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ABSTRACT

In this paper we present a basis of identities of rational
algebraic theories. It is conjectured that this basis forms a
basis of identities of iterative algebraic theories, as well.
It is shown as a result that free rational theories coincide
with the free theories over the equational class corresponding
to the basis.

1. ALGEBRAIC THEORIES

An algebraic theory T is a special many-sorted algebra
whose sorting set is the set of all ordered pairs (n,p) of non~-
-negative integers. Let us denote by T(n,p) the carrier of sort
(n,p) of T for each n,p. The operations in T are: composition,
source-tupling and injections. For each n,p,q, composition (de-
noted by + or juxtaposition) maps T(n,p) x T(p,qg) into T(n,q).
For each n,p, source-tupling associates with fi e T(1,p)
(i=1,...,n) a unigque element <f1,;}.,fn> € T(n,p). Pérticularly,
if n=0, source-tupling picks out an element 0p € T7(0,p). Final-
ly, injections are nullary operations; there is a corresponding
injection ni € T(1,n) to each i and n such that 1 £ i € n. The

operations are required to satisfy the following conditions
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(ef. [17):

(i) (£g)h = f(gh) if £ € T(n,p), 9 € T(p,4), h € T(q,r);

(i) f<n;,...,np> £, £ € Tn,p):

P

(iii) n;<fl,...,fn> £i, 1s4isn, £f5 € T(1,p)

(j=11---ln)F

\ 1 n
(iv) <nnf,...,nnf>

0l
Hh

f € T(n,p).

In particular, if n=0, the last condition asserts that
T(0,p) is singleton.

Under these assumptions T becomes a category whose objects
are the non-negative integers and in which each object n is the
n-th copower of object 1. In fact, it was the original defini-
tion of algebraic theories (cf. [7]). In this category the i-

dentities are the elements 1, = <ni,...,n2> (n z 0). According

to the categorical analogy, the elements of T are called mor-

phisms and £ € T(n,p) is written as £ : n » p

It seems convenient to extend source-tupling as follows,.

1 n 1 m
let £f :n-~>p, g: m~ p. Then <f,g> = <nnf"f"nnf’nmg""'ﬂmg>'

Evidently, this derived operation is associative. Hence, we may
- write <f,g,h> to denote either <f,<g,h>> or <<f,g>,h>.

Another derived operation is the separated sum. First, let us

) _ . n .

consider 1n and Op. Then, 1n + 0P = <nn+p""'nn+p>’ while
_ n+1 n+p

On + 1p = <nn+p,..., nn+p>'

In general, if £ + n - p and ¢ s m - g, then £ + g =
= <f(lquq), q(op-+%)>. The separated sum is associative, too.

Concerning other identities the reader is referred to [3].
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The algebraic theory T is called non-degenerate, provided

'nz # ﬁ; . A morphism f : n >~ p is said to be ideal if none of

the morphisms nif,...,ngf is an injection. Finally, T is called
ideal if it is non-degenerate and for arbitrary f and ideal g,
gf is deal.

One can introduce homomorphisms - called theory maps -
between two theories. These are exactly homomorphisms of algeb-
raic theories considered as many-sorted algebras. Let T and T’
be ideal theories and take a theory map F : T -~ T'. If F pre~-

serves ideal morphisms, then it is called ideal as well.

Algebraic theories, as they were introduced, have an equa-~

tional presentation. Hence, for every ranked alphabet or type

z = n=0

denoted by T

=

T, there exists a free theory generated by =. This is

5 and has the following property. There is a ranked

alphabet map N: £ - T_ such that any ranked alphabet map

z
F : © - T into an algebraic theory T has a unigue homomorphic

extension F : TE - T; i.e. a theory map F which satisfies

F = nF. Here, by a ranked alphabet map we mean any mapping

F : © - T such that F(Zn) & 7(1,n).

T_ can be described as the theory of finite I-trees on the

N
variables {xl,x } (cf. [4], [6]). n can be chosen as the

2'.-4
mapping £ |- f(xl,...,xn)(f € Zn,n 2 0). Since n is injective,
we can consider © as a subset (more preciselyv as a subsystem)
of T.. In this way F = nF corresponds to flz = F,

In particular, if © is the void alphabet, TZ becomes the
initial theory. This is isomorphic to the theory ©, in which
0(n,p) is the set of all mappings of [n] = {1,...,n} into [p]l,
composition is composition of mappings, source—tgpling is sour-

ce—-tupling of mappings, finally, the injection n; : 1 > n is
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the mapping which picks out the integer i from fn]. Since 0 is
initial in the category of all theories and thebry maps, each
theory T has exactly one subtheory which is the homomorphic
image of ©. Further on this subtheory will be denoted by GT or,

simply, ©. If T is non-degenerate, eT is isomorphic to O,
otherwise both @ and eTis isomorphic to the terminal theory,

a theory whose each carrier is either void or singléton. The
elements of © and OT are called base morphisms and, in the se-
qual, they are identified. Lower case Greek letters,except a,
always denote base morphisms, For arbitrary op : n > P € 8, ip
stands for the image of i € [n] under p. A base morphism is
called surjective, injective etc. if it is surjective or in-

jective, resp. as a mapping.

We distinguish a subset (or subsystem) franTE, This will be

denoted by TZ - fe ﬁz (n,p) if and only if the frontier of f,
i.e. the sequence of variables appearing in the leaves of £,
is exactly xl...xp. @E has the following important property:

FEvery element of 'I‘Z can be uniquely written in the form fp,

~

where £ € TZ and p € ©

The morphisms £ : n - p (n > 0) which can be obtained as

(,

i

(g It

1fi)p, where fi € £{i=1,..,n} and p € 0, constitute the sub=-

set L&,

., Now we are ready to prove:
/ .
Lemma 1.1.
let f : n »n+p, g : m » mtp and p : M > n be morphisms in a
free algebraic theory T. Assume that p is surjective and g(p+lp)=
= pf. Then, there exists a morphism h : L - 2+p such that for

some surjective o : £ - m we have
(i) hio + 1p) = 0%,
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(ii) if p is a left inverse of o, i.e. pO= lm then
ogh = h,
(iii) for every left inverse y of Tt there are base morphisms

TyreerrTy : £ » 2 satisfying both 4T = T and

lTYh(Ti +1p) = nih (i=1,...,2), where t denotes the

2

composition op.

s

Proof

Since every free algebraic theory is freely generated by a ranked
alphabet, it is enough to verify the statement of the leamma for theories
T= TEZ' the free algebraic theory generated by a ranked alphabet T .

Let g, denote the i-th component of g, i.e.

n;g (i=l,...,m). It can be written in the form
_~ r o T : -
g, = giai(ei + Bi), where g; € T(l,ki + ki}r By * k; - m,
B r : . ro r 3 . s :
BI : ki p and finally, ay s ki+ki ki+ki is bijective and

, the restrictions of a,

and i

satisfies that both «, a,
ily. iy
1 1

TR RN P | . :
to N; = {Ja; | 1 £3 s ky} and N} {3y lk; < 3 S kytkidy

are monoton mappings.

Assume that ip = jp{i,3j € [m]). Then, also gi(p+1§) =

= g.(p+ i.e. g.a.(p.+p! +1 = g.o.(B.+Bpt + .
gj(p lp), i.e ?1“1'61 Bl)(p p) gJaJ(BJ B])(o 1p)

But there is a unique way to get a morphism of Tz as the

composition of an element of %E and a base morphism.

[ R ’ o=
Thus, we can conclude that ki+ki kj+kj r 9 gj ;

r = ’
ai(Bi + Bi)(p+1p) aj(Bj+Bj}(p+1p). Suppose that t € N,. Then,

tai(ﬁi+gi)(p+lp) s n and hence, taj(ﬁj+55)(p+1p) < n. Therefore

taj £ kj' i.e. t & Nj' The converse inclusion is similar. This

M . — ; r = r = . | S—— r
proves the egualities Ni = Nj, Ni Nj ' ki kj and ki kj .
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Or even, since the mappings a, r G ;y Qo and a,
tly, " "y 31y, 31w
i i J 3

are equally monoton, a; = aj; and it results from this that

— [ - I
ByP = Bjo and B = Bj .

m . -
Define {7 = E ki' £ = m+i’. Por every i € [m] let hi de-
- i-1 m
= Omfgiai( ro,_+1_+ I O +B£).

t=1 kt ki t=i+1 kt

note the morphism h

Let 6= <1 ,Bys..csB >, h = <El,...,5m>. A simple computation

shows that hi(o+1p) =g, for each i € [m].

Indeed, Ei(c+1 ) =

p’.
= (0 +§ial(lilok 1 L3 0k +Bi))(<lm'61"“'5m>+l ) =
t=1 “t i t=i+l “t P
i-1 m
= (0 +g,a,( = 0, +1, + T 0. +B!))<Y +0_,<B.,...,B >+0_,0 +1 >=
m “i7i £=1 kt ki =i+l kt i m p’ "1 m p’''mp
i-1 m
= g,a,( 20, +1, + & 0, +B{)(<8.,...,B >+1 ) =
M1t oy ke TRy pagey K 1’ moP
. i=-1 m
= g.,a,(( = 0, +1, + bX 0, J<Pyreses;B >+BI) =
i~i t=1 kt ki t=i+l kt 1 m i
=g al(Bi+B') =9g; -

This proves E(o+1p) = g.

Assume again, that ip = jo (179 € [m]). Define P35 : L= 4
r
— ! r 3
by pi,j = 1m + pi,j where pi,j denotes the base morphism
i-1 m J-1 m i m
< ,E 1, + L 0O , B, 0 +1 + _ L 0, , . E.0 + T 1, >
t=1 kt =1 kt t=1 "k kj t=3+1 kt t=1 kt t=1i+1 kt
It is easy to check that
i-1 m j-1 m
( =0, +1, + L 0 )Py o = L0 +1 + L 0, . Thus,
t=1 St K1 ot g4 N 20D £=1 B¢ %5 p=9+1 Ft
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=(0+ga( +1, + E‘o +BI)) (L 4pf .+ 1) =
I T T m i3 P
1 —
= 0 +g o (3 0, +1, + oo + fr)y =h. ,
373 e=1 ®e Ky g=ge1 Keo ]
i.e. h (p 3 + 1p) = Ej . Purthermore, if 1 denotes composi-
i, )
T = 1. Indeed,

tion op, we have pi
I

g, -1 ={1_+ p! .)<1m,Bl,...,Bm>p =

1,13 I 1,7
= 'pl J<Blf --:Bm>>p = <1m'Bl"'"Bi—l'Bj'Bi-i-l"'"Bm>p =
= <PrBPr s By 1PByP By P s Bp0> = <PLBYD, L., By 0> =

= <lm,Bl,...,Bm>p = gp = T,
Let h = ch and denote by hi the i-th component of h. For

each (i,j) such that it = jT let Ty, = Pio,d0 Then , we

have hi(Ti,j + lp) =h; and Ty,9T = T

h(o+lp) = cﬁ(o+1p) = gg, this proves part (i) of Lemma 1.1.

In order to verify (ii), take 3 an arbitrary left inverse of u.
Obviously, oph = ogoch = ¢h = h. Finally, let y : n - ¢ be a

left inverse of 1. For each i1 € [¢], define 1., by 7, = T,

i i tty.i

This can be done by ityt = it. Evidently, ;7 = T and

anyh(T +1 L—n TYh( + 1 ) = nih , ending the proof of

') 1TYr P
the lemma.

2. ITERATIVE AND RATIONAL THEORIES, IDENTITIES

By an algebraic theory with iteration we mean a theory T
egquipped with a new operation +, called iteration, which, with
each £ : n -+ n+p, associates a morphism £ i n - p. An itera-
tive algebraic theoxry T {(cf. {3]) is an ideal theory with ite-

ration, except that the iteration is partial. For £ € T(n,n+p)
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£t exists if and only if f is ideal in T, considered as an al-
gebraic theory. Furthermore, f+ is required to be the unigue
fixed point of f, i.e. £t is the unique morphism g € T(n,p)
auch that g = f<g,1p>.

Homomorphisms between two iterative theories are the ideal

theory maps. Observe that ideal theory maps preserve iteration.

Rational algebraic theories were introduced in [9]. A ratio-
nal algebraic theory T is a theory with iteration. Each of the
carriers of T is ordered, £t is the least fixed point of f,
and ordering subject to some other conditions (cf. [9]). Homo-
morphisms of rational theories, as they were defined in [91],
are certain theory maps, but, likewise in case of iterative

theories, they preserve the iteration as well.

In a sense, iterative and rational theories have a commen
generalization which will be introduced here. Consider an ar-
bitrary theory with iteration. It will be called generalized
iterative theory, provided it satisfies the following identi-
ties, (A) to (E):

(A) f+ = f<f+,1p>, where £ : n - nt+p,

(B) <f,g>+ = <h+,(gp)+<h+,lp>>, where £ @: n - ntm+p,
+
H -+ +m-+ =
g m n+m+p, h f<1n+0p,(gp) ,0n+1p> and
P= <Om+1n, 1m+0n> +1p ’

(C) (0n+f)+ = f, where £ : n ~ B,

)+

{D) (f+Oq f++0q, where £ : n » ntp,

1 m + + .
(E) <n_pg(p;+1 );---,nmpg(om%lp)> = pf if £ : n - n¥p,

P
g : n->mtp, ¢ : m > n is surjective, py,s.../py 2T m

are base, furthermore, PP =, ,.=p_p = p, as well as



-191-
f = g(p+1p) is satisfied.

In the above mentioned identities f and g are treated as

variables of the given sort.

Theorem 2.1

Every rational theory is a generalized iterative theory.
Every iterative algebraic theory satisfies identities (A) to

" (E) if ideal morphisms are substituted for f and g.

We do not present a complete proof of this theorem here.
The reason is that most of these identities, except possibly
the last one, were already discovered in papers (31, [9]. For
(B) cf. [2], too.

Let us remark, however, that it would be enough to prove
the theorem for free rational and free iterative theories. And
what is more, since free iterative theories can be viewed as
weak subalgebras - subtheories closed under the iteration of
ideal morphisms - of free rational theories, it would be enough

to consider free rational theories only.

We have already mentioned that all free iterative theories
exist. This fact was first shown in [1!. Another proof can be

found in [5].

I, the free iterative theory generated by the alphabet Z
can be obtained as follows {cf. [4], [5]). First consider T;,
the'algebraic theory of all, possibly infinite, C-trees on the

.}. T- is an ideal theory, even an iterative

variables {xl,x >

gr e
theory. Then, construct the smallest subtheory of T; contain-
ing Tiand closed under iteration of ideal morphisms. This will
be the iterative theory IE' called "free" because every ranked
alphabet map F : £ - T into an iterative theory T,such that

F{£) contains ideal morphisms only, has a unique homomorphic
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extension F, i.e. an ideal theory map F : IE - T, satisfying
F = C i < <
Fl. F. Recall that by £& TZ and T, = IZ' L& I holds as
well.

the free raticnal theory generated by r, has a similar
is & except'():i)O = ZOU{L}, and

RZ’
description. Take IE , where Ei
I pu.

1 is a new symbol. There is exactly one way to extend IE to a
i

generalized iterative algebraic theory in such a manner that
) + . )
we have ni = |. When forgetting orderings, RZ becomes this

theory IE . RE is free in the following sense. For any ranked
!

alphabet map F : £ - T into a rational theory T, there is ex-
actly one homomorphism (of rational theories} F RZ - T extend~-
ing ¥, i.e. such that ?lz = F, This was proved in [9]}. Actually,

this theorem remains valid even if F is required to be an ite-
ration preserving theory map, i.e. a homomorphism of theories

with iteration.

Further on, let us consider RZ as an unordered theory. Do

not forget that IE , and hereby IE as well, is a weak subal-
i .
gebra of RZ and the carriers of IZ and RZ coincicde.
{

We now proceed by stating some ccnsequences of the identi-

ties (A) to (E}. In these statements, if (Al)""’(An+1) are

sentences of first order, expressed in the language of theories

with iteration, we write (Al),...,(An) = (An+1) to mean the
fact that every theory with iteration which satisfies 1B
(Al)""’(Ah)’ satisfies (An+l) as well.

(X} g+ = pf+ if f :n>n+p, g : m » mp, p :m > n 1is

surjective and g(0+1p)'= pf ,moreover for anv left
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inverse o of p there exists base morphism

py * m>m (1€C ml) with p4P =p and

i .
ﬁmpag(pi+lp)=wﬁg.

TLemma. 2.2.

(E) F (X)),

Proof

Assume that (g) is satisfied by the algebraic theory
with iteration T. Let’ f: n-ntp , g:m -~ m#p and pm - n
content the assumptions of (X ) and fix an arbitrarv left

inverse ¢ of p . Define g’ by 9’=ag . Then g'(&*lp) = f.

But there exist morphisms Pl reeer Py :m -+ m gatisfying
both PP =+ PP =P and
< nl T{p,+1 Yoenn v '(p‘+l y>=g
mpg 1 p 3 ng m p “ e

Thus, by (E) we obtain g*= pf+, .
Ffurther on the following special case of {X) will be used.
(x') gt= pe+ if £f: n+*n+P , gmm> mép - o:m + N
is surjective, g(p + lp)=pf, moreover there is a

base morphism a:n+m with ap=1. and g=pag.
- p

The next identity can be derived from (X') and from (E) ,too.
Indeed, if in identity (E) we have n=m as well as
g=f(p-l+1p), where g’1 denotes the inverse of ¢, furthermore

pi=lm is satisfied for each i e(m] - then we
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obtain identity .

(F) (pf(p™ 141 )" = pf

and the following lemma:
lemma 2.3. (B) I= (F)=
The next identity is the dual of (B).

(B') <f,g>t = <f+<h+,1p>,h+> if £ : n - n+m+p,

g :m - n+mip and h = g<f+,lm >,

+p
Lemma 2.4. (B), (E)i= (B').
Proof
We prove that (B), (F) I= (B’). For this purpose let T be

an arbitrary theory with iteration which satisfies both (B)

and (F). Take f and g as in (B') and define p by

- : : -1 _
p = <0n+lm, 1n+0m>. The inverse of p is p = <0m+1h, lm+0n>.

_ -1 _ -1 .
Let fl = f(p +1p), g, = gl{p +1p). Obviously
. --1 _
p<f,g>(p +1p) = <g1,f1>.
By (B) we have < £ st = <h+ (f ) <I1 ,1._>>, where
91713 17 1P p 7!
— _ : + .
pl - D+lpr hl - gl<1m+0p'(flpl) r 0m+lp>-
— F .—1 = v
But, f,p, = f(p +1p)(p+1p) = £ and thus
- + _ -1 _
h1 = gl<1m+op,f ,Om+1p> = gi{p +1p)<1m}0P ,0m+1p>
= g<0 +1 +Op m 0n+p 0n+m 1p>.<lnf0p ,0m+1p> =

+ = -
g<f 11 t05, 0, %1 > = g <£F,1 ntp” = h.

Thus, <gl,f1>+'='<h+,f+<h+,lp>>. By (F),

-1 + -1 + + .+ +
(p <91,f1>(p+1p)) = p "<g,f>7 =<f'<h ,1p>,h >.
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It results from this that <f,g>+'= <f+<h+,lp>, h+>.

Another identity is:

(G) -(f(ln+g))+ = f+g, where f : n > ntm, g : m » pP.

Lemma 2.5. (B), (C)}, (D), (E) t= (G).
Proof
We show that (B), (B’), (C),(D) 1= (G). Hence, the proof

follows by Lemma 2.4.

Let f1 = f+0p : n ~ nimtp, g, = On+m+g :+ m -~ n+mip

in an algebraic theory with iteration satisfying (BY, (B"),
(Cc) and (D). '

By (B) we have'<fl,gl>+ = <h+,(glp)+<h+,1p>>, where

+_
p o= <01, 1 40> +1p, h. = f1<ln+0 (glg) ' 0n+1p>. But,

pl’

g 0 = (0, +9) (<0 #1140, > +1.)=0,,+g , hence, by (c),
+ + =

(g;p)" = O_+g. Therefore, h = f1<1n+OP,(g1p) , 0n+1p> =

= (f+0p)<1n+op, 0 _+9g, 0n+1p> = f<1n+0p, 0n+g> = f(1n+g).

We have already seen that <f1,g1>+ = <(f(1n+g)}+,(0n+g}<h+,1p>>=
- <(f{ln+g))+,g>. On the other hand, by (B'),

<fl'gl>+ = <f; <h+,1p>, h+>, whgre h = gl<f;,lm+p> , now.

+ _ + _
By gl<f1, lm+p> = (0n+m+g)<f1,1m+p> = 0m+g and (C),
h+ = g, It results from this and by (D) that
+ + + +
<fl,g1> = <fl<g,1p>,g> = <(f +OP)<g,1p>, g> = <f g, g>.

If we put the above mentioned two facts together, we dget
(£(1_+g))" = £'g.

The next identity contains (G) as a special case.
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" (H) <f1;g1>+i= <f+<g+,h>, g+>, where £ : n - n+m+p,

g:m-mg, h : p ~ g, f1 = f(1n+m+h) and g, = 0n+g.

Lemma 2.6. (B), (C), (D), (E) 1= (H).

Proof
Instead of this we prove that (B), (G)i= (H). Suppose that
T is an algebraic theory with iteration satisfying both (B}
~and (G). Take the morphisms f,g and h and let

f1 = f(1n+m+h), 9,= 0n+g.

By (B) we have <f1,g1>+ = <h:,

— + =
h. = f1<ln+oq' (glp) ’ On+lq>, p = <0m+ln; lm+0n> +1q .

o+
(glp) <h1,1q>>, where
1

g0 = (0n+g)<0mf1n+0q, 1m+on+q, nemt g
= g<1m+0n+q' 0n+m+1q> = g(lm+0n+1q). Applying (G) we get

_+ _ + _
(glpT =g (0n+lq) = 0 +g . Therefore h,

= f(ln m+h)<ln+0

+ . + .
N 10_+9" 0n+1q> = f(1n+<g ,h>). Again by (G)

g
we get hi = f+<g+,h>.
+ o o+ +y o+ P +
Hence <f,,g,>" = <hl,(0n+g )<hl,1q>> = <f <g ,h>,g >>.

Further on, we shall use the following consequence of (H):

(H!) <f1,gl>f = <f+<nig+,h>, g+> if £ : n » n+l+p ,
g:m->mtg (m2 1), h p - ¢ and f1 = f(1n+1+0m—1+h)’
g, = On+g.

Lemma 2.7. (H) 1= (H").

Proof

Assume that T satisfies (H), £ : n » n+l+p, g : m - mig

{mz2 1) and h : p - g are morphisms in T. Let
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f1 = f(1n+1+0mel+h)’ g; = 0n+g . Furthermore, let

[ -
£ = f(ln-'l-1"'01':1—1*’3‘13), fi =~f'(1n+m+h)‘ It is easy to check that
£, = £] . It follows from this and by (H) that <f,,g,>" =

= <f'+<g+,h>, g+>. By (G), a consequence of (H), £t =

= +_
—(f(1n+11+0m,1+1p)) f (11+0m_1+1p).

Therefore, f’+<g+,h> = f+<n g+ ,h$ ending the proof of

1
m

Lemma 2.7.

Finally, we prove a c¢onsequence of (B), as well as that
Jone of (A) and (B).

{I) (1n+0m)<fl,g>+ =" iff :n - n%p, g : m - n+mt+p,
£, = ﬂlﬂmﬁupL
Lemma 2.8. (B) i= (I).

Proof

- + +. + +
By (B) we have <f,,g> = <h’,(gp)’ <h ,1P>>, where
: +

h = f1<1n+0p! (gp), on+1p>, p= <0 _+1 , 1 +0 > + 1P . We must

prove that h = f£f. But this can be immediately seen since
— + —
h = fl<1n+0p’ {gp) , on+1p> =

— + — —
= f(1n+0m+1p)<1n+0 (go}', 0n+1p> = f<1n+0p,0n+1p> = £,

pl

(3) <£7,£057 = §f1+;f+<f;+,1p>>, where £ = <f ,...,f >
:n - n+tl+p , f+ = <f1,...,f;>,

£’ =<fi,...,f£> f(<01+1n, 11+0n>+1p), nz 1.

Lemma 2.9. (A),(B) 1= (J).

Proof

Assume that T is an algebraic theory with iteration satis-
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fying () and (B), and assume that the variables appearing in
'(J) are interpreted in T. By application of (B) we get

<fi,f'>+ = <h+;(f'p)+<h+,1p>>, where

: +
= 4 ! =
h f1<1l+op,(f p) ,01+1p> , P <0n+11, 1n+01> + 1p
r = =
£'p f(<01+1n, 1, 40,> + 1P)(<on+11, 1,40,> + 1p)
= f(<1n+01, 0n+11> + 1p) = f. Therefore, h = f(<01+1n, 11+0n>+1p) .

+ . _
<11+0p,f '01+1P> = f1<01+1n+0p, 1,40 0 +1 ><11+O

+
1" "'n+p’' "14n “p £ ,0,+1 >=

p’ P

+
?fff.'11+0p
obtained by application of {A).

r01+1p> = f1<_f+ > = f;. The last equality is

111+p

Thus we get (fi,f') + =<f-;+,f+ <f;+,lp>>.

Summarizing the results of this section, we have proved
that any generalized iterative theory satisfies the identities
("), (F), (G), (®), ("), (I) and (J), as well as the implica-
tion (X). In fact, the same proofs can be used to show that all

these sentences are valid in iterative theories, too.

3. THE MAIN RESULTS

We now turn to prove that the identities (A) to (E} form a
basis of identities of rational theories. This 1s accomplished
by verifying that free rational theories are exactly the free
generalized iterative theories. As an intermediate step, we
also show that every ranked alphabet map F : £ -~ T into a gener-
alized iterative theory T has a unigque homomorphic extension
(a theory map, preserving iteration of ideal morphism)

F : IZ + T. In fact, the proof of the last mentioned theorem is
based upon the observation that all considerations in [5] can
be carried out under weaker assumptions, i.e. by using the i-

dentities (&) to (E)} and their conseguences only.

For the rest of this section, £ is taken as an arbitrary
fixed'alphabet. With the exception of the last two theorems all
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statements relate to theory IE'

Lemma 3.1.

Let f :n»> n+¥p, g : m - m+p € rp . Assume that

{n;f | 1 € [n]} = {n;g+ | 1 € [m}}. Then, there exist surjec-
tive base morphisms o : n» g and g : m - g, as well as a
morphism h : g - g¢+p such that both f(p+1p)f= ph and

g(o+1,) = ch hold.

Proof
+
Let j denote the number of distinct components of £ . We

can choose the bhase morphisms ag ¥4 Ny By L My op n - g

and ¢ ¢+ m - £ in such a way that each of the following condi-

tions is satisfied, i.e.

+ + + + + +
o;op= 11, BOG = lg,’ pO’.Of = £, O'Bog =g and Olof = Bog *

For an arbitrary a :g¢ - n, if qap 12, let £ denocte the
a

composition fa = uf(p+1p). Similarly, ﬁg(0+1p) is denoted by

gB, provided gg= ll' It is easy to check that both paf+ = £t
and opg’ = g' hold. Thus, fa<af+,1p>'= of" and gB<Bg+.lp>'= pa”
showing that fz = af+ and_g; = Bg+. But we have

+ + + + .
af = aof = By9 = B9 for every choice of ¢ and p, there-

fore the morphisms fu and gB have the same iteration. Hence,
by Lemma 3.5. in [5], it follows that there exists an ideal -
element h ¢ TE such that fa and gB are the partial unwindings
of h, for any ¢ and p. But both, fa and gB are in e resulting
that fGl = h = g_.

g
We have shown that for every o : ¢ » n and g = g - m if
ap = l2 and Bg = ll are satisfied then so is fa'= f“o = gBO = gB

and by definition, this morphism was chosen as h. Now, we
have to verify the equality f(p+lp) = ph. Let i € [n] be ar-

bitrary. Choose g in such a way that both gp= 1, and ipa = i

2
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are valid. For fhis a we have

i . ipa i I SRR
nnf(p+lp) n f(p+lp) nnpaf(p+lp) rtnpfOt nnph.

Since re;nj was arbitrary, this proves that f(p+1p} = ph.
The proof of g(c+1p) = gh is similar.

At this point recall a definition from [5]. Let £ : n » n+p-
be in T., 1,3 € [n]. The j-th component of £ is said to be
reachable from the i-th one if there exists a non-negative in-
teger m such that nifm contains an occurrence of variable xj.

Here, f is defined by induction on m : fo

mt+1l

= ln+ Op'

£ = f<fm,0n+lp>. Furthermore, the j-th component of f is

called "superfluous” if it is unreachable from the first compo-
nent of £ and j#1.

Lemma 3.2.

Let £ : n > ntp, g : m - m+p € LO. Assume that neither £

nor g contains superfluous components. Furthermore, let
F : T, ~Tbe an arbitrary theory map into the generalized i-
terative theory T. Then ni(F(f))+ = ni(F(g))+, provided that
‘ﬂlf+ - 1_[].g-i—.

n
Proof
It follows under the assumption of the lemma that
+

|

{n;f i €inl} = {n;g+ | i € [m]}. By virtue of Lemma 3.1. we

have f(p+lp) = ph and g(c+lp) = oh for some surjective base
morphisms p : n ~ £ and ¢ : m - £ and a morphism h :2+ &+p €10.

Without loss of generality, we may assume o and o to be
such that 1p = log = 1.

By virtue of Lemma 1.1. we obtain that there exist
fl:n'+»n+p in @ and surjective p':n'»n satisfying

(1) p'f=f1p'+lp) ; (2) f£r'=pta'f' if a'p'=l_; (3) for arbitrary
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a:? »n', if a p'p=1l , then there are base morphism Pyres-sP
n'sn' with p,p'p=p'p and ni =nj i

wi pyp'p=p'p and nn,p'paf'(pi+1p) nif’ {ie [n'})
From this, and using the fact that F is a theory map, by (X)

we get P(£)T=p'pP(h ) tand F(f)+—pF(f) . Hence, . F(f)+'=pF(h)+
The proof of F{g)*=ocF(h)* is similar.

] 1
Hence, rti(P.’(f))+ = nrllp(F(h)} U(F(h))+ = ni(F(g))'} is obtained.

The next statement is analogous to Lemma 3.10. in [5].
Lemma 3. 3.

et £ : n ~ n+p € £O. There exists one g : m > mp € z0
which has no superfluous component and satisfies the condition

ni(F(f))+ = ni(F(g))+ for any generalized iterative theory T

and theory map F :‘TZ ~T.

Proof

First, assume that those components of f which are not
superfluous, are exactly the first components m. In this case,

(lm+0n m)f can be written as g(lm+0n_mflp), where

g :m -~ m+p € £0. Since F is a theory map it follows that
(lm+0n_m)F(f) = F(g)( lm+0n -m 1p), furthermore,

F(f) = <F(g)(1,+0 +lp); (Om+ln_m)F(f)>.

n-m

It results from this by (I) that (lm-l-on_m)(F(f))+ = F(g)+.

This implies ni(F(f))+ = ni(F(g))+-

In the general case, let il,,..,im be all different in-
i
dices such that{nmtf | £t €[m]} is exactly the set of not super-

fluous components of f£. We may assume that il = 1. Let the bi-

jection p : n - n satisfy i = t for each t € [m]. Applying

£P

the first case for p_lf(p+lp), we get a morphism g : m - mip
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in r©® which does not contain superfluous components and satis-

fies ni(F(p_lf(p+lp))}+ = n;(F(g))+ for any theory map

F : TZ-*T. Since F is a theory map,by the identity (¥), this

implies rlp ~H(F(£))" = ni(2(gN?t , dee. by 1p = 1,
+

rlE(en® = nliren?,

We are now ready to state

Theorem 3.4.

It F : - T be an arbitrary ranked alphabet map into a
generalized iterative theory T. There exists exactly one homo-

morphism F : IE->T extending F, i.e. such that F[E = F.

Proof ,

Since © generates TZ and TE generates IE’ there can be at
most one F extending F. Thus, we have to show the existence of
F only. 7

We know that there is a theory map from TE into T {con-
sidered as an algebraic theory) which extends F. Let us dencote

this theory map by F, too.
Define F as follows:

(i) f(n;) = ni ifnz1l, 1€ [n],

(ii) F(€) = ni(F{a))+ ifa:n-nipecreand f = niea+,

(1ii) §(<f1,...,fn>) = <F(fl),...,§(fn)> if n # 1,

fi : 1 - p.
By Theorem 4.1.1 of [4] and lemmas 3.2. and 3.3, F is a
mapping of I_ into T. By (i) and (iii) f]a = F]e.
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Take an arbitrary element £ : 1 >~ p € © . Since
f = (01+f)+ and Ol+f € ©0, we have F(f) = ni(F(Oi&f))&-='

Foo ol

= ni(ol+F(f) g F(f) = F(f). Observe that we have used iden-

tity (C). By (iii) this results Flz = F.

By virtue of (iii), F preserves source~tupling. We now
prove that F preserves composition. Since it preserves source-
—tupling, it is enough to show that for any morphism £ : 1 ~ p
and g : p-qg F(fg) = F(£)F(g). This is obvious if £ is base,
hence we may assume that f is ideal. Or even, by a note in [5],
we may confine ourselves to the case that g is base, or its first
component is ideal and all other are base.

First, assume that g is base, g = 5. We know that f = nia+,
where a : n - n+p ¢ £8. By (G) fp = ni(a(ln}p))+. Therefore,

F(fp) = ni(F( a(ln+p)))+ = ni(F(a)(ln+p))+. On the other hand
F(flp = ni(F(a))+p, and this, by an application of (G), results
that F(f)p = ni(g(a)(ln+p))+ Hence, F(fp) = F(£)o.

The proof of F(fg) = F(£)F(g) in the second case, i.e. the
first component of g is ideal and the others are base, is simi-

lar, only apply identity (H’) instead of {(G).

Finally, we prove that for ideal f : n - nip we have

(F(£))" = F(£'). Since ¥ is a theory map and by identity (B) it

is enough to deal with the case: n = 1.

Since £ is ideal there exists an a:m- m+l+p € 20 such that
!

2o 1+ - _ 1
f=n_a . Letb a(<01+1m, ll+om> +lp), c = <nmb, b> . By (TJ)

we get f+ = né+l
+, _ 1

T Tmtl
yields (F(£))" = (ni(F(a))+)+ =

c +. Since c ¢ £0, it follows that

(F(c))+. Similarly, a repeated application of (J)

1 ¥ 1

N = mppq (Pl

<niF(b), F(b)>

This ends the proof of Theorem 3.4.
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Corollary
Theorem 3.4 holds under certain weaker assumptions, too.

In fact the iteration need not be defined for arbitrary mor-
phisms in the theory T. But we require F to be such that it
being considered as a theory map F : TE-»T should satisfy
(F(f))+ to exist in T that whenever f € £o, or £ = op.for some
p. Furthermore, likewise in Theorem 3.4, we have to recuire
the identities (A) to (E) to be satisfied in T in the strong
sense: for every evaluation the left hand side of an identity
exists if and only if the right hand side exists, and if both
of them exist, they are equal. This is always the case if T is

an iterative theory and F(f) is ideal for every f € L.

Theorem 3.5.

RZ is the genéralized iterative theory freely generated

by =.

Proof

By virtue of Theorem 3.4 and since IE is a weak subalgeb-
‘ I

ra of RZ' moreover, the carriers of RE and IZ coincide, it is
f

enough to prove the following statement: for every ranked al-

phabet map F : r, > T such that F(]) = (ni)+, remember that
| o= ni+ holds in R., the free extension F : I ", P construct-

ed in the proof of Theorem 3.4 is a homomorphism (of generaliz-

ed iterative theories) from RE into T.

We know that F preserves theory operations, i.e. composi-
tion, source-tupling and injections. Hence, we have to show
that F preserves (arbitrary) iteration. By identity (B) and
since F is a theory map, it is enough to deal with scalar

morphisms.
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Take an arbitrary morphism £ : 1 + 1+p. If £ is ideal then,

by Theorem 3.4, F(£') = (F(£))”. Otherwise £ is an injection
+

nil+p. I€ 1 = 1 then F(np, ) - f‘((ni-l-op)-l-) = Furoy) = F(1)+ 0=
s ni%+ Op. On the other hand (ﬁ(ni+P))+ = ”iip ={ni + OP)+ -
=Tli++ op. Observe that identity (D) was used. Assume now that
i > 1. Then nhp =0, i1 | Therefore, by (C),

g'(ni':p) = Frp™h =t - nﬂp = (Feg, M-

We are now able to prove the main result:

Theorem 3.6.

Identities {(A) to (E) together with those defining algeb-

raic theories, form a basis of identities of rational theories.

Proof

We have to prove that the equational class of all generaliz-
ed iterative theories coincides with the equational class .gen-
erated by the class of rational theories (considered as un-
ordered theories). But this can be done immediately by Theorem
2.1 and Theorem 3.5.

Corollarz'

w—-continuous algebraic theories were also examined in 18]
and [9]. These are special rational theories. It was proved by
81 that the free o-continuous algebraic theory generated by x

exactly is the theory T; with a certain ordering.
f

What is important for us from this fact is that RE is a sub-

algebra of T; . It results from this that the equational class
: ,
generated by Ehe_rational theories exactly is that one generat-

ed by the class of all w-continuous theories. Therefore, Theo-

rem 3.6 remains valid even if rational theories are replaced
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by o-continuous theories. The same holds for some other types

of continuity (cf.A =-continuity), too.

At the beginning of this paper we have mentioned that by
the author’s conjecture, identities (A} to (E) together with
the defining identities of algebraic theories form a basis of
identities of iterative theories, too. This conjecture is based
on Theorem 3.4 and its corollary. Unfortunately, we do not
know any definition of validity of an identity in a class of
partial algebras by which we could prove Theorem 3.6 for ite-
rative theories, and which is accepted by mathematicians work-
ing in partial algebras.

4. FURTHER REMARKS

We know that identities listed in (A) to (E)} are not
completely independent; e.g. it would be sufficient to reguire

(A) in case n = 1, etc.

On the other hand we conjecture that all of the identities
grouped in (A) or in (B)etc. cannot be omitted. A simplifica-
tion of the basis will probably be introduced in a forthcoming

paper.

Another note concerns with the connection of iterative and
and generalized iterative theories. We have actually verified
in the proof of Theorem 3.5 that R_ is the free generalized

iterative{theory generated by I_. Roughly speaking, R, can be

obtained by adjoining a new eliment ! to I,. It can be seen that
this remains valid in the general case, too: for every iterative
theory T there exists a free generélized iterative theory gen-
erated by T and this free theory can be obtained by adjoining

a new element to T. This helps us to prove another interesting
statement. Let T be an iterative theory and assume that T(1,0)

is nonvoid, say | € T(1,0). Then, there is exactly one way to
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extend+T to a generalized iterative theory such that we have

T{l.
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