Supplement to: Generators and relations for n-qubit Clifford operators
Peter Selinger, Dalhousie University

1 Lemmas

Lemma 1.1. Each of the following properties is a consequence of the equations from Figure 8(a)-(b).

$$
\begin{align*}
\omega^{8} & =1 \tag{1}\\
H H & =1 \tag{2}\\
S S S S & =1 \tag{3}\\
S H S H & =H S S S \cdot \omega \tag{4}\\
H S H S & =S S S H \cdot \omega \tag{5}\\
H S S S H & =S H S \cdot \omega^{-1} \tag{6}\\
S H S S H S & =H S S H \cdot \omega^{2} \tag{7}\\
H S S H S S & =S S H S S H \cdot \omega^{4} \tag{8}\\
S S S H S S H & =H S S H S \cdot \omega^{-2} \tag{9}\\
S S S H S S S & =H S H \cdot \omega^{-1} \tag{10}
\end{align*}
$$

Lemma 1.2. Each of the following properties, as well as its "upside-down" version, is a consequence of the equations from Figure 8(a)-(c).

$$
\begin{align*}
& \text { ?. }=\text { - } \tag{11}\\
& \sqrt{S}=\square \tag{12}
\end{align*}
$$

$$
\begin{align*}
& \sqrt{H-\sqrt{S}-\sqrt{H}-\sqrt{S}-\sqrt{H}-\sqrt{S}-\sqrt{S}-\sqrt{H}-\sqrt{S}} \cdot \omega^{-1} \tag{14}
\end{align*}
$$

$$
\begin{align*}
& \text { - } \sqrt{H}-\sqrt{H}-\sqrt{H}-\sqrt{H}-\sqrt{H}-\sqrt{S}-\sqrt{S}-\sqrt{H}-\sqrt{S}-\sqrt{S}-\sqrt{H}- \tag{17}\\
& \text { H- }
\end{align*}
$$

Lemma 1.3. Each of the following properties, as well as its "upside-down" version, is a consequence of the equations from Figure 8(a)-(d).

2 Proofs of lemmas

We write (CN) for axiom number N from Figure 8.
Proof of Lemma 1.1. Property (1) is (C1), property (2) is (C2), and property (3) is (C3). For (4), we have $S H S H \stackrel{(3)}{=}$ $S H S H S S S S \stackrel{(2)}{=} S H S H S H H S S S \stackrel{(\mathrm{C} 4)}{=} H S S S \cdot \omega$. For (5), we have $H S H S \stackrel{(2)}{=} H S H S H H \stackrel{(4)}{=} H H S S S H \cdot \omega \stackrel{(2)}{=}$ $S S S H \cdot \omega$. For (6), we have $H S S S H \stackrel{(4)}{=} S H S H H \stackrel{(2)}{=} S H S$. For (6), we have $H S S S H \stackrel{(4)}{=} S H S H H \cdot \omega^{-1} \stackrel{(2)}{=} S H S \cdot \omega^{-1}$. For (7), we have SHSSHS $\stackrel{(6)}{=} H S S S H H S S S H \cdot \omega^{2} \stackrel{(2)}{=} H S S S S S S H \cdot \omega^{2} \stackrel{(3)}{=} H S S H \cdot \omega^{2}$. For (8), we have $H S S H S S \stackrel{(6)}{=} H S H S S S H S \cdot \omega \stackrel{(5)}{=} S S S H S S H S \cdot \omega^{2} \stackrel{(7)}{=} S S H S S H \cdot \omega^{4}$. For (9), we have SSSHSSH $\stackrel{(5)}{=} H S H S S S H$. $\omega^{-1} \stackrel{(5)}{=} H S H H S H S \cdot \omega^{-2} \stackrel{(2)}{=} H S S H S \cdot \omega^{-2}$. For (10), we have SSSHSSS $\stackrel{(4)}{=} S S S S H S H \cdot \omega^{-1} \stackrel{(3)}{=} H S H \cdot \omega^{-1}$.

Proof of Lemma 1.2. We first note that the "upside-down" version of each axiom in Figure 8 is itself an axiom. Therefore, for every property we prove, the upside-down version is also valid. Property (11) is (C5), property (12) is (C6), and property (13) is (C10). For (14), we have

For (15), we have

For (16), we have

$$
\begin{aligned}
& \stackrel{(13)}{=} \quad-\sqrt{H}-\sqrt{S}-\sqrt{S}-\sqrt{S}-\sqrt{S}-\sqrt{H}-\sqrt{S}-\omega^{-1} \\
& \stackrel{(14)}{=}-\sqrt[H]{H}-\sqrt{S} \cdot \sqrt{S}-\sqrt{S}-\sqrt{S}-\sqrt{H}-\sqrt{S}-\sqrt{H}-\sqrt{H}-\sqrt{S}-\omega^{-1} \\
& \stackrel{(12)}{=}-\sqrt{H}-\sqrt{H}-\sqrt{S}-\sqrt{S}-\sqrt{S}-\sqrt{S}-\sqrt{H}-\sqrt{S}-\sqrt{H}-\sqrt{H}-\sqrt{S}-\omega^{-1} \\
& \stackrel{(3)}{=} \xrightarrow[H]{H} \cdot \sqrt{H}-\sqrt{H}-\sqrt{S}-\sqrt{H}-\sqrt{S}-\sqrt{H}-\sqrt{S}-\omega^{-1} \\
& \stackrel{(4)}{=} \xrightarrow[H]{-H}-\sqrt{H}-\sqrt{H}-\sqrt{S}-\sqrt{S}-\sqrt{S}-\sqrt{S}-\sqrt{S}-\sqrt{H}- \\
& \stackrel{(3)}{=} \xrightarrow[H]{H} \cdot \sqrt{H}-\sqrt{H}-\sqrt{H}-
\end{aligned}
$$

For (17), we have

For (18), we have

Proof of Lemma 1.3. Property (19) is (C10). For (20), we have

$\stackrel{(2)}{=}$

(11)
(C13) $\underset{=}{ }$
(11)
(2) $\underset{H}{H}$? \sqrt{H} ?
(11)
$\stackrel{(2)}{=}$

$\stackrel{(11)}{=}$ -

For (21), we have

(11)

3 Proofs of the equations from Proposition 7.1

In the following proofs, we write (inv) to denote some number of application of the properties (2), (3), and (11), usually to insert or delete a circuit together with its own inverse inside a larger circuit. We write (def) to denote a definition from Figure 1.

3.1 Equation

$$
-=-\sqrt{A_{1}}-\sqrt{C_{1}}-\sqrt{E_{1}}-
$$

Proof:

3.2 Equation

$$
\overline{-\sqrt{C_{1}}-}=-B_{1}-C_{1}-
$$

Proof: $\overline{-\sqrt{c_{1}}}$

3.3 Equation

$$
-\sqrt{H-[}\left[A_{1}-\quad=-\sqrt{A_{2}}-\right.
$$

Proof: - $-\mathbb{H}-$ 回-
$\stackrel{(\text { def })}{=}-\sqrt{H}-$
$\stackrel{(\text { def })}{=}$

- -

3.4 Equation

$$
-\sqrt{H}-\sqrt{A_{2}}-=\sqrt{A_{1}}-
$$

Proof: - -
$\stackrel{(\text { def })}{=}$
$\stackrel{(2)}{=}$
$\stackrel{H-B-}{=}$
$\stackrel{\text { (def })}{=}$

3.5 Equation

$$
-\sqrt{H}-\sqrt{A_{3}}-=-\sqrt{A_{3}}-x-\sqrt{S}-\sqrt{S}-\sqrt{S}-\omega
$$

Proof: - 四-困

3.6 Equation

$$
-\sqrt{S}-\left[A_{1}-=-\sqrt{A_{1}}-\sqrt{S}-\right.
$$

Proof: - $\sqrt[s]{-1 / 4-}$
$\stackrel{\text { (def) }}{=}-\boxed{s}$
$\stackrel{(\text { def })}{=}-$ -

3.7 Equation

$$
-\sqrt{S}-\sqrt{A_{2}}-\sqrt{A_{3}}-\sqrt{x}-\sqrt{S}-\sqrt{S}-\sqrt{S}-\omega
$$

Proof: -
$\stackrel{(\text { def })}{=}-\mathbb{\boxed { T } - \mathbb { R } ^ { (} - 1}$

$\stackrel{(2)}{=} \quad-$ T- - S-

3.8 Equation

$$
-\sqrt{S}-A_{3}-=-\sqrt{A_{2}}-\sqrt{S}-\sqrt{S}-\omega
$$

Proof: - - s-
$\stackrel{(\text { def })}{=}-\llbracket-$ - - - - -

3.9 Equation

$$
\square!\sqrt{A_{1}-}=\sqrt{A_{1}-\square}
$$

Proof

3.10 Equation

$$
\overrightarrow{]_{0}}=\sqrt{A_{2}}-\sqrt{A_{1}}+\sqrt{B_{2}} \sqrt[!]{[H}-
$$

$\stackrel{(2)}{=}$] 苗-國-
$\stackrel{(11)}{=} \rightarrow \square_{\square}^{[\boxed{U}} \cdot!_{\square}$

3.11 Equation

Proof

3.12 Equation

Proof：$\quad \square_{\boxed{4})}^{B_{1}} \square$

3．13 Equation

Proof：$\perp_{\square-\pi}^{\left[p_{2}-\right.}$
$\stackrel{(\text { def })}{=} \square!\square$
$\stackrel{(11)}{=}-\sqrt{[囗 十} 1+$
$\stackrel{\text { def })}{=} \xrightarrow{-\pi_{1}-}:$

3．14 Equation

Proof：$亠$［ $\mathbb{\pi}-\sqrt{B_{3}}-$

3．15 Equation


```
    \(\stackrel{(\text { def })}{=} \quad\) : 田 \(:\) 㭵:
```


3．16 Equation

$$
\text { I. } \sqrt{A_{2}} \sqrt{B_{1}}-\sqrt{\left.A_{2}\right]} \sqrt{B_{4}}-
$$

$\stackrel{(\text { def })}{=}-$ 四

3．17 Equation

Proof:
I $\square_{a_{2}-B_{2}}-$
$\stackrel{(\text { def })}{=} \rightarrow-\sqrt{H} \cdot \sqrt{\square}+\square$

3.18 Equation

$$
]_{0}^{A_{2}} \sqrt{B_{3}}-\sqrt{-A_{3}}-\sqrt{B_{2}}-\sqrt{X}-\sqrt{H}-\sqrt{S}-\sqrt{S}-\omega
$$

Proof: $]_{\text {困 }+\sqrt{B_{3}}-}$

$\stackrel{(15)}{=}-$ 田－s－田 \cdot 苗 \cdot 苗

3．19 Equation

$$
\vec{?}-\sqrt{A_{2}-} \sqrt{B_{4}}-\sqrt{-A_{2}}-\sqrt{B_{1}}-
$$

$\stackrel{(\text { def })}{=} \quad$ ：苗 \cdot 苗 $: ~$

$\stackrel{(\text { def })}{=}-\sqrt{\text { 雨 }}$

3．20 Equation

$$
\text { I! } \sqrt{A_{3} 3}{\sqrt{B_{1}}-\sqrt{A_{3}}-\sqrt{B_{4}}-\sqrt{H} \cdot \sqrt{S}-\sqrt{H}-}^{-1}
$$

Proof：$\quad]_{\square]^{B}}-$

$\stackrel{(4)}{=} \quad-\sqrt{H}$

3.21 Equation

(3) $\quad-\quad$ - $!$ [

3.22 Equation

Proof: $\perp \sqrt{1-B_{3}}-$

3.23 Equation

$$
\text { ? } \sqrt[A_{3}]{B_{4}}-\sqrt{A_{3}}-\sqrt{B_{1}}-\sqrt{H}!-\sqrt{S}-\sqrt{S}-H-
$$

3.24 Equation

Proof , 四闻
(titis) - -
(ig) -

3.25 Equation

$$
+B^{H}-
$$

Proof:
$\stackrel{(\text { def })}{=} \quad-\sqrt{H}!-\frac{H}{H}!$
$\stackrel{(\text { def })}{=}-\sqrt{B_{4}} \square$

3.26 Equation

$$
\sqrt{H-\sqrt{B_{3}}-}=\sqrt{B_{3}}-\sqrt{X}-\sqrt{S}-\sqrt{S}-\sqrt{H}-\sqrt{S}-
$$

Proof: $\quad-{ }^{[H-}-B_{3}-$

$\stackrel{(2)}{=} \xrightarrow{-\sqrt{S}} \sqrt{\left[\frac{H}{H}\right.}!$
$\stackrel{(12)}{=} \rightarrow \sqrt{[+\pi}-$

3.27 Equation

$$
\sqrt{H}-\sqrt{B_{4}-}=\sqrt{B_{2}}-
$$

Proof: $\quad-{ }^{[\pi-}-\sqrt{B .}-$
$\stackrel{(\text { def })}{=} \xrightarrow{-[-\pi-H \cdot} \cdot \sqrt{H} \cdot[$
$\stackrel{(2)}{=} \quad$? 固 $!$
$\stackrel{(\text { def })}{=}-\sqrt{B_{2}}-$

3.28 Equation

$$
\sqrt{S-\sqrt{B_{1}}-}=-\sqrt{B_{1}}-\sqrt{H-S-[-T-}
$$

Proof:

3.29 Equation

$$
\sqrt{S-\sqrt{B_{2}}-}=\sqrt{B_{3}}-\sqrt{X}-\sqrt{S}-\sqrt{S}-\sqrt{H}-\sqrt{S}-
$$

Proof: $\xrightarrow{-\sqrt{s}-B_{3}-}$
$\stackrel{(\text { def })}{=} \xrightarrow{-\sqrt[s]{5}-\frac{H}{H}!}$
$\stackrel{(12)}{=} \quad \cdot \sqrt[{[\sqrt[{[} T]{H}}-]{\square}$
$\stackrel{(2)}{=} \quad$? $\sqrt[s]{H}-\sqrt{H-(H-}$

$\stackrel{(\text { def })}{=}-\sqrt[B_{3}]{-x}-\sqrt[x]{s-s-s-T-T-s-}$

3.30 Equation

$$
\sqrt{S-\sqrt{B_{3}}-}=\sqrt{B_{2}} \sqrt{S-\sqrt{H}-\sqrt{S}-}
$$

Proof: $\quad-\sqrt{s-\sqrt{3}-}-$

$\stackrel{(\text { def })}{=}-\sqrt{B_{2}}-\sqrt{S-\left[\begin{array}{l}-S \\ s\end{array}\right.}$

3.31 Equation

$$
\sqrt{S}-\sqrt{B_{4}}-\sqrt{B_{4}}-\sqrt{H}-\sqrt{S}-\sqrt{H}-
$$

Proof: $\quad-\sqrt{s}-{ }_{B}-$

3.32 Equation

$$
\sqrt{S}-\sqrt[B_{1}]{B_{1}}-\sqrt{B_{1}} \sqrt{S}
$$

Proof: $\quad-\sqrt{B-5}-$

$\stackrel{(\text { def })}{=}-\sqrt{B_{1}-\frac{\square}{-}-}$

3.33 Equation

Proof: $-\sqrt{s}-\beta_{B}-$
$\stackrel{\text { (def) }}{=}-\square!$ 國!

3.34 Equation

$$
\sqrt{S} \sqrt{B_{3}}-\sqrt{B_{3}} \sqrt{H} \cdot \sqrt{S}-\sqrt{H}-
$$

Proof: $-\sqrt{s-\sqrt{3}-}=$

3.35 Equation

$$
\overline{\sqrt{S}-\sqrt{B_{4}}-}=\sqrt{B_{4}}-\sqrt{H} \cdot \sqrt{S}-\sqrt{H}-
$$

```
Proof: \(-\sqrt{S-} \sqrt{B_{A}-}-\)
    \(\stackrel{(\text { def })}{=}-\frac{H}{-H} \cdot \frac{H}{H}!\)
    \(\stackrel{(12)}{=} \xrightarrow[{-H+\sqrt{H}-} T]{\square}\)
```


3.36 Equation

$$
\bar{x}-\sqrt{B_{1}}-\sqrt{B_{1}}-\sqrt{X}-
$$

Proof: $-\sqrt{x} \sqrt{B_{1}}-$
$\stackrel{(\text { def })}{=}$ -

$\stackrel{(14)}{=} \quad-\square$

$\stackrel{(\text { def })}{=}-$

3.37 Equation

Proof: $-\sqrt{-x-\sqrt{B_{2}}-}$
$\stackrel{(\text { def })}{=}-\overrightarrow{H-S-T-H!}!\frac{H}{H}!$

$\stackrel{(2)}{=} \quad \underset{-\sqrt{S}-\sqrt{S}-\sqrt{H}}{\square}$

$\stackrel{(12)}{=}) \quad \cdot \sqrt[s]{-T-H \cdot} \cdot \sqrt{S-[S}$

$\stackrel{(\text { def })}{=}-\sqrt{B_{2}-x}$

3.38 Equation

$$
\bar{x} \sqrt{B_{3}}=\sqrt{B_{3}}
$$

Proof: $-\sqrt{x}-\sqrt{B_{3}}-$

(def)	
(14)	
(2)	
(2)	
(12)	
(12)	
(12)	
(14)	-
$\stackrel{(3)}{=}$	-
(12)	
$($ def)	$⿹_{B_{3}}-\underline{x}$

3.39 Equation

$$
\bar{x}-\sqrt{B_{4}-}=\sqrt{B_{4}}
$$

Proof: $-\sqrt{x}+\sqrt{B .}-$

$\stackrel{(3)}{=} \xrightarrow{-\pi}!\frac{H}{H}!$ 田-S-S-T-
$\stackrel{(\text { def })}{=}-\sqrt{B_{4}} \square$

3.40 Equation

Proof:

3.41 Equation

3.42 Equation

Proof:


```
(9) \(]\) 雨
```



```
\(\stackrel{(13)}{=}\)
\(\stackrel{(19)}{=}\)
\(\stackrel{(\text { inv })}{=}\)
    \(\square \sqrt{-H-H}!\omega^{-8}\)
```


$$
\begin{aligned}
& \stackrel{(12)}{=} \xrightarrow{-\left[-\sqrt{S} \cdot \sqrt{H} \cdot\left[!{ }^{H} \cdot \sqrt{H}!\right.\right.} \cdot \omega^{-16}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{(\text { def })}{=}-\sqrt{-B_{3}}!{ }_{[}!{ }^{H}!
\end{aligned}
$$

3.43 Equation

Proof:

(11) $\xlongequal[=]{\stackrel{-H}{\square}!!!} \cdot \frac{\sqrt{H}}{H}!$

$\stackrel{(\text { inv })}{=} \xrightarrow[\square]{-\pi!\sqrt{H}!}$

3.44 Equation

$$
-\sqrt{x}-\left[C_{1}-=-\sqrt{C_{2}}-\right.
$$

Proof: - \times - - cr

$\stackrel{(\text { def })}{=}-{ }^{\text {cas }}$

3.45 Equation

$$
-x-\sqrt{C_{2}}-=-\left[C_{1}-\right.
$$

Proof: - $x-$ -

3.46 Equation

$$
-\sqrt{S}-\sqrt{C_{1}}-=-\left[C_{1}-\sqrt{S}-\right.
$$

Proof: - 조-困-
$\stackrel{(\text { def })}{=}-\boxed{S}$
$\stackrel{\text { def) }}{=}$ - ©

3.47 Equation

$$
-\sqrt{S}-\sqrt{C_{2}}-\sqrt{C_{2}}-\sqrt{S}-\sqrt{S}-\sqrt{S}-\omega^{2}
$$

Proof: - $\sqrt{-1 \times 2}$

3.48 Equation

$$
\square=-\sqrt{C_{1}-}=-
$$

$\begin{array}{cl}\text { Proof: } \\ (\text { def) } \\ = & \frac{\square}{[6]-} \\ & \square\end{array}$
$\stackrel{\text { def })}{=} \xrightarrow{-[\mathrm{Ca}}$

3．49 Equation

$$
\underset{?}{\cdot \sqrt{C_{2}}-}=\frac{-\sqrt{C_{2}}!\sqrt{S}-\sqrt{S}-}{}
$$

Proof：$]^{\text {匃 }}$

3．50 Equation

（2）\quad ？包

（16）$\stackrel{\square}{=}$ ！目

3.51 Equation


```
Proof:
    \(\rfloor_{B_{1}} B_{3}^{B_{3}} \square\)
```


3.52 Equation

Proof:

$\stackrel{(3)}{=}$
（3）
$\stackrel{(2)}{=}$
$\stackrel{(3)}{=}$
$\stackrel{(2)}{=}$
$\stackrel{(19)}{=}$
$\stackrel{(13)}{=}$
$\stackrel{(15)}{=}$
$\stackrel{(7)}{=}$
$\stackrel{(2)}{=}$
$\stackrel{(19)}{=}$
$\stackrel{(11)}{=}$
$\stackrel{(12)}{=}$
$\stackrel{(16)}{=}$
$\stackrel{(2)}{=}$

$\stackrel{(12)}{=}$
$\stackrel{(16)}{=}$
$\stackrel{(2)}{=}$
$\stackrel{(12)}{=}$
$\stackrel{(16)}{=}$
$\stackrel{(14)}{=}$
$\stackrel{(2)}{=}$
$\stackrel{(14)}{=}$
$\stackrel{(2)}{=}$

 － － －
 － － － － － －
 － － － － －

－ －四
 －
 －

$\stackrel{(12)}{=}$	
$\stackrel{(5)}{=}$	-
$\stackrel{(16)}{=}$	
$\stackrel{(2)}{=}$	
(12)	
$(\underline{12)}$	
(14)	-
$\stackrel{(12)}{=}$	
(12)	
$(\underline{12)}$	
(3)	
$(\underline{12)}$	
$(\stackrel{21)}{=}$	
$\stackrel{(2)}{=}$	
$\stackrel{(2)}{=}$	
$\stackrel{(3)}{=}$	
$\stackrel{(2)}{=}$	
$\stackrel{(12)}{=}$	
(12)	
$\stackrel{(3)}{\underline{(1)}}$	
(12)	
(12)	
(2)	
$\stackrel{(3)}{=}$	
$\stackrel{(5)}{=}$	
$\stackrel{(17)}{=}$	

3.53 Equation

$$
\longrightarrow B_{1}-\sqrt{B_{4}-}=
$$

$\stackrel{(18)}{=} \quad$! $\stackrel{H}{H}!\frac{H}{H}!\sqrt{H}!\frac{H}{H}!$

$\stackrel{(18)}{=} \quad$ - \quad !

$\stackrel{(15)}{=} \quad$ - \quad !
(7) $\stackrel{-H}{=} \quad$!

(17) $\stackrel{-H}{=} \quad$!

(3) $\quad \stackrel{-H}{=} \quad$!

(12) \quad - \quad 苟

(14) $\quad \stackrel{H}{=} \quad$!

(2) \quad - \quad !

$\stackrel{\text { (2) }}{=} \quad$ - \quad !

(11) $\quad \stackrel{-H}{=} \quad$!

$\stackrel{\text { (2) }}{=} \quad \stackrel{-H}{\square}$

$\stackrel{(\text { def })}{=})$

3.54 Equation

Proof: $\stackrel{\perp_{B_{3}}-B_{2}^{B_{2}}-}{\square}$

(18) $\xlongequal[=]{\square}$

（7）\quad ？圆：！

3.55 Equation

$\stackrel{(11)}{=}$	
$\stackrel{(19)}{=}$	
$\stackrel{(3)}{=}$	
$\stackrel{(12)}{=}$	
$\stackrel{(3)}{=}$	
$\stackrel{(12)}{=}$	
(12)	
$\stackrel{(2)}{=}$	
$\stackrel{(3)}{=}$	
$\stackrel{(2)}{=}$! !
$\stackrel{(3)}{=}$	
$\stackrel{(14)}{=}$	
$\stackrel{(7)}{=}$	
$\stackrel{(13)}{=}$	
$\stackrel{(12)}{=}$	
$\stackrel{(2)}{=}$	
$\stackrel{(15)}{=}$	
$\stackrel{(11)}{=}$	
$\stackrel{(19)}{=}$	
$\stackrel{(3)}{=}$	
(10)	
$\stackrel{(4)}{=}$	
$\stackrel{(5)}{=}$	
$\stackrel{(2)}{=}$	
$\stackrel{(14)}{=}$	
(13)	
$\stackrel{(19)}{=}$	
(12)	

3.56 Equation

$$
]_{B_{2}} \sqrt{B_{3}-}=\sqrt{B_{3}} \sqrt{B_{2}-\sqrt{X}-\sqrt{H}-\sqrt{H} \cdot \sqrt{S}-\omega^{T}}
$$

$$
\text { (12) } \quad \text { ! ! }
$$

$$
\stackrel{(\text { inv })}{=}
$$

$$
\text { (2) } \quad \text { • } H
$$

3.57 Equation

$\stackrel{(12)}{=} \stackrel{\square}{\square}$

3.58 Equation

(2) $\quad \underset{\square}{\square} \square$

$\stackrel{\text { (3) }}{=} \quad \therefore$!
(18) $\quad \underset{\square}{\square}$

\cdots 國

\cdots 四四!

3.59 Equation

$\stackrel{(13)}{=}$	
$\stackrel{(7)}{=}$	
$\stackrel{(14)}{=}$	
$\stackrel{(2)}{=}$	
$\stackrel{(3)}{=}$	
$\stackrel{(2)}{=}$	
$\stackrel{(3)}{=}$	
$\stackrel{(2)}{=}$	
$\stackrel{(12)}{=}$	
$\stackrel{(14)}{=}$	
$\stackrel{(2)}{=}$	
$\stackrel{(2)}{=}$	
$\stackrel{(3)}{=}$	
$\stackrel{(2)}{=}$	
$\stackrel{(19)}{=}$	
$\stackrel{(11)}{=}$	
$\stackrel{(11)}{=}$	
$\stackrel{(12)}{=}$	
$\stackrel{(12)}{=}$	
$\stackrel{(2)}{=}$	
$\stackrel{(3)}{=}$	
$\stackrel{(2)}{=}$	
$\stackrel{(2)}{=}$	
$\stackrel{(3)}{=}$	
$\stackrel{(5)}{=}$	
$\stackrel{(17)}{=}$	$\frac{-\pi}{\square}$
(12)	
$\stackrel{(1)}{=}$	

3.60 Equation

Proof: $\underset{\underbrace{}_{B_{3}}-B_{2}-}{\square}$

(2)
$\stackrel{(2)}{=}$

$$
\stackrel{(12)}{=}
$$

$\stackrel{(12)}{=}$
$\stackrel{(12)}{=}$

(2) $\quad \mathrm{C}$

$\stackrel{(11)}{=}$
$\stackrel{(2)}{=}$
$\stackrel{(12)}{=}$
(19)

(13)	
$\stackrel{(14)}{=}$	
$\stackrel{(2)}{=}$	
$\stackrel{(5)}{\underline{(}}$	
$\stackrel{(4)}{=}$	
$\stackrel{(10)}{=}$	
$\stackrel{(3)}{=}$	
$\stackrel{(19)}{=}$	
$\stackrel{(11)}{=}$	
$\stackrel{(2)}{=}$	
$\stackrel{(15)}{=}$	
$\stackrel{(3)}{=}$	
$\stackrel{(2)}{=}$	
$\stackrel{(12)}{=}$	
$(\stackrel{13)}{=}$	
$\stackrel{(7)}{=}$	
$\stackrel{(14)}{=}$	
$\stackrel{(2)}{=}$	
$\stackrel{(3)}{=}$	
$\stackrel{(2)}{=}$	
$\stackrel{(3)}{=}$	
$\stackrel{(2)}{=}$	
$\stackrel{(12)}{=}$	
$\stackrel{(3)}{=}$	
$\stackrel{(19)}{=}$	
$\stackrel{(11)}{=}$	$\rightarrow \frac{\sqrt{H} \cdot!~!~}{\frac{H}{H}}!\cdot \sqrt{H-\sqrt{S}-}$
$\stackrel{(\text { def }}{=}$	

3.61 Equation

(2)

$\stackrel{\text { (3) }}{=} \quad \underset{\square}{\square} \cdot \mathbb{Q}$

$\stackrel{(12)}{=}$
$\stackrel{(14)}{=}$


```
(12)
\(\stackrel{(12)}{=}\)
(2)
(14)


\subsection*{3.62 Equation}













\(\stackrel{(16)}{=} \quad \therefore\) ! 田







(5) \(\quad \underset{=}{\square}\)





(2) \(\quad\) ! ! \({ }^{H}\) !
(17) \(\quad\) ! !








(18) \(\xlongequal[=]{-\frac{H}{H}!\sqrt[H]{H}!\sqrt[H]{H}!\frac{H}{H}!\sqrt{H}!\sqrt{H} \cdot \sqrt{H}}\)
\(\stackrel{(\text { def })}{=}]_{B_{s}}-\frac{B_{1}}{\left[\begin{array}{l}H \\ H\end{array}\right]}\)

\subsection*{3.63 Equation}







\(\stackrel{(3)}{=}\)





















\(\stackrel{(12)}{=} \quad\) !


\(\stackrel{(12)}{=}\)











\(\stackrel{(18)}{=}\)
\(\stackrel{(\text { def })}{=}\)
    \(=-\sqrt{B_{1}-B_{2}-\sqrt{B_{2}} \frac{1}{\square} \cdot \sqrt{T}-}\)

\subsection*{3.64 Equation}


Proof:























    \(\therefore\) 囫: 四



\begin{tabular}{|c|c|}
\hline \(\stackrel{(19)}{=}\) &  \\
\hline \(\stackrel{(2)}{=}\) &  \\
\hline \(\stackrel{(7)}{=}\) &  \\
\hline \(\stackrel{(15)}{=}\) &  \\
\hline \((13)\) &  \\
\hline \(\stackrel{(19)}{=}\) &  \\
\hline \(\stackrel{(2)}{=}\) &  \\
\hline \(\stackrel{(3)}{\underline{( }}\) &  \\
\hline \(\stackrel{(2)}{=}\) &  \\
\hline \(\stackrel{(3)}{=}\) &  \\
\hline \(\stackrel{(2)}{=}\) &  \\
\hline \(\stackrel{(4)}{=}\) &  \\
\hline \((10)\) &  \\
\hline \(\stackrel{(\text { inv })}{=}\) &  \\
\hline \((18)\) &  \\
\hline \((12)\) &  \\
\hline \(\stackrel{(12)}{=}\) &  \\
\hline \(\stackrel{(2)}{=}\) &  \\
\hline \(\stackrel{(3)}{=}\) &  \\
\hline \(\stackrel{(5)}{=}\) &  \\
\hline \((17)\) &  \\
\hline \(\stackrel{(12)}{=}\) &  \\
\hline \(\stackrel{(1)}{=}\) &  \\
\hline \((\) def \()\) &  \\
\hline
\end{tabular}

\subsection*{3.65 Equation}
\[
\cdots B_{4}-B^{B_{4}-}=
\]

Proof



\section*{3．66 Equation}
\[
\sqrt{-{ }^{-D_{1}}-}=\sqrt{D_{1}-H-}
\]


\(\stackrel{(18)}{=}\) ：苗 \(\cdot\) 苗 \(\cdot\) 畕－
\(\stackrel{(\text { def })}{=}-\sqrt{p_{1}-[\square}\)

\section*{3．67 Equation}
\[
\sqrt{-H+\sqrt{D_{2}}-\sqrt{D_{4}}-5}
\]



\section*{3．68 Equation}
\[
-\sqrt{H}-D^{D_{3}}-\sqrt{D_{3}}-\frac{S}{S}-\sqrt{S}-\sqrt{S}-\sqrt{S}-
\]

Proof：\(-{ }_{-T}^{\left[D_{B}-\right.}\)













\section*{3．69 Equation}
\[
\sqrt{H} \sqrt{D_{4}}-\sqrt{D_{2}}-
\]

Proof：\(-\overline{\text { 田 }}\) 包 -


\(\stackrel{(\text { def })}{=}-D_{p_{2}}-\)

\section*{3．70 Equation}
\[
\sqrt{S} \sqrt{D_{1}-}=\sqrt{D_{1}}-\sqrt{H}-\sqrt{H}-\sqrt{H}
\]

Proof：\(工 \sqrt{\square}-\)





\section*{3．71 Equation}
\[
\overline{-\sqrt{S}-\sqrt{D_{2}}-\sqrt{D_{3}}-\sqrt{S}-\sqrt{S}-\sqrt{S}-\sqrt{H}-\sqrt{S}}
\]

Proof：\(-{ }_{-a}^{p}-\)












\section*{3．72 Equation}
\[
\sqrt{S}+\sqrt{D_{3}}-\sqrt{D_{2}}-\sqrt{S}-\sqrt{H}-\sqrt{S}
\]

Proof: \(-\sqrt{-5}-\sqrt{D_{3}}-\)
\[
\begin{aligned}
& \stackrel{(3)}{=} \quad-\frac{H}{H} \cdot \frac{H}{H} \cdot \frac{S}{H}-(H-S-
\end{aligned}
\]

\subsection*{3.73 Equation}
\[
\overline{-S}-\sqrt{D_{4}}-\sqrt{D_{4}}-\sqrt{H}-\sqrt{S}-\sqrt{H}-
\]

Proof: \(-\sqrt{s}-D_{i}-\)




\subsection*{3.74 Equation}

Proof: \(\quad-s-{ }^{s}-\)




\(\stackrel{(\text { def })}{=}-\sqrt{p_{2}}-\sqrt{s}\)

\subsection*{3.75 Equation}
\[
\sqrt{S} \sqrt{D_{2}}-\sqrt{D_{2}} \sqrt{S}
\]

Proof: \(-\sqrt{s-\sqrt{D_{2}}-}\)
\(\stackrel{(\text { def })}{=} \xrightarrow{-\sqrt[S]{-H} \cdot \sqrt{H} \cdot}\)


\(\stackrel{(\text { def })}{=}-\sqrt{D_{2}}-\sqrt{s-}\)

\subsection*{3.76 Equation}
\[
\sqrt{S}-\sqrt{D_{3}}-\sqrt{D_{3}} \sqrt{S}
\]






\subsection*{3.77 Equation}

Proof: \(-\sqrt{s-\sqrt{0}}-\)



\(\stackrel{(\text { def })}{=}-\sqrt[p_{s}-s-]{-s}\)

\subsection*{3.78 Equation}
\[
\because\left[0_{0}=-7\right.
\]

Proof: \(] D_{b}^{p_{i}}\)


\subsection*{3.79 Equation}
\[
\cdots \sqrt{D_{2}}-\sqrt{D_{3}}-\sqrt{S}-\sqrt{S}-\sqrt{S}-\sqrt{S}-
\]

Proof: \(\quad \square{ }^{0}-\)



















\subsection*{3.80 Equation}

Proof: \(\square^{p_{0}}-\)


















\subsection*{3.81 Equation}
I

\subsection*{3.82 Equation}
\[
-\sqrt{S}-\sqrt{E_{1}}-=-\sqrt{E_{2}}-
\]

Proof: - \(\sqrt{s-\underbrace{2}}\)
\[
\begin{array}{ll}
\stackrel{(\text { def })}{=} & -\sqrt{s}- \\
\left(\begin{array}{c}
\text { def }) \\
=
\end{array}\right. & -E_{2}-
\end{array}
\]

\subsection*{3.83 Equation}
\[
-\sqrt{S}-\left[E_{2}-=-\sqrt{E_{3}}-\right.
\]

Proof: - \(\sqrt{s-Q_{2}-1}\)
\(\stackrel{(\text { def })}{=} \sqrt{(\text { def })}-\sqrt[s]{-}-\sqrt{s}-\)
\(\stackrel{(\text { def })}{=}-\) 区

\subsection*{3.84 Equation}
\[
\sqrt{S}-\sqrt{E_{3}}-=\sqrt{E_{4}}-
\]

Proof: - \(\sqrt{s-\mathbb{R}^{2}-}\)
\((\mathrm{def})\)
\(=\)
(def)
\(\stackrel{(\text { def })}{=}-\) 龙-

\subsection*{3.85 Equation}
\[
-\sqrt{S}-\left[E_{1}-=-\sqrt{E_{1}}-\right.
\]

Proof: - \(\sqrt{s-E_{0}-}\)
\(\stackrel{(\text { def })}{=}-\sqrt[S]{-S}-\sqrt[s]{-\sqrt{s}-}\)
\(\stackrel{(3)}{=}\)
\(\stackrel{(\text { def })}{=}-{ }^{\left(E_{1}-\right.}\)

\subsection*{3.86 Equation}




\subsection*{3.87 Equation}



-
-
-

-
-


-

-

-
-
-
-




-
-
-
-
-



\subsection*{3.88 Equation}







\(\stackrel{(2)}{=}\)
\((18)\)
-
-
-
-
-
--
-
-
-

-
-
-


-
-









\(\stackrel{(16)}{=}\)
\(\stackrel{(2)}{=}\)




\(\stackrel{(12)}{=}\)
\(\stackrel{(19)}{=}\)
\(\stackrel{(11)}{=}\)
\(\stackrel{(2)}{=}\)










\(\stackrel{(\text { def })}{=} \xrightarrow[D_{3}]{ }\)

\subsection*{3.89 Equation}


\subsection*{3.90 Equation}


Proof:




















































\subsection*{3.91 Equation}


\(\stackrel{(2)}{=} \xrightarrow{-\frac{\square}{H}!\sqrt{H}!+\sqrt{H}!}\)


































\subsection*{3.92 Equation}








    -






```

(2) \

```




```

(3)

```

```

(2)}=\frac{-H}{=
(14)}=|=|\mp@code{\#

```


```

(12)
(2) -H

```










```

(19)}=|\mp@code{|
(12)
(2)
(11)

```






\subsection*{3.93 Equation}
\[
\cdots \sqrt{D_{2}} \sqrt{D_{4}}=\sqrt{D_{2}} \sqrt{D_{1}-\sqrt{H} \cdot \sqrt{H}-}
\]


(11) \(\quad \frac{\text { - }}{=}\)





(3) \(\quad \frac{\text { - }}{=} \quad\) !

\(\stackrel{(2)}{=}\)














\subsection*{3.94 Equation}

```

 -
    ```


















\(\stackrel{(2)}{=}\)
\(\stackrel{(3)}{=}\)
\(\stackrel{(2)}{=}\)
\(\stackrel{(12)}{=}\)
\(\stackrel{(12)}{=}\)
\(\stackrel{(3)}{=}\)




\(\stackrel{(12)}{=}\)
\(\stackrel{(3)}{=}\)
\(\stackrel{(12)}{=}\)
\(\stackrel{(12)}{=}\)












```

(12) $)$

```




\subsection*{3.95 Equation}


\section*{Proof:}


\(\stackrel{(2)}{=}\)
-
\(\stackrel{(12)}{=}\)


(14) \(\stackrel{H}{=}\)

\(\stackrel{(2)}{=}\)
! !
\(\stackrel{(14)}{=}\)

\(\stackrel{(2)}{=}\)
\(\stackrel{(12)}{=}\)













```

$\stackrel{(19)}{=}$
$\stackrel{(11)}{=}$

```



\subsection*{3.96 Equation}


(2) \(\xlongequal[=]{\square}\)








\(\stackrel{(2)}{=}\)

\(\stackrel{(3)}{=}\)
\(\stackrel{(3)}{=}\)
\[
\stackrel{(12)}{=}
\]
\[
\stackrel{(12)}{=}
\]

\(\stackrel{(11)}{=}\)



\(\stackrel{(12)}{=}\)
\(\stackrel{(12)}{=}\)






\subsection*{3.97 Equation}


\footnotetext{


\(\stackrel{(12)}{=}\)


}
\begin{tabular}{|c|c|}
\hline \(\stackrel{(14)}{=}\) &  \\
\hline \multirow[t]{2}{*}{(2)} & \(-{ }^{+}\) \\
\hline &  \\
\hline \multirow[t]{2}{*}{(2)} & \(-{ }_{H}\) \\
\hline &  \\
\hline \multirow[t]{2}{*}{\(\stackrel{(12)}{=}\)} &  \\
\hline & \(] \cdot\left[\begin{array}{l}\text { [ } \\ \square\end{array}\right.\) \\
\hline \multirow[t]{2}{*}{\(\stackrel{(12)}{=}\)} & \(-T+\cdots\) \\
\hline &  \\
\hline \multirow[t]{2}{*}{\(\stackrel{(14)}{=}\)} &  \\
\hline &  \\
\hline \multirow[t]{2}{*}{\(\stackrel{(2)}{=}\)} &  \\
\hline &  \\
\hline \multirow[t]{2}{*}{\((3)\)} & \(-{ }^{H}\) \\
\hline &  \\
\hline &  \\
\hline \(\stackrel{(11)}{=}\) &  \\
\hline & \(-H \cdot T-\sqrt{H}\) \\
\hline \(\stackrel{(19)}{=}\) &  \\
\hline &  \\
\hline \(\stackrel{(3)}{=}\) &  \\
\hline \multirow[t]{2}{*}{\(\stackrel{(12)}{=}\)} & - + - \(\square^{\text {a }}\) \\
\hline &  \\
\hline \(\stackrel{(12)}{=}\) &  \\
\hline \(\stackrel{(2)}{=}\) &  \\
\hline \[
\stackrel{(3)}{=}
\] &  \\
\hline \[
\stackrel{(2)}{=}
\] &  \\
\hline \[
(\underline{(2)}
\] &  \\
\hline (21) &  \\
\hline \(\stackrel{(12)}{=}\) &  \\
\hline \(\stackrel{(3)}{ }\) &  \\
\hline \(\stackrel{(12)}{=}\) &  \\
\hline (12) &  \\
\hline (12) &  \\
\hline (14) &  \\
\hline (12) &  \\
\hline (12) &  \\
\hline (2) &  \\
\hline \(\stackrel{(16)}{=}\) &  \\
\hline
\end{tabular}



\subsection*{3.98 Equation}


Proof:
\(\stackrel{(\text { def })}{=} \xrightarrow[[]{-H!}\)
(18) \(\underset{=}{-\sqrt{H}}\)



\(\stackrel{(2)}{=} \quad\) -


\(\stackrel{(2)}{=} \quad \sqrt{H}\) 蔦
(2) \(\xlongequal[=]{(1)}\)
(2) \(\xlongequal[=]{\square}\)
(20) \(=\) -


(16) \(\underset{=}{-H}\)
(2)
(3) \(\quad\) ! \(\quad\) 寅
\(\stackrel{(14)}{=}\) -






(3) \(\quad\) - \(\quad\) !












(inv) \(\quad \frac{-\sqrt{H} \cdot\left[\frac{H}{H}!~!~\right.}{=}\)

(18) \(\quad-\frac{H}{=} \cdot\left[\frac{H}{H}!\cdot \frac{H}{H}!\frac{H}{H}!\frac{H}{H}!\frac{H}{H} \cdot \sqrt{H}-\frac{H}{H}-\right.\)


\subsection*{3.99 Equation}







\(\stackrel{(12)}{=}\)
\(\stackrel{(12)}{=}\)

\(\stackrel{(14)}{=}\)
\(\stackrel{(2)}{=}\)
\(\stackrel{(11)}{=}\)
\(\stackrel{(19)}{=}\)
\(\stackrel{(12)}{=}\)
\(\stackrel{(12)}{=}\)
(12)
\(\stackrel{(2)}{=}\)
!

\(\stackrel{(2)}{=}\)
\(\stackrel{(16)}{=}\)
\(\stackrel{(2)}{=}\)
\(\stackrel{(3)}{=}\)
\(\stackrel{(14)}{=}\)
\(\stackrel{(3)}{=}\)
\(\stackrel{(12)}{=}\)
!



```

(14))
(12) \}
(12)

```


```

(14)
(2) \
(14) \H}
(12)
(12)
(12) (-H}
(2) \
(7) \

```


```

(19)}

```

```

(2) \}

```

```

(2)

```

```

(def)

```

\subsection*{3.100 Equation}

Proof:














\(\stackrel{(3)}{=}\)
\(\stackrel{(12)}{=}\)












(16) \(\quad\) - \(\quad\) [

－
－
！
－

－
－
－
－
－
－
！


\(\underset{\square}{\square}\)
！
！
！


位
！
－
－
－
－
－



\subsection*{3.101 Equation}

```

