphism of types.

As usual, the clauses for pairing and application fix a particular evaluation order forM and
N , and in each case, the opposite choice would have been equally plausible.

Definition 7.2. Let M andN be terms of theλµ-calculus such thatΓ ` M : A | ∆ and
Γ ` N : A | ∆. We say thatM andN arecall-by-value equivalent, in symbolsM =v N , if
M =βη N . More generally, ifT is a theory of theλR×+-calculus, we define thecall-by-value
λµ-theorygenerated byT to be the set of equations{E | E ∈ T }.

Remark 7.3. This notion of a call-by-value theory corresponds to Moggi’sλc-calculus more
closely than to Plotkin’sλv-calculus (Moggi 1988; Plotkin 1975). It is well-known that theλc-
calculus derives more equations than theλv-calculus; for instance, the equation(λx.x)M = M

is validated by theλc-calculus and by the CPS translation, but it is not derivable in theλv-calculus
(Moggi 1988, Rem. 4.1). See also the axiomatization in Section 7.4

7.2. The interpretation of the call-by-valueλµ-calculus in a co-control category

As before, we can interpret the target calculusλR×+ of the CPS translation in a response category
C. By Property (2), the interpretation of a typing judgmentx1:B1, . . . , xn:Bn ` M : A |
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Table 8.The interpretation of the call-by-valueλµ-calculus in a co-control category

[[Γ ` xi : Bi | ∆]]v = Γ
w−→ Bi

inl−→ Bi+∆

[[Γ ` c : A | ∆]]v = Γ
t−→ I

c̃−→ A
inl−→ A+∆

[[Γ ` ∗ : > | ∆]]v = Γ
t−→ I

inl−→ I+∆

?[[Γ ` 〈M,N〉 : A ∧B | ∆]]v = Γ∆
∆−→ Γ∆ ⊗ Γ∆

?[[M ]]v⊗id−−−−−−−→ A⊗ Γ∆
id⊗?[[N ]]v−−−−−−→ A⊗B

[[Γ ` π1M : A | ∆]]v = Γ
[[M ]]v−−−−→ (A⊗B)+∆

w+id−−−→ A+∆

[[Γ ` π2M : B | ∆]]v = Γ
[[M ]]v−−−−→ (A⊗B)+∆

w+id−−−→ B+∆

?[[Γ `MN : B | ∆]]v = Γ∆
∆−→ Γ∆ ⊗ Γ∆

(?[[M ]]v⊗id) ; (id⊗?[[N ]]v)−−−−−−−−−−−−−−−−→ (A −◦ B)⊗A app−−→ B

?[[Γ ` λxA.M : A→ B | ∆]]v = Γ∆
curry(f)−−−−−→ A −◦ B, wheref = Γ∆ ⊗A

∼=−→ (Γ⊗A)∆

?[[M ]]v−−−−→ B

[[Γ ` [αi]M : ⊥ | ∆]]v = Γ
[[M ]]v−−−−→ Ai+∆

ini+∆−−−−→ ∆+∆
∇−→ ∆

∼=−→ 0+∆

[[Γ ` µαA.M : A | ∆]]v = Γ
[[M ]]v−−−−→ 0+A+∆

∼=−→ A+∆

[[Γ ` [αi, αj ]M : ⊥ | ∆]]v = Γ
[[M ]]v−−−−→ Ai+Aj+∆

ini+inj+∆
−−−−−−−→ ∆+∆+∆

∇+∆ ;∇−−−−−−→ ∆
∼=−→ 0+∆

[[Γ ` µ(αA, βB).M : A ∨B | ∆]]v = Γ
[[M ]]v−−−−→ 0+A+B+∆

∼=−→ (A+B)+∆

α1:A1, . . . , αm:Am is a morphism

VB1 × . . .×VBn ×KA1 × . . .×KAm → CA.

By currying, and usingCA = RKA , one gets

KA ×KA1 × . . .×KAm → RVB1×...×VBn ,

which is a morphism inRC. Using the premonoidal structure, one can rewrite this to

KA ×KA1 × . . .×KAm → KB1 # . . .#KBn .

Thus, we have eliminated the typesVA andCA from the interpretation. Just as for call-by-name,
it is now possible to give a direct categorical interpretation of the call-by-valueλµ-calculus in
a control category. However, since the arrows go “the wrong way”, it is more natural to state
the interpretation in terms of co-control categories. Thus, the above typing judgment will be
interpreted as a morphism is a co-control category:

KB1 ⊗ . . .⊗KBn → KA + KA1 + . . .+ KAm .

Recall from Sections 4.1 and 4.2 the weak closed structure on a co-control category, which
is given by the operationA −◦ B and the mapsapp : (A −◦ B) ⊗ A → B and curry :
(C ⊗ A,B) → (C,A −◦ B). This structure is used to interpret the call-by-value function
type. Notice that it satisfies some of the laws that one would typically expect for call-by-value
function spaces, for instanceI −◦ A ∼= (A −◦ 0) −◦ 0) 6∼= A, A −◦ B ∼= (A⊗ (B −◦ 0)) −◦ 0,
I ∼= 0 −◦ 0, etc.

Definition 7.4 (Categorical interpretation: call-by-value). LetP be a co-control category. The
interpretation of theλµ-calculus with signature(B,K) proceeds relative to a choice of an object
σ̃ for every type constantσ ∈ B. Each type constructor is interpreted by the corresponding object
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constructor of co-control categories:

[[σ]]v = σ̃, whereσ is a type constant,
[[>]]v = I,

[[A ∧B]]v = [[A]]v ⊗ [[B]]v,
[[A→ B]]v = [[A]]v −◦ [[B]]v,
[[⊥]]v = 0,
[[A ∨B]]v = [[A]]v + [[B]]v.

For an object contextΓ = x1:B1, . . . , xn:Bn, we write [[Γ]]v = [[B1]]v ⊗ . . . ⊗ [[Bn]]v, andwi
for the ith weakening map. For a control context∆ = α1:A1, . . . , αm:Am, we write [[∆]]v =
[[A1]]v + . . .+[[Am]]v, andinj for thejth injection. Typing judgments are interpreted relative to a
choice of acentralmorphismc̃ : I → [[A]]v for each object constantcA ∈ K. The interpretation
of a typing judgmentΓ `M : A | ∆ is a morphism

[[Γ `M : A | ∆]]v : [[Γ]]v → [[A]]v + [[∆]]v,

defined by recursion onM as shown in Table 8. In the clauses in Table 8,?[[M ]]v : Γ∆ → A

refers to the co-curried form of[[M ]]v : Γ→ A+ ∆.

Notice how in the clauses for application and pairing, the premonoidal structure forces us to
choose an evaluation order. In these clauses,M is evaluated beforeN .

Lemma 7.5. If P = RC is a category of continuations, then the call-by-value categorical
interpretation of theλµ-calculus inPop coincides with the interpretation of the call-by-value
CPS translation inRC.

Again, it is easy to check the Lemma by induction on terms. The Structure Theorem 3.18 then
immediately yields soundness and completeness for theories:

Proposition 7.6 (Soundness and Completeness).The theories induced on theλµ-calculus by
the call-by-value categorical interpretation are precisely the theories induced by the call-by-
value CPS translation.

We remark that the use of co-currying in the clauses for pairing, application, andλ-abstraction
is essential, even though it looks innocuous. The reader is invited to check, for instance, that
[[Γ ` 〈M,N〉 : A ∧B | ∆]]v is notequal to

Γ ∆−→ Γ⊗ Γ
[[M ]]v⊗id−−−−−→ (A+∆)⊗ Γ

id⊗[[N ]]v−−−−−→ (A+∆)⊗ (B+∆)
f−→ (A⊗B) + ∆,

no matter which of the natural mapsf : (A+∆) ⊗ (B+∆) → (A ⊗ B) + ∆ one chooses
(there are two such maps). Also notice the use of the co-curried form of the interpretation in the
following lemma.

Definition 7.7. A valueof the call-by-valueλµ-calculus is a term in the grammar

V ::= x cA ∗ 〈V, V ′〉 π1V π2V λxA.M µ(αA, βB).[α]V µ(αA, βB).[β]V ,

where in the last two cases, neitherα norβ occurs freely inV .

Lemma 7.8. If V is a value, then?[[Γ ` V : A | ∆]]v : Γ∆ → A is central.
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Table 9.Co-control category operations on typing judgments

Nullary operations:

id = x:A ` x : A
2 = x:⊥ ` µαA.x : A

inl = x:A ` µ(αA, βB).[α]x : A ∨B
inr = x:B ` µ(αA, βB).[β]x : A ∨B
� = x:B ` µ(γ(A→⊥)∧B , αA).[γ]〈λyA.[α]y, x〉 : ((A→ ⊥) ∧B) ∨A
a = x:A ∧ (B ∧ C) ` 〈〈π1x, π1π2x〉, π2π2x〉 : (A ∧B) ∧ C
l = x:A ∧ > ` π1x : A

c = x:B ∧A ` 〈π2x, π1x〉 : A ∧B
t = x:A ` ∗ : >
∆ = x:A ` 〈x, x〉 : A ∧A
d = x:(A ∨B) ∧ C ` µ(δA∧C , ηB∧C).[δ]〈µαA.[η]〈µβB .[α, β]π1x, π2x〉, π2x〉 :

(A ∧ C) ∨ (B ∧ C)

s−1 = x:((A→ ⊥) ∧B) ∧ C ` 〈π1π1x, 〈π2π1x, π2x〉〉 : (A→ ⊥) ∧ (B ∧ C)

Binary and unary operations:

f = x:A `M : B g = x:B ` N : C

g ◦ f = x:A ` (λxB .N)M : C

f = x:B `M : A g = x:C ` N : A

[f, g] = x:B ∨ C ` µαA.[α](λxB .M)(µβB .[α](λxC .N)(µγC .[β, γ]x)) : A

f = x:B `M : C ∨A
?f = x:(A→ ⊥) ∧B ` µγC .(π1x)(µαA.[γ, α](λxB .M)(π2x)) : C

f = x:A `M : B

f ⊗ C = x:A ∧ C ` 〈(λxA.M)(π1x), π2x〉 : B ∧ C

Proof. Recall from Section 4.1 thatcurry(f) is always central. This settles the case whereV

is a lambda abstraction. The other cases are equally obvious.

Remark 7.9. Since we are interested in equational theories, and not in reduction semantics, we
are more liberal with the definition of a value than one would otherwise be. Our notion of value
corresponds to the existence predicate of theλc-calculus in (Moggi 1988), and it includes terms,
such asπ1〈V, V ′〉, that are not in normal form.

7.3. The call-by-valueλµ-calculus is an internal language for co-control categories

The results in this section are analogous to those for the call-by-name calculus in Section 6.3.
Just as we were able to define the structural operations of a control category syntactically by
operations on typing judgments under the call-by-name interpretation, we can do the same for
the structural operations of a co-control category under the call-by-value interpretation. The op-
erations on typing judgments are shown in Table 9.

Lemma 7.10. The operations on typing judgments in Table 9 define the corresponding struc-
tural operations on a co-control category under the call-by-value interpretation, up to natural
isomorphism of objects.

Definition 7.11 (Syntactic co-control category).For aλµ-signatureΣ and a call-by-value the-
ory T , we construct thesyntactic co-control categoryPv

Σ,T as follows: The objects ofPv
Σ,T are
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the types of the language. The object constructors are given by the corresponding type construc-
tors, whereBA is defined as(A→ ⊥)∧B. Morphisms fromA toB are named by valid standard
form typing judgmentsx:A ` M : B. Two typing judgmentsx:A ` M : B andx:A ` N : B
name the same morphism if(x:A ` M = N : B) ∈ T . The operations of a co-control category
on morphisms are defined as in Table 9.

Lemma 7.12. Pv
Σ,T is a well-defined co-control category.

The canonical call-by-value interpretation[[− ]]0v of theλµ-calculus with signatureΣ in Pv
Σ,T

is defined bỹσ := σ andc̃ := x:> ` c : A. The interpretation of each typing judgment is call-by-
value equivalent to its standard form. The pair(Pv

Σ,T , [[− ]]0v) is determined up to isomorphism by
the universal property: For eachT -respecting call-by-value interpretation[[− ]]v in a co-control
categoryP, there is a unique strict functor of co-control categoriesF : Pv

Σ,T → P such that
F [[A]]0v = [[A]]v for all A andF [[Γ ` M : A | ∆]]0v = [[Γ ` M : A | ∆]]v for all valid typing
judgmentsΓ `M : A | ∆.

Definition 7.13 (The internal language of a co-control category).Given a small co-control
categoryP, we construct from it a signatureΣ and a call-by-name theoryT . The type constants
are again the objects ofP, and we take one object constantcf

A→B for each morphismf : A→
B. Consider the canonical interpretation of this language inP that interprets type constants by
themselves and object constantscfA→B by curry(f) : I → (A −◦ B). Recall from Section 4
thatcurry(f) is always central, and thus this interpretation is well-defined. LetT by the induced
call-by-value theory. The pair(Σ, T ) is called theinternal call-by-value languageof P.

Lemma 7.14. If (Σ, T ) is the internal call-by-value language of a co-control categoryP, then
Pv

Σ,T ' P.

Proof. Each morphismf : A → B is the denotation ofx:A ` cfx : B. Thus, the canonical
interpretation of the internal language inP is onto objects and morphisms, and hence the canon-
ical functor of co-control categoriesPv

Σ,T → P, which exists by the universal property, is full
and onto objects. It is faithful by definition ofT . Thus,Pv

Σ,T ' P by Lemma 3.17.

7.4. An axiomatization of the call-by-valueλµ-theories

An analogue of Proposition 6.11 holds for call-by-value theories:

Proposition 7.15. Fix a signatureΣ. Then a congruence relationT on typing judgments is a
call-by-valueλµ-theory if and only if all of the following hold:

1. An equation is inT if and only if its standard form is inT .
2. Pv

Σ,T , as constructed in Lemma 7.12, is a well-defined co-control category.
3. For every object constantc, the morphismx:> ` c : A is central inPv

Σ,T .
4. The canonical interpretation[[− ]]0v : λµ → Pv

Σ,T interprets each typing judgment by its own
standard form, up to natural isomorphism of types.

As in the call-by-name case, we use this characterization to give a complete axiomatization
of the call-by-valueλµ-theories. The axioms are shown in Table 10. As before, we have omitted
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Table 10.Axioms of the call-by-valueλµ-calculus

Axioms for the lambda calculus with products:
(β→) let xA = V in M = M [V/x] : B

(η→) λxA.V x = V : B if x 6∈ FV(V )

(β∧) πi〈V1, V2〉 = Vi : Ai
(η∧) 〈π1V, π2V 〉 = V : A ∧B
(η>) ∗ = V : >

(id) let xA = M in x = M : A
(comp) let yB = (let xA = M in N) in P = let xA = M in let yB = N in P : C if x 6∈ FV(P )

(letapp) MN = let xA→B = M in let yA = N in xy : B if x 6∈ FV(N)
(letpair) 〈M,N〉 = let xA = M in let yB = N in 〈x, y〉 : A ∧B if x 6∈ FV(N)

(letπ) πiM = let xA1∧A2 = M in πix : Ai

Axioms forλµ and disjunction:
(ζ) let xA = µαA.M in N = µβB .M [let xA = (−) in [β]N/[α](−)] : B if β 6∈ FN(M,N)

(βµ) [α′]µαA.M = M [α′/α] : ⊥
(ηµ) µαA.[α]M = M : A if α 6∈ FN(M)

(β∨) [α′, β′]µ(αA, βB).M = M [α′/α, β′/β] : ⊥
(η∨) µ(αA, βB).[α, β]M = M : A ∨B if α, β 6∈ FN(M)
(β⊥) [ξ⊥]M = M : ⊥

(letname) [α]M = let xA = M in [α]x : A
(letname′ ) [α, β]M = let xA = M in [α, β]x : A

the typing contexts. We also use the customary notation(let xA = M in N) to denote the term
(λxA.N)M . The lettersV , V1, andV2 denote values, as defined in Definition 7.7.

Theorem 7.16 (Axiomatization of call-by-valueλµ-theories). LetT be a set of equations of
the disjunctiveλµ-calculus over some fixed signature. ThenT is a call-by-value theory if and
only if it is a congruence relation on terms, satisfying the equations in Table 10.

Proof. Soundness is again easy. Completeness is proved by verifying the conditions of Propo-
sition 7.15.

Remark 7.17. The above axiomatization combines Moggi’s axioms for the computational lamb-
da calculus, some of Ong and Stewart’s axioms for the call-by-valueλµ-calculus, and the obvious
axioms for disjunction. The reader will easily verify that certain other axioms, which are not
included in our list, are derivable from it, for instance the following two equations, which each
assert the emptiness of the type⊥:

(empty) Γ, x:⊥ ` M = N : A | ∆
(⊥) Γ ` (let x⊥ = M in N) = µαA.M : A | ∆ if α 6∈ FV(M)

8. Filinski duality for the λµ-calculus

We have shown that the call-by-nameλµ-calculus is an internal language for control categories,
and the call-by-valueλµ-calculus is an internal language for co-control categories. An immediate
but surprising consequence is that the call-by-name and call-by-value calculi are syntactically
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Table 11.The syntactic translation from call-by-value to call-by-name

On types:

LσM = σ, whereσ is a type constant
L>M = ⊥
LA ∧BM = LAM ∨ LBM
L⊥M = >
LA ∨BM = LAM ∧ LBM
LA→ BM = (LBM→ LAM)→ ⊥

On terms:

LxM = λκLAM.[x]κ

LcAM = λκLAM.[cLAM]κ

L∗M = λκL>M.κ

L〈M,N〉M = λκLA∧BM.LMM(µxLAM.LNM(µyLBM.[x, y]κ))

Lπ1MM = λκLAM.LMM(µ(xLAM, yLBM).[x]κ)

Lπ2MM = λκLBM.LMM(µ(xLAM, yLBM).[y]κ)

LλxA.MM = λκLA→BM.κ(λβB .µxA.LMMβ)

LMNM = λκLBM.LMM(λγLBM→LAM.LNM(γκ))

L[α]MM = λκL⊥M.LMMα
L[%A]MM = λκL⊥M.LMM%LAM

LµαA.MM = λκLAM.(λαLAM.LMM∗)κ
L[α, β]MM = λκL⊥M.LMM〈α, β〉
Lµ(αA, βB).MM = λκLA∨BM.(λαA.λβB .LMM∗)(π1κ)(π2κ)

isomorphic to each other. More precisely, there are syntactic translations from call-by-value to
call-by-name and vice versa, which are mutually inverse up to natural isomorphism of types and
equivalence of terms.

Such a duality between call-by-value and call-by-name equational theories was first discov-
ered by Filinski (1989) in his work on the symmetric lambda calculus. Filinski’s calculus treats
continuations as first-class objects and it has a special syntax that stresses the symmetry between
continuations and values. Unlike Filinski, we are not working with a custom-made language.
However, the categorical semantics reveals a close connection: it is not difficult to see that Fil-
inski’s symmetric lambda calculus forms another internal language for control categories, and
thus that its expressive power equals that of the disjunctiveλµ-calculus. Thus, the categorical
semantics provides a unified framework in which such dualities can be explained in a way that is
independent of any particular syntax.

Computationally, the duality between call-by-name and call-by-value can be understood as
a duality between demand-driven and data-driven computation, which reverses the direction of
data. Proof-theoretically, it is an extension of De Morgan duality from formulas to proofs.

Formally, the translation of a call-by-name language(Σ, T ) into a call-by-value language can
be achieved by forming the syntactic control categoryPn

Σ,T , and then considering the internal
call-by-value language of(Pn

Σ,T )op. Similarly, one gets a translation from call-by-value to call-
by-name. However these translations are not optimal, because they introduce a lot of unnecessary
constants.

It is possible to optimize the translations in such a way that no additional constants are intro-
duced. To do this, we need to extend the syntax of theλµ-calculus just slightly and allow a set
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Table 12.The syntactic translation from call-by-name to call-by-value

On types:

〈|σ|〉 = σ, whereσ is a type constant
〈|>|〉 = ⊥
〈|A ∧B|〉 = 〈|A|〉 ∨ 〈|B|〉
〈|⊥|〉 = >
〈|A ∨B|〉 = 〈|A|〉 ∧ 〈|B|〉
〈|A→ B|〉 = (〈|A|〉 → ⊥) ∧ 〈|B|〉

On terms:

〈|x|〉 = λκ〈|A|〉.[x]κ

〈|cA|〉 = λκ〈|A|〉.[c〈|A|〉]κ

〈|∗|〉 = λκ〈|>|〉.κ

〈|〈M,N〉|〉 = λκ〈|A∧B|〉.〈|M |〉(µx〈|A|〉.〈|N |〉(µy〈|B|〉.[x, y]κ))

〈|π1M |〉 = λκ〈|A|〉.〈|M |〉(µ(x〈|A|〉, y〈|B|〉).[x]κ)

〈|π2M |〉 = λκ〈|B|〉.〈|M |〉(µ(x〈|A|〉, y〈|B|〉).[y]κ)

〈|λxA.M |〉 = λκ〈|A→B|〉.(π1κ)(µx〈|A|〉.〈|M |〉(π2κ))

〈|MN |〉 = λκ〈|B|〉.〈|M |〉〈〈|N |〉, κ〉
〈|[α]M |〉 = λκ〈|⊥|〉.〈|M |〉α
〈|[%A]M |〉 = λκ〈|⊥|〉.〈|M |〉%〈|A|〉
〈|µαA.M |〉 = λκ〈|A|〉.(λα〈|A|〉.〈|M |〉∗)κ
〈|[α, β]M |〉 = λκ〈|⊥|〉.〈|M |〉〈α, β〉
〈|µ(αA, βB).M |〉 = λκ〈|A∨B|〉.(λαA.λβB .〈|M |〉∗)(π1κ)(π2κ)

K′ of typedcontrol constants, in addition to the usual object constants. Thus, a signature for the
extended language is a triple(B,K,K′). We extend the definition of named terms to the case
[%A]M , where%A is a control constant. The semantics generalizes effortlessly to this extension.

The translation between the call-by-value and call-by-name calculi exchanges object and con-
trol constants. It also exchanges object and control variables, and it reverses typing judgments,
turning terms “inside out”. Thus, a call-by-value function ofn arguments withm possible return
addresses gets translated into a call-by-name function ofm arguments withn return addresses.
More precisely, the translations preserves typing in the following sense:

x1:B1, . . . , xn:Bn `M : A | α1:A1, . . . , αm:Am
α1:LA1M, . . . , αm:LAmM, •:A ` LMM• : ⊥ | x1:LB1M, . . . , xn:LBnM

.

Because terms are turned “inside out”, a special variable• appears in the translation that rep-
resents the “outside” of a term. The variable• plays a similar role as the current continuation
in a CPS transform. The two translations are shown in Tables 11 and 12. Notice that they are
identical, except for the translations of function types, lambda abstraction, and application.

Proposition 8.1. Both translations preserve CPS transforms, and thus the categorical semantics,
up to natural isomorphism of types. It follows that the two translations are mutually inverse, in
the sense that

M =n µα.L〈|M |〉αM∗ and M =v µα.〈|LMMα|〉∗,
up to natural isomorphisms of types.

Note that, because the translations preserve CPS transforms, a term and its translation evaluate
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in precisely the same manner. Thus, the translations do not just preserve equational theories, but
in fact, the operational semantics as well. In particular, given appropriate notions of observation,
they also preserveobservationalequivalence.

Remark 8.2. The fact that the tensor product in a co-control category is premonoidal, and not
monoidal, is reflected by the well-known fact that in the call-by-value calculus, the following
two terms are not equivalent in the presence of side-effects (Thielecke 1997):

let xA = M in let yB = N in P ,
let yB = N in let xA = M in P .

On the other hand, in call-by-name, these two terms are equivalent. The dual of this phenomenon
is given by the following two terms, which are equivalent in call-by-value, but not in call-by-
name.

let xA = µαA.(let yB = µβB .P in N) in M,

let yB = µβB .(let xA = µαA.P in M) in N.

Appendix A. Some proofs from Section 3

In this Appendix, we give some technical proofs that were omitted from Section 3. These are
included for completeness and reference, and need not be consumed in the first reading. Most of
these proofs are diagram chases that are more easily done by hand than typeset.

For any objectsA,B, andC, let wdA,B,C : (A# B)× C → (A× C)# B be the map given
by

wdA,B,C = (A# B)× C (A#B)×w−−−−−−→ (A# B)× (C # B) d−→ (A× C)# B.

ThenwdA,B,C is natural inA andC, and natural in discardableB, becausew andd are. More-
over,wd satisfies coherence:

(A# B # C)×D

wd

��

wd

**TTTTTTTTTTTTTTT

((A# B)×D)# C) wd#C // (A×D)# B # C,

A×B
l

((QQQQQQQQQQQQ

l×B
��

(A#⊥)×B wd // (A×B)#⊥,

(A# B)× C ×D
wd

))TTTTTTTTTTTTTTT

wd×D
��

((A× C)# B)×D wd // (A× C ×D)# B.

These follow from naturality and coherence ofd andw, which in turns follow immediately from
their respective definitions. Symmetrically, define

wd′A,B,C = A× (B # C)
w×(B#C)−−−−−−→ (B # A)× (B # C) d−→ B # (A× C),

wd′′A,B,C = (A# B)× C (A#B)×w−−−−−−→ (A# B)× (A# C) d−→ A# (B × C).
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These arrows satisfy similar coherence conditions, and the following joint coherence conditions:

(A# B)× (C #D) wd //

wd′

��

(A× (C #D))# B

wd′#B
��

C # ((A# B)×D) C#wd // C # (A×D)# B

and

(A# B # C)×D wd′′ //

wd

��

A# ((B # C)×D)

A#wd

��
((A# B)×D)# C wd′′#C // A# (B ×D)# C.

This follows again from naturality ofd and coherence forw andd.

Proof of Lemma 3.1(1).Consider

(BA # C #D)×A wd //

(s#D)×A
��

((BA # C)×A)#D wd#D //

(s×A)#D

��

(BA ×A)# C #D

ε#C#D

��
((B # C)A #D)×A wd // ((B # C)A ×A)#D ε#D // B # C #D.

The left square commutes by naturality ofwd. The right square commutes by definition ofs.
Currying along the top and right, one getssA,B,C#D. Currying along the left and bottom, one
getssA,B#C,D ◦ (sA,B,C #D).

Proof of Lemma 3.1(2).Consider

BA ×A ε //

l
��

l×A

vvmmmmmmmmmmmmm
B

l

��
(BA #⊥)×A wd // (BA ×A)#⊥ ε#⊥ // B #⊥.

The triangle commutes by coherence ofwd, the square by naturality ofl. Currying clockwise,
one gets(lB)A, currying counterclockwise, one getssA,B,⊥ ◦ lBA .
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Proof of Lemma 3.1(3).Consider

((B # C)A #D)×A

wd

��

(B # CA #D)×A
(s′#D)×Aoo (B#s)×A //

wd

yysssssssss
wd′′

%%KKKKKKKKK
(B # (C #D)A)×A

wd′′

��

((B # CA)×A)#D

(s′×A)#Dyyrrrrrrrrrr
wd′′#D

%%KKKKKKKKK
B # ((CA #D)×A)

B#wd

yysssssssss

B#(s×A) %%LLLLLLLLLL

((B # C)A ×A)#D

ε#D **VVVVVVVVVVVVVVVVVV
B # (CA ×A)#D

B#ε#D

��

B # ((C #D)A ×A)

B#εtthhhhhhhhhhhhhhhhh

B # C #D.

This commutes. Currying clockwise, one getss′A,B,C#D ◦ (B#sA,B,C). Currying counterclock-
wise, one getssA,B#C,D ◦ (s′A,B,C #D).

Proof of Lemma 3.1(4).Consider

(B1 # C)× 1 ccc //

π1

((PPPPPPPPPPPPP

w

��

(B # C)× 1

π1

��

(B1 # C)× (1# C)
π1 //

d

��

B1 # C

ccc

&&MMMMMMMMMMMM

(B1 × 1)# C

π1#C

66nnnnnnnnnnnnn
ε#C // B # C.

Clearly this commutes. Currying clockwise, one gets the natural ccc isomorphism, and currying
counterclockwise, one getss1,B,C .

Proof of Lemma 3.1(5).Consider

((B # C)A)A
′×A′×A

ε×A
��

(B # C)A×A

ε

��
B # C

(BA # C)A
′×A′×A

ε×A
��

sA
′
×A′×A//

(BA # C)×A

wd

��

s×A
//

(BA×A)# C

ε#C
**UUUUUUUUUUUUUUUUUUU

((BA)A
′
# C)×A′×A

wd×A
��

s×A′×A //

(((BA)A
′×A′)# C)×A

wd

��

(ε#C)×A
//

((BA)A
′×A′×A)# C

ccc

��

(ε×A)#C
//

(BA
′×A×A′×A)# C.

ε#C
//

This commutes; currying counterclockwise, we getsA′×A,B,C , whereas currying clockwise, we
get(sA,B,C)A

′ ◦ sA′,BA,C .
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Proof of Lemma 3.6(1).Consider

BA × (D # C # A) wd′ //

p×(D#C#A)

��

D # (BA × (C # A)) D#wd′ //

D#(p×(C#A))

��

D # C # (BA ×A)

D#C#ε

��
(C # B)C#A × (D # C # A)

wd′ // D # ((C # B)C#A × (C # A)) D#ε // D # C # B.

The left square commutes by naturality ofwd′. The right square commutes by definition ofp.
Currying along the top and right, one getspA,B,D#C . Currying along the left and bottom, one
getspC#A,C#B,D ◦ pA,B,C .

Proof of Lemma 3.6(2).Consider

(BA #D)×(C # A)
s×(C#A)

uujjjjjjjjjjjjjjj
(p#D)×(C#A)

**UUUUUUUUUUUUUUUUU

wd′

�������������������

wd

��66666666666666666

(B #D)A×(C # A)

wd′

��

((C # B)C#A #D)×(C # A)

wd

��

C # ((BA #D)×A)

C#(s×A)zzvvvvvvvvv
C#wd

$$HHHHHHHHH
(BA×(C # A))#D

wd′#D

zzvvvvvvvvv

(p×(C#A))#D ''NNNNNNNNNNN

C # ((B #D)A×A)

C#ε **TTTTTTTTTTTTTTTT
C # (BA×A)#D

C#ε#D

��

((C # B)C#A×(C # A))#D

ε#Dtthhhhhhhhhhhhhhhhhh

C # B #D.

The three upper parts commute by naturality and coherence ofwd andwd′. The lower left com-
mutes by definition ofs, and the lower right by definition ofp. Currying along the left, one gets
pA,B#D,C ◦ sA,B,D. Currying along the right, one getssC#A,C#B,D ◦ (pA,B,C #D).

Proof of Lemma 3.6(3).First, for anyA,B, andC, let p?? : C#A→ (C#B)B
A

be the curry
and uncurry ofp : BA → (C # B)C#A. Notice that

BA × (C # A)

wd′ ((RRRRRRRRRRRRR

c

��

p? // C # B

C # (BA ×A)

C#ε

55kkkkkkkkkkkkkkk

C#c

��
(C # A)×BA wd′′ //

(C#∂)×BA ((QQQQQQQQQQQQQ
C # (A×BA)

C#(∂×BA)// C # (BB
A ×BA)

C#ε

OO

(C # BB
A

)×BA,

wd′′
55lllllllllllll



Control Categories and Duality 47

and thus, by currying and by definition ofs′,

p?? = C # A
C#∂−−−→ C # BB

A s′−→ (C # B)B
A

.

To show the claim, it suffices to show that

⊥C # A
p?? // (⊥C # B)B

A

∼=
��

AC

∼=

OO

g�λf.λc.f(gc) // (BC)B
A

.

Now consider

⊥C # A
⊥C#∂ // ⊥C # BBA

s′ // (⊥C # B)B
A

s

��
(⊥# A)C

s−1

OO

(⊥#∂)C// (⊥# BBA)C

s−1

OO

s′ // ((⊥# B)B
A

)C
ccc // ((⊥# B)C)B

A

∼=
��

AC
∂C //

∼=

OO

(BB
A

)C
ccc //

∼=

OO

∼=

77nnnnnnnnnnnn

(BC)B
A

.

This commutes by naturality ofs, by the first commutative diagram in Definition 2.11, and by
Lemma 3.1(2). Along the top, we havep??, and along the bottom,g � λf.λc.f(gc).

Proof of Lemma 3.6(4).Consider

1× (B # A) wd′ //

id?×(B#A)

��

B # (1×A)
B#π2

''NNNNNNNNNNNN

B#(id?×A)

��
AA × (B # A) wd′ // B # (AA ×A) ε // B # A.

The square commutes by naturality ofwd′. The triangle commutes by cartesian-closed structure.
Currying along the left and bottom, one getspA,A,B ◦ id?A. The arrow along the top is justπ2, so
by currying one getsid?B#A.

Proof of Lemma 3.6 (p is natural inA,B, dinatural in centralC). Clearly, the family of maps

BA × (C # A′)
w×(C#A′)−−−−−−−→ (C # BA)× (C # A′) d−→ C # (BA ×A′)

is natural inA,A′,B, and centralC. Moreover,

C # (BA ×A) C#ε−−−→ C # B

is dinatural inA and natural inB and centralC. Thus, it follows that̃εA,B,C is dinatural inA
and natural inB and centralC, and thusp is natural inA andB and dinatural in centralC.

Lemma A.1. ε : BA ×A→ B is discardable.
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Proof. The axioms say thatπ1 andπ2 are discardable, and thatiBA = (iB)3A . From these
two facts, it follows thatiBA×A = (iB)3A × iA. Now one has

⊥
(iB)3A×iA //

〈id,iA〉
��

BA ×A
ε

��
⊥×A

iB×3A// B × 1
π1 // B.

Clearly, the counterclockwise arrow isiB .

Lemma A.2. Let ssA,B,C,D and wsA,B,C,D be the maps

ssA,B,C,D = AC # BD
s−→ (A# BD)C s′C−−→ ((A# B)D)C ,

wsA,B,C,D = (A# B)× C ×D wd×D−−−−→ ((A× C)# B)×D wd′′−−→ (A× C)# (B ×D).

Then the (double) uncurry of ss is

ss?? = (AC # BD)× C ×D
wsAC,BD,C,D−−−−−−−−−→ (AC × C)# (BD ×D)
ε#(−)−−−−→ A# (BD ×D) A#ε−−−→ A# B.

Proof. Consider

(AC # BD)× C ×D s×C×D //

wd×D
��

(A# BD)C × C ×Ds′C×C×D//

ε×D
��

((A# B)D)C × C ×D

ε×D
��

((AC × C)# BD)×D
(ε#BD)×D//

wd′′

��

(A# BD)×D s′×D //

wd′′

��

(A# B)D ×D

ε

��
(AC × C)# (BD ×D)

ε#(−) // A# (BD ×D) A#ε // A# B.

The top left square commutes by definition ofs. The top right square commutes by naturality of
ε. The bottom left square commutes by naturality ofwd′′A,B,C in discardableA, and becauseε is
discardable by Lemma A.1. The bottom right square commutes by definition ofs′.

Lemma A.3. The following two diagrams commute:

(B # B)× (C # A)
−×∆ //

wd′

��

(B # B)× (C # A)× (C # A)

−×(wd′′;C#wd′)

��
C # ((B # B)×A)

C#((B#B)×∆)

��

(B # B)× (C # C # (A×A))

wd′

��
C # ((B # B)×A×A) C # C # ((B # B)×A×A)

∇#−oo
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(B # B)× (C # A)× (C # A) ws //

−×(wd′′;C#wd′)

��

(B × (C # A))# (B × (C # A))

wd′#wd′

��
(B # B)× (C # C # (A×A))

wd′

��

C # (B ×A)# C # (B ×A)

−#c#−
��

C # C # ((B # B)×A×A)
−#ws // C # C # (B ×A)# (B ×A).

Proof. Two straightforward diagram chases from the definitions.

Proof of Lemma 3.6 (p is central).Let f : D → E. Consider the following cube:

(B #D)A
p //

(B#f)A

��

(C # B #D)C#A

(C#B#f)C#A

��

BA #D
p#D //

BA#f

��

s
99rrrrrrrrrr

(C # B)C#A #D

(C#B)C#A#f

��

s

99rrrrrrrrrr

(B # E)A
p // (C # B # E)C#A

BA # E
p#E //

s
99rrrrrrrrrr

(C # B)C#A # E

s

99rrrrrrrrrr

The top and bottom faces commute by Lemma 3.6(2). The left and right faces commute by
naturality ofs. The back face commutes by naturality ofp. Thus, the front commutes, which
shows thatp is central.

Proof of Lemma 3.6 (p is copyable).Consider the following diagram, whereCA abbreviates
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(C # A).

((C # B)CA # (C # B)CA)× CA
ss×−

++XXXXXXXXXXXXX

−×∆

��

(BA # BA)× CA

(p#p)×−
44hhhhhhhhhhh

−×∆

��

((C # B # C # B)CA)CA × CA

−×∆

��

((C # B)CA # (C # B)CA)× CA× CA
ss×−

++XXXXXXXXXXXXX

ws

��

(BA # BA)× CA× CA

(p#p)×−
44hhhhhhhhhhh

ws

��

((C # B # C # B)CA)CA × CA× CA

ε×−;ε

��

((C # B)CA × CA)# ((C # B)CA × CA)
ε×−;−×ε

++XXXXXXXXXXXXXXX

(BA × CA)# (BA × CA)

(p×−)#(p×−)
44hhhhhhhhhhh

wd′#wd′ **VVVVVVVVVVV C # B # C # B

C#c#B

��

C # (BA ×A)# C # (BA ×A)

C#c#−

��

(C#ε)#−;−#(C#ε)

33ggggggggggggggg

C # C # B # B

∇#∇

��

C # C # (BA ×A)# (BA ×A)
−#ε#−;−#−#ε

33ffffffffffffff

C # B.

The two top squares commute trivially. The next square commutes by naturality ofws and the
fact thatp is central. The next square commutes by Lemma A.2. The big triangle commutes by
definition and centrality ofp. The parallelogram commutes by naturality ofc. Clockwise, one
has the curry of(p# p);∇, which can be seen with a few simple ccc manipulations. Along the
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counterclockwise arrow, we continue with the diagram

(BA # BA)× (C # A)× (C # A)
ws
,,YYYYYYYYY

−×(wd′′;C#wd′)��

(BA # BA)× (C # A)

−×∆ 33ffffffff

wd′

��

(BA × (C # A))# (BA × (C # A))

wd′#wd′

��

(BA # BA)× (C # C # (A×A))

wd′

��

C # ((BA # BA)×A)

C#(−×∆)

��

C # (BA ×A)# C # (BA ×A)

C#c#−

��

C # C # ((BA # BA)×A×A)
−#ws
,,YYYYYYYYY∇#−

ssffffffff

C # ((BA # BA)×A×A)
−#ws
++XXXXXXXX

C#(ss×−)

��

C # C # (BA ×A)# (BA ×A)
∇#−
rreeeeeeeee

−#ε#−;−#−#ε

��

C # (BA ×A)# (BA ×A)

−#ε#−;−#−#ε

��

C # (((B # B)A)A ×A×A)

C#(ε×A;ε)
,,XXXXXXXXXX C # C # B # B

∇#∇

��

∇#−
rreeeeeeeeeeeee

C # B # B

C#∇ ,,ZZZZZZZZZZZZZZZZZ

C # B.

The two top cells commute by Lemma A.3. The rest commutes by the fact that∇ is central, and
by Lemma A.2. Along the counterclockwise arrow, we continue with the diagram

C # ((BA # BA)×A)
C#(−×∆)

++XXXXXXXX

C#(ss×−)

��

(BA # BA)× (C # A)

wd′ 33gggggggg

ss×−

��

C # ((BA # BA)×A×A)

C#(ss×−)

��

C # (((B # B)A)A ×A)
C#(−×∆)

++XXXXXXXX

∼=

��

((B # B)A)A × (C # A)

wd′ 33gggggggg

∼=

��

C # (((B # B)A)A ×A×A)

∼=

�� C#(ε×A;ε)

��444444444444444

C # ((B # B)A×A ×A)
C#(−×∆)

++XXXXXXXX

C#(∇∆×A)

��

(B # B)A×A × (C # A)

wd′ 33gggggggg

∇∆×−

��

C # ((B # B)A×A ×A×A)
C#ε
**UUUUUUUU

C # (BA ×A)
C#ε

++XXXXXXXXXXXXX C # B # B

C#∇ttiiiiiiiiii

BA × (C # A)

wd′ 33gggggggg

p×− ++WWWWWWWW C # B.

(C # B)C#A × (C # A)
ε

33ffffffffffff

The three left squares commute by naturality ofwd′. The bottom triangle commutes by definition
of p; everything else commutes by ccc operations. Finally, currying counterclockwise, we get

BA # BA
∇−→ BA

p−→ (C # B)C#A.
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Thus, the last three diagrams show that(p# p);∇ = ∇; p, and thus thatp is copyable.
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