Friedman's A-Translation

Peter Selinger

October 27, 1992

Theorem 1 Peano arithmetic is a conservative extension of Heyting arithmetic for Π_2^0 sentences.

1 Heyting and Peano arithmetic

Definition Heyting arithmetic (**HA**) and Peano arithmetic (**PA**) are formal systems based on the following language \mathcal{L} :

 \mathcal{L} is a first-order-language, with logical constants \bot , \land , \lor , \rightarrow , \forall , \exists , numerical variables x, y, z..., a constant $\mathbf{0}$, a unary function constant \mathbf{S} , constant function symbols for all primitive recursive functions (indicated by F, G, H...) and a single binary predicate constant =. Terms and formulas are defined as usual. Formulas are indicated by Φ , Ψ ... and $\neg \Phi$ abbreviates $\Phi \rightarrow \bot$.

The axioms and rules of **HA** (**PA**, respectively) are the axioms and rules of intuitionistic (respectively classical) first-order predicate logic (e.g. in a standard Hilbert-style formalization or one of several natural or sequent calculi) together with the following non-logical axioms:

 $x = x \quad (refl)$ $x = y \land z = y \to x = z \quad (trans)$ $x_i = x'_i \to F(x_1, \dots, x_i, \dots, x_n) = F(x_1, \dots, x'_i, \dots, x_n) \quad (cong_F)$

for any *n*-ary function constant F, $1 \le i \le n$,

$$\mathbf{S}x \neq \mathbf{0}$$
 (as abbreviation for $\mathbf{S}x = \mathbf{0} \rightarrow \bot$) (succ1)

 $\mathbf{S}x = \mathbf{S}y \to x = y$ (succ2)

furthermore all instances of the axiom schema

$$\Phi \mathbf{0} \land \forall x (\Phi x \to \Phi(\mathbf{S}x)) \to \forall x \Phi x \qquad (ind)$$

as well as defining axioms for all primitive recursive functions. Every primitive recursive function F except the 0-ary $\mathbf{0}$ and the 1-ary \mathbf{S} is defined by exactly one axiom of one of the following forms:

$$\mathbf{F}(x_1,\ldots,x_i,\ldots,x_n) = x_i \qquad (proj_{\mathbf{F}})$$

$$\mathbf{F}(x_1,\ldots,x_n) = \mathbf{G}(\mathbf{H}_1(x_1,\ldots,x_n),\ldots,\mathbf{H}_m(x_1,\ldots,x_n)) \qquad (comp_{\mathbf{F}})$$

$$F(0, x_1, \dots, x_n) = G(x_1, \dots, x_n)$$

$$\wedge F(\mathbf{S}y, x_1, \dots, x_n) = H(F(y, x_1, \dots, x_n), y, x_1, \dots, x_n) \qquad (rec_F)$$

where G, H, H_1, \ldots, H_m have been defined before. [Tro73]

Note that **HA** and **PA** differ only in that **HA** uses intuitionistic, **PA** classical logic. We therefore have the immediate

Lemma 2 $\vdash_{\text{HA}} \Phi \Rightarrow \vdash_{\text{PA}} \Phi$ for any formula $\Phi \in \mathcal{L}$.

The next lemma states that every quantifier-free formula is essentially of the form $F(x_1, \ldots, x_n) = \mathbf{0}$, where F is a primitive recursive function symbol and x_1, \ldots, x_n the (free) variables of the formula.

Lemma 3 Let Ψ be any formula without quantifiers and with (free) variables x_1, \ldots, x_n . Then there is an n-ary primitive recursive function symbol F of \mathcal{L} with $\vdash_{HA} \Psi \leftrightarrow F(x_1, \ldots, x_n) = \mathbf{0}$. (\leftrightarrow is the usual abbreviation).

Proof: Note first that the 2-ary functions + (addition), \cdot (multiplication) and $\dot{-}$ (cut-off subtraction) are primitive recursive ([Tro88], p. 116), and that the following are provable: $\vdash_{\text{HA}} x = \mathbf{0} \land y = \mathbf{0} \leftrightarrow x + y = \mathbf{0}, \vdash_{\text{HA}} x = \mathbf{0} \lor y = \mathbf{0}$ $\mathbf{0} \leftrightarrow x \cdot y = \mathbf{0}, \vdash_{\text{HA}} x = \mathbf{0} \rightarrow y = \mathbf{0} \leftrightarrow (1 \dot{-} x) \dot{-} (1 \dot{-} y) = \mathbf{0}, \vdash_{\text{HA}} \bot \leftrightarrow \mathbf{S} x = \mathbf{0}.$ From this it should be clear how the proof goes by induction on the structure of Ψ .

Definition $\Pi_2^0 \subset \mathcal{L}$ is the class of all formulas of the form

$$(\forall x_1)(\forall x_2)\dots(\forall x_i)(\exists y_1)(\exists y_2)\dots(\exists y_j)\Psi$$

where $i, j \ge 0$ and Ψ quantifier-free.

Lemma 4 Every closed formula $\Phi \in \Pi_2^0$ is **HA**-provably equivalent to

$$(\forall x)(\exists y)\mathbf{F}(x,y) = \mathbf{0}$$

for some primitive recursive function symbol F.

Proof: Successive quantifiers of the same kind can be contracted by pairing; if additional quantifiers are necessary, "dummy" variables can be introduced. The existence of F follows from Lemma 3. \Box

2 Motivation of Theorem 1

Looking back at Theorem 1, it tells us that **PA** and **HA** have the same provable Π_2^0 formulas. Before we start proving this, let me try to motivate it a bit.

Observe that in **HA** (with a natural style system for the underlying logic) the following easy induction yields a proof for $(\forall x)x = \mathbf{0} \lor x \neq \mathbf{0}$:

$$\frac{(refl)}{\mathbf{0} = \mathbf{0}} \underbrace{\frac{\mathbf{S}x \neq \mathbf{0}}{\mathbf{S}x = \mathbf{0} \vee \mathbf{S}x \neq \mathbf{0}}}_{(\forall x)(x = \mathbf{0} \vee x \neq \mathbf{0} \rightarrow \mathbf{S}x = \mathbf{0} \vee \mathbf{S}x \neq \mathbf{0})} \underbrace{\frac{\mathbf{1} = \mathbf{0} \vee \mathbf{1} \times \mathbf{1} \times$$

By application of the \forall -elim rule we can therefore get

$$\vdash_{\mathrm{HA}} \mathrm{F}(x_1,\ldots,x_n) = \mathbf{0} \vee \mathrm{F}(x_1,\ldots,x_n) \neq \mathbf{0}$$

for every *n*-ary primitive recursive function symbol F, and with lemma 3 for every quantifier-free formula Ψ :

$$\vdash_{\mathrm{HA}} \Psi \lor \neg \Psi.$$

We can therefore say that Heyting arithmetic has a certain amount of classical logic already "built in."

But don't be pleased too early. Our above discovery says nothing about formulas with quantifiers. For example, if $\Phi = (\forall x)\Psi$ with quantifier-free Ψ , then by the above method we can easily get $\vdash_{\text{HA}} (\forall x)(\Psi \lor \neg \Psi)$, but this allows us *not* to conclude $\vdash_{\text{HA}} \Phi \lor \neg \Phi$. Perhaps we can now more appreciate Theorem 1, that assures us that **HA** has classical logic "built in" even for (quantified) Π_2^0 formulas. This result is particularly nice because many statements of arithmetic can be expressed in Π_2^0 form. As an example we take the formula

$$(\forall x)(\exists y)(y \ge x \land \texttt{prime}(y) = \mathbf{0}),$$

where **prime** is the characteristic function of the prime numbers (**prime** and \geq are primitive recursive, cf. [Tro88], p. 117). The formula states that there are infinitely many prime numbers. The best known proof for this fact is typically non-constructive, starting with the words "suppose not." However, once we have established Theorem 1 we get a constructive proof for the existence of infinitely many prime numbers for free.

The argument that we give here to prove Theorem 1 is due to H. Friedman [Fri78]. Other proofs were known earlier, but they were much more painful and required a delicate proof theoretic or semantic analysis, which we will not need. In the following we introduce two translations of formulas and some basic facts about them. The proofs are straightforward.

3 Double negation translation

Definition The *double negation translation* Φ° of some first-order formula Φ is defined by adding " $\neg \neg$ " before every atomic, disjunctive or existential

subformula:

$$\begin{array}{rcl} \bot^{\circ} &=& \bot \\ \Phi^{\circ} &=& \neg \neg \Phi & \text{where } \Phi \neq \bot \text{ atomic} \\ (\Phi \land \Psi)^{\circ} &=& \Phi^{\circ} \land \Psi^{\circ} \\ (\Phi \lor \Psi)^{\circ} &=& \neg \neg (\Phi^{\circ} \lor \Psi^{\circ}) \\ (\Phi \rightarrow \Psi)^{\circ} &=& \Phi^{\circ} \rightarrow \Psi^{\circ} \\ (\forall x \Phi)^{\circ} &=& \forall x (\Phi^{\circ}) \\ (\exists x \Phi)^{\circ} &=& \neg \neg \exists x (\Phi^{\circ}) \end{array}$$

Lemma 5 Let $\vdash_{\mathbf{C}}$ stand for classical, $\vdash_{\mathbf{I}}$ for intuitionistic deducibility. The double negation translation has the following properties (Φ a formula, Γ a set of formulas, where $\Gamma^{\circ} = \{\Psi^{\circ} | \Psi \in \Gamma\}$):

- 1. $\vdash_{\mathbf{C}} \Phi^{\circ} \leftrightarrow \Phi$
- 2. $\neg \neg \Phi^{\circ} \vdash_{\mathbf{I}} \Phi^{\circ}$
- 3. $\Gamma \vdash_{\mathcal{C}} \Phi \Rightarrow \Gamma^{\circ} \vdash_{\mathcal{I}} \Phi^{\circ}$
- 4. In general not $\Phi \vdash_{\mathbf{I}} \Phi^{\circ}$

In particular property 3 is interesting; it says that classical logic is embedded into (or reduced to) intuitionistic logic; therefore the term double negation "translation." Note that the converse of 3 trivially holds with 1. A counterexample for 4 is $\Phi = \neg \forall x \Psi x$.

4 A-translation

Definition Let A and Φ be formulas such that no bound variable of Φ is free in A. The *A*-translation Φ_A of some first-order formula Φ is defined by simultaneously replacing every atomic subformula Ψ by $\Psi \lor A$:

```
 \begin{array}{rcl} \bot_A &=& A \\ \Phi_A &=& \Phi \lor A & \text{where } \Phi \neq \bot \text{ atomic} \\ (\Phi \land \Psi)_A &=& \Phi_A \land \Psi_A \\ (\Phi \lor \Psi)_A &=& \Phi_A \lor \Psi_A \\ (\Phi \to \Psi)_A &=& \Phi_A \to \Psi_A \\ (\forall x \Phi)_A &=& \forall x (\Phi_A) \\ (\exists x \Phi)_A &=& \exists x (\Phi_A) \end{array}
```

Here it is important that $\neg \Phi$ is only an abbreviation for $\Phi \rightarrow \bot$; note that the *A*-translation of $\neg \Phi$ is *not* $\neg \Phi_A$.

Lemma 6 The A-translation has the following properties (Φ a formula and Γ a set of formulas, such that Φ_A and Γ_A are defined, where $\Gamma_A = \{\Psi_A | \Psi \in \Gamma\}$):

- 1. $\vdash_{\mathcal{C}} \Phi_A \leftrightarrow \Phi \lor A$
- 2. $A \vdash_{\mathrm{I}} \Phi_A$
- 3. $\Gamma \vdash_{\mathbf{I}} \Phi \Rightarrow \Gamma_A \vdash_{\mathbf{I}} \Phi_A$
- 4. In general *not* $\Phi \vdash_{\mathbf{I}} \Phi_A$

The proof of property 3 is a bit tricky where eigenvariable conditions are involved. The rest is straightforward. Note that $\Phi \equiv \neg \neg A$ is a counterexample for 4.

5 Proof of Theorem 1

The proof goes in two steps. Given $\vdash_{\text{PA}} (\exists y) F(x, y) = \mathbf{0}$ we first conclude $\vdash_{\text{HA}} \neg \neg (\exists y) F(x, y) = \mathbf{0}$, using double negation translation, then $\vdash_{\text{HA}} (\exists y) F(x, y) = \mathbf{0}$, using A-translation. The proof will last on the following crucial properties of the axioms that we stated in Section 1:

Lemma 7 For every non-logical axiom Ψ of Heyting/Peano arithmetic (including instances of axiom schemata) both translations Ψ° and Ψ_A are provable in **HA**.

Proof: Note that from property 4 in Lemmas 5 and 6 this is not true for a general formula Ψ . However, if Ψ is of the form Φ , $\Phi_1 \wedge \Phi_2$, $\Phi_1 \rightarrow \Phi_2$ or $\Phi_1 \wedge \Phi_2 \rightarrow \Phi_3$ (where $\Phi, \Phi_1, \Phi_2, \Phi_3$ atomic), then we can easily show $\Psi \vdash_{\Pi} \Psi^{\circ}$ and $\Psi \vdash_{\Pi} \Psi_A$. All axioms except *(ind)* are of this form. Suppose now Ψ is an instance of *(ind)*:

$$\Psi \equiv \Phi \mathbf{0} \land \forall x (\Phi x \to \Phi(\mathbf{S}x)) \to \forall x \Phi x$$

for some formula Φx . Then

$$\Psi^{\circ} \equiv \Phi^{\circ} \mathbf{0} \land \forall x (\Phi^{\circ} x \to \Phi^{\circ} (\mathbf{S} x)) \to \forall x \Phi^{\circ} x,$$
$$\Psi_{A} \equiv \Phi_{A} \mathbf{0} \land \forall x (\Phi_{A} x \to \Phi_{A} (\mathbf{S} x)) \to \forall x \Phi_{A} x,$$

which are themselves axioms of HA.

Corollary 8 The following hold for all formulas $\Phi \in \mathcal{L}$:

- 1. $\vdash_{PA} \Phi \Rightarrow \vdash_{HA} \Phi^{\circ}$
- 2. $\vdash_{\mathrm{HA}} \Phi \Rightarrow \vdash_{\mathrm{HA}} \Phi_A$, if Φ_A defined.

Proof: 1. If Γ are the non-logical axioms of **PA** used in the proof of $\vdash_{\text{PA}} \Phi$, then

$$\Gamma \vdash_{\mathcal{C}} \Phi \stackrel{Lemma}{\Longrightarrow} \stackrel{5.3}{\Gamma^{\circ}} \vdash_{\mathcal{I}} \Phi^{\circ} \stackrel{Lemma}{\Longrightarrow} \stackrel{7}{\to} \vdash_{\mathcal{HA}} \Phi^{\circ}$$

2. If Γ are the non-logical axioms of **HA** used in the proof of $\vdash_{\text{HA}} \Phi$, then

$$\Gamma \vdash_{\mathrm{I}} \Phi \stackrel{Lemma}{\Longrightarrow} {}^{6.3}\Gamma_A \vdash_{\mathrm{I}} \Phi_A \stackrel{Lemma}{\Longrightarrow} {}^{7} \vdash_{\mathrm{HA}} \Phi_A.$$

Proof of Theorem 1: If $\vdash_{\text{PA}} (\exists y) F(x, y) = \mathbf{0}$ then $\vdash_{\text{HA}} \neg \neg (\exists y) F(x, y) = \mathbf{0}$ by the Corollary. Having $\vdash_{\text{HA}} (((\exists y) F(x, y) = \mathbf{0}) \rightarrow \bot) \rightarrow \bot$, using $A \equiv (\exists y) F(x, y) = \mathbf{0}$, we have

$$\vdash_{\mathrm{HA}} \left(((\exists y) \mathrm{F}(x, y) = \mathbf{0}) \lor ((\exists y) \mathrm{F}(x, y) = \mathbf{0}) \to ((\exists y) \mathrm{F}(x, y) = \mathbf{0}) \right) \\ \to ((\exists y) \mathrm{F}(x, y) = \mathbf{0}),$$

hence $\vdash_{\text{HA}} (\exists y) F(x, y) = \mathbf{0}.$

Note that this argument can easily be applied to theories other than **HA**, as long as their axioms satisfy Lemma 7. Friedman does this in his paper [Fri78] for the theory of finite types and for Zermelo-Fraenkel set theory. A further development of Friedman's methods is found in [Lev85], where in particular large classes of axioms satisfying Lemma 7 are described syntactically.

References

- [Fri78] H.M. Friedman: Classically and Intuitionistically Provably Recursive Functions, in: Mueller and Scott (eds.): Higher Set Theory (1978) 21-27, Springer, Berlin
- [Lev85] D. Leivant: Syntactic Translations and Provably Recursive Functions, in: The Journal of Symbolic Logic, vol. 50 (1985) 682-688
- [Tro73] A.S. Troelstra: Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, in: Lecture Notes in Mathematics, vol. 344 (1973), Springer, Berlin
- [Tro88] A.S. Troelstra, D. van Dalen: Constructivism in Mathematics, vol. I (1988), North Holland