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Theorem 1 Peano arithmetic is a conservative extension of Heyting arithmetic
for Π0

2 sentences.

1 Heyting and Peano arithmetic

Definition Heyting arithmetic (HA) and Peano arithmetic (PA) are formal
systems based on the following language L:

L is a first-order-language, with logical constants ⊥, ∧, ∨, →, ∀, ∃, numerical
variables x, y, z. . . , a constant 0, a unary function constant S, constant function
symbols for all primitive recursive functions (indicated by F, G, H. . . ) and a
single binary predicate constant =. Terms and formulas are defined as usual.
Formulas are indicated by Φ, Ψ. . . and ¬Φ abbreviates Φ → ⊥.

The axioms and rules of HA (PA, respectively) are the axioms and rules of
intuitionistic (respectively classical) first-order predicate logic (e.g. in a standard
Hilbert-style formalization or one of several natural or sequent calculi) together
with the following non-logical axioms:

x = x (refl)

x = y ∧ z = y → x = z (trans)

xi = x′

i → F(x1, . . . , xi, . . . , xn) = F(x1, . . . , x
′

i, . . . , xn) (congF)

for any n-ary function constant F, 1 ≤ i ≤ n,

Sx 6= 0 (as abbreviation for Sx = 0 → ⊥) (succ1 )

Sx = Sy → x = y (succ2 )

furthermore all instances of the axiom schema

Φ0 ∧ ∀x(Φx → Φ(Sx)) → ∀xΦx (ind)

as well as defining axioms for all primitive recursive functions. Every primitive
recursive function F except the 0-ary 0 and the 1-ary S is defined by exactly
one axiom of one of the following forms:

F(x1, . . . , xi, . . . , xn) = xi (projF)
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F(x1, . . . , xn) = G(H1(x1, . . . , xn), . . . ,Hm(x1, . . . , xn)) (compF)

F(0, x1, . . . , xn) = G(x1, . . . , xn)
∧ F(Sy, x1, . . . , xn) = H(F(y, x1, . . . , xn), y, x1, . . . , xn) (recF)

where G, H, H1, . . . , Hm have been defined before. [Tro73]

Note thatHA andPA differ only in thatHA uses intuitionistic, PA classical
logic. We therefore have the immediate

Lemma 2 ⊢HA Φ ⇒ ⊢PA Φ for any formula Φ ∈ L. ✷

The next lemma states that every quantifier-free formula is essentially of the
form F(x1, . . . , xn) = 0, where F is a primitive recursive function symbol and
x1, . . . , xn the (free) variables of the formula.

Lemma 3 Let Ψ be any formula without quantifiers and with (free) variables
x1, . . . , xn. Then there is an n-ary primitive recursive function symbol F of L
with ⊢HA Ψ ↔ F(x1, . . . , xn) = 0. ( ↔ is the usual abbreviation).
Proof: Note first that the 2-ary functions + (addition), · (multiplication) and
.
− (cut-off subtraction) are primitive recursive ([Tro88], p. 116), and that the
following are provable: ⊢HA x = 0 ∧ y = 0 ↔ x + y = 0, ⊢HA x = 0 ∨ y =
0 ↔ x·y = 0, ⊢HA x = 0 → y = 0 ↔ (1

.
−x)

.
−(1

.
−y) = 0, ⊢HA ⊥ ↔ Sx = 0.

From this it should be clear how the proof goes by induction on the structure
of Ψ. ✷

Definition Π0
2 ⊂ L is the class of all formulas of the form

(∀x1)(∀x2) . . . (∀xi)(∃y1)(∃y2) . . . (∃yj)Ψ

where i, j ≥ 0 and Ψ quantifier-free.

Lemma 4 Every closed formula Φ ∈ Π0
2 is HA-provably equivalent to

(∀x)(∃y)F(x, y) = 0

for some primitive recursive function symbol F.
Proof: Successive quantifiers of the same kind can be contracted by pairing; if
additional quantifiers are necessary, “dummy” variables can be introduced. The
existence of F follows from Lemma 3. ✷

2 Motivation of Theorem 1

Looking back at Theorem 1, it tells us that PA and HA have the same provable
Π0

2 formulas. Before we start proving this, let me try to motivate it a bit.
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Observe that in HA (with a natural style system for the underlying logic)
the following easy induction yields a proof for (∀x)x = 0 ∨ x 6= 0:

(refl)
0 = 0

0 = 0 ∨ 0 6= 0

(succ1 )
Sx 6= 0

Sx = 0 ∨ Sx 6= 0

x = 0 ∨ x 6= 0 → Sx = 0 ∨ Sx 6= 0

(∀x)(x = 0 ∨ x 6= 0 → Sx = 0 ∨ Sx 6= 0)

(∀x)x = 0 ∨ x 6= 0
(ind)

By application of the ∀-elim rule we can therefore get

⊢HA F(x1, . . . , xn) = 0 ∨ F(x1, . . . , xn) 6= 0

for every n-ary primitive recursive function symbol F, and with lemma 3 for
every quantifier-free formula Ψ:

⊢HA Ψ ∨ ¬Ψ.

We can therefore say that Heyting arithmetic has a certain amount of classical
logic already “built in.”

But don’t be pleased too early. Our above discovery says nothing about for-
mulas with quantifiers. For example, if Φ = (∀x)Ψ with quantifier-free Ψ, then
by the above method we can easily get ⊢HA (∀x)(Ψ ∨ ¬Ψ), but this allows us
not to conclude ⊢HA Φ ∨ ¬Φ. Perhaps we can now more appreciate Theorem 1,
that assures us that HA has classical logic “built in” even for (quantified) Π0

2

formulas. This result is particularly nice because many statements of arithmetic
can be expressed in Π0

2 form. As an example we take the formula

(∀x)(∃y)(y ≥ x ∧ prime(y) = 0),

where prime is the characteristic function of the prime numbers (prime and ≥
are primitive recursive, cf. [Tro88], p. 117). The formula states that there are
infinitely many prime numbers. The best known proof for this fact is typically
non-constructive, starting with the words “suppose not.” However, once we
have established Theorem 1 we get a constructive proof for the existence of
infinitely many prime numbers for free.

The argument that we give here to prove Theorem 1 is due to H. Friedman
[Fri78]. Other proofs were known earlier, but they were much more painful and
required a delicate proof theoretic or semantic analysis, which we will not need.
In the following we introduce two translations of formulas and some basic facts
about them. The proofs are straightforward.

3 Double negation translation

Definition The double negation translation Φ◦ of some first-order formula
Φ is defined by adding “¬¬” before every atomic, disjunctive or existential

3



subformula:

⊥◦ = ⊥

Φ◦ = ¬¬Φ where Φ 6= ⊥ atomic

(Φ ∧ Ψ)◦ = Φ◦ ∧ Ψ◦

(Φ ∨ Ψ)◦ = ¬¬(Φ◦ ∨ Ψ◦)

(Φ → Ψ)◦ = Φ◦ → Ψ◦

(∀xΦ)◦ = ∀x(Φ◦)

(∃xΦ)◦ = ¬¬∃x(Φ◦)

Lemma 5 Let ⊢C stand for classical, ⊢I for intuitionistic deducibility. The
double negation translation has the following properties (Φ a formula, Γ a set
of formulas, where Γ◦ = {Ψ◦|Ψ ∈ Γ}):

1. ⊢C Φ◦ ↔ Φ

2. ¬¬Φ◦ ⊢I Φ◦

3. Γ ⊢C Φ ⇒ Γ◦ ⊢I Φ◦

4. In general not Φ ⊢I Φ◦
✷

In particular property 3 is interesting; it says that classical logic is embed-
ded into (or reduced to) intuitionistic logic; therefore the term double negation
“translation.” Note that the converse of 3 trivially holds with 1. A counterex-
ample for 4 is Φ = ¬∀xΨx.

4 A-translation

Definition Let A and Φ be formulas such that no bound variable of Φ is
free in A. The A-translation ΦA of some first-order formula Φ is defined by
simultaneously replacing every atomic subformula Ψ by Ψ ∨ A:

⊥A = A

ΦA = Φ ∨ A where Φ 6= ⊥ atomic

(Φ ∧ Ψ)A = ΦA ∧ ΨA

(Φ ∨ Ψ)A = ΦA ∨ ΨA

(Φ → Ψ)A = ΦA → ΨA

(∀xΦ)A = ∀x(ΦA)

(∃xΦ)A = ∃x(ΦA)

Here it is important that ¬Φ is only an abbreviation for Φ → ⊥; note that
the A-translation of ¬Φ is not ¬ΦA.

4



Lemma 6 The A-translation has the following properties (Φ a formula and Γ
a set of formulas, such that ΦA and ΓA are defined, where ΓA = {ΨA|Ψ ∈ Γ}):

1. ⊢C ΦA ↔ Φ ∨ A

2. A ⊢I ΦA

3. Γ ⊢I Φ ⇒ ΓA ⊢I ΦA

4. In general not Φ ⊢I ΦA ✷

The proof of property 3 is a bit tricky where eigenvariable conditions are
involved. The rest is straightforward. Note that Φ ≡ ¬¬A is a counterexample
for 4.

5 Proof of Theorem 1

The proof goes in two steps. Given ⊢PA (∃y)F(x, y) = 0 we first conclude ⊢HA

¬¬(∃y)F(x, y) = 0, using double negation translation, then ⊢HA (∃y)F(x, y) =
0, using A-translation. The proof will last on the following crucial properties of
the axioms that we stated in Section 1:

Lemma 7 For every non-logical axiom Ψ of Heyting/Peano arithmetic (includ-
ing instances of axiom schemata) both translations Ψ◦ and ΨA are provable in
HA.
Proof: Note that from property 4 in Lemmas 5 and 6 this is not true for
a general formula Ψ. However, if Ψ is of the form Φ, Φ1 ∧ Φ2, Φ1 → Φ2 or
Φ1 ∧ Φ2 → Φ3 (where Φ, Φ1, Φ2, Φ3 atomic), then we can easily show Ψ ⊢I Ψ◦

and Ψ ⊢I ΨA. All axioms except (ind) are of this form. Suppose now Ψ is an
instance of (ind):

Ψ ≡ Φ0 ∧ ∀x(Φx → Φ(Sx)) → ∀xΦx

for some formula Φx. Then

Ψ◦ ≡ Φ◦0 ∧ ∀x(Φ◦x → Φ◦(Sx)) → ∀xΦ◦x,

ΨA ≡ ΦA0 ∧ ∀x(ΦAx → ΦA(Sx)) → ∀xΦAx,

which are themselves axioms of HA. ✷

Corollary 8 The following hold for all formulas Φ ∈ L:

1. ⊢PA Φ ⇒ ⊢HA Φ◦

2. ⊢HA Φ ⇒ ⊢HA ΦA, if ΦA defined.
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Proof: 1. If Γ are the non-logical axioms of PA used in the proof of ⊢PA Φ,
then

Γ ⊢C Φ
Lemma 5.3

=⇒ Γ◦ ⊢I Φ◦ Lemma 7
=⇒ ⊢HA Φ◦.

2. If Γ are the non-logical axioms of HA used in the proof of ⊢HA Φ, then

Γ ⊢I Φ
Lemma 6.3

=⇒ ΓA ⊢I ΦA
Lemma 7
=⇒ ⊢HA ΦA.

✷

Proof of Theorem 1: If ⊢PA (∃y)F(x, y) = 0 then ⊢HA ¬¬(∃y)F(x, y) = 0

by the Corollary. Having ⊢HA (((∃y)F(x, y) = 0) → ⊥) → ⊥, using A ≡
(∃y)F(x, y) = 0, we have

⊢HA

(

((∃y)F(x, y) = 0) ∨ ((∃y)F(x, y) = 0) → ((∃y)F(x, y) = 0)
)

→ ((∃y)F(x, y) = 0),

hence ⊢HA (∃y)F(x, y) = 0. ✷

Note that this argument can easily be applied to theories other than HA, as
long as their axioms satisfy Lemma 7. Friedman does this in his paper [Fri78]
for the theory of finite types and for Zermelo-Fraenkel set theory. A further
development of Friedman’s methods is found in [Lev85], where in particular
large classes of axioms satisfying Lemma 7 are described syntactically.
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