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ON FLOWCHART THEORIES (1)
By Gh. Stefdnescu

Ei numai doar dureazi-n vint

Deserte iv aluri-

Cind valuri afl3 un mormint,

R&sar in uemd valuri. *
(Eminescu)

Abstract. We definc an equivalence ralation on. F!Z’T y the theory of

2 -flowcharts over a theory with iterate T, and show that the quotient structure,

denoted by RFi 7T is a theory with iterate. I T. is an "almost syntactical

theory with strong iterate", RFIZ,T is the free theory with strong iterate,
genere?ed by adding 3, to T.

0. Introduction

A flowchart -is one of many possible notations of a computation process,.. This
notion was strohgly analysed, ten years.ago, especially by C.C.Elgot [7,8]), by using -
algebraic methods, with the aim to make it more precise from the mathematical point
of view. ‘

Making use of the ideas from [3], V.E.Cdz&nescu and C.Ung&?eanu made ore
more step by allowing undefined arrows and by defining, in a natural way, the iterate of
a flowchart. They introduced a pure algebraic netion, called theories with iterate,
which is a non-ordered generalization of rational theories [4]. Similar ideas was used by
Z.Esik [9). I [6] was given a theory of flowcharts, denoted by HZ,T » over such a
theory T, with three basic operations: composition and tupling, as in ADJ, and the new:
-itérate. The main result of Cazdnescu-Ungureanu is to give an algebraic structuce
(calleq T-module with iterate) for which Fl s, T is the structure freely generated by % .
- On the basis of the above facts, the starting point of our paper was the following
question: Why FIS.‘,,T is not an algebraic theory, eventually with iterate? We.shall
examine the axioms of algebraic theories, having in mind that the polynomial ring

becomes really a ring only if, atter ‘a "syntactical" definition of sum and multiplicaticn,
- we allow reductions of similar terms.

* For it is man alone, who, blind,/ Build castles in the air;/
When waves have found their grave, behind/ Waves simmer everywhere.
(translated by Leon Levitchi)
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The theory of usual flowcharts is obtaired by using as connection between
vertices, partial functions from the initial theory with iterate By sy where

PN (o) =§1: {ioeymy ~*i,n}if partial defiped lunction] . We shall use the

' m
picture El%[‘ fur a flowchart IEFIE' N (m,n), with m inputs and n outputs.

The basic operations have the following intuitive rneaning,

oo o5 _—- L m.
J‘m n dE T m n : m \ ;"-——r-"”":
t . } : .
. ' t
o ' ! - —_— ) —
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In order“that such a theory becomes an algebraic theory, it has to fulfil, among others,
two axioms, in which x| denote the j-th distinguisted morphism from 1 to m.
a) For any D€ Fle o (,n) 5 j = lyeeesmivit follows x™ <fhyey ™ = £,
2" ?‘.‘(’ ' j
In the pictural model this needs an identity as

'.,--.-.' - - wmi ee owm omm - -----' h» .
||_L ' : '
o , | ﬂ .
ltll__.-- fj v . - _' .
i m ! '
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based on the fact that the left flowcharts fk,_ k # j are unaccessible from the input.
. m m .
b) For any f€Fl s, @u\n(m,n) it follows <x 1 :{,...,xm f>=1. e

N E U I SR m
U-.:I m' i 2
: £

{

This means

'-.-—--——--

]

n
which intuitively works as we 'may identify all left flowcharts, being similar.

- The conclusion is: "We must consider as equivalent two flowcharts if one can be .
obtained from the other by deleting some unaccessible vertices and by identifying same .
vertices with the same label and such that, after identification, they yield the same

transition fanetioh¥. At the syntactic level this gives an elementary reduciion,
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definable for every theoty with iterate T and, based on a fact as Church-Rosser
property, this lcads to an cquivalence relation ‘&= even compatible with the basic
operations. Hcnce we have a quotient structure of the reduced flowcharts Fl =T /=
deroted by RF‘E,T » which is itself a theory with iterate. Every flowchart bas a
natural unique interpretai’on in a theory with iirraie Q , if one gives the mearung of
T and 2. in Q, as was shawn in [¢} The basic problem is : are two syntactical
equivalent flowcharts semantic eguivalc~nt ? This fact was proved only if Q is a theory
with "strong" itcrate. So, we come back and ask when RFI - Is with strong iterate, if
T s so. Unfortunately, we are able to prove this only when T is "almost syntactical®.
Hence the main result of this paper is ¢ RFI 5T is the theory with strong iterate,
freely generated by adding %, to T, eachtime when RFI ST is with strong iterate, in
particular if T is an almost syntactical theory with strong iterate. As a corollary, we
point Here that RFI s, Qe is the theory with strong iterate, freely generated by %o .
Hence by Z.Esik result [9] and because every theory with strong iterate is an iteration
theory, RFI 5,30 has to be isomrorphic with the theory of rational J,-trees.

All facts are proved for many sorted theories. S gy :

Finally, I want to express my gratitude to V.B.Caz&nescu for helpful discussions
and for the continuous scientific and moral support. .

PART I : ALGEBRAIC THEORIES WITH ITERATE

1. Notations, definitions.

As usually the free nionoid generated by'a sort set S will be denoted by S
Its tygpical elements are a, b, ¢, d, p, g If laI is the length of the string a and
[1all1 =4{1,2,...,}21}, then the string a= aa, =B is alsc considered as a function
a:[iaj]-> S - given by the relations a(i) = a; , for ie(lall. :

Let PStr (or PStr y when the meamng of S is clear from context) denote the
S-sorted theory in which PStrS(a,b) is the set of partial defined functions
x : [Jai]=>[Ibi], such that a=xb, that i6 x preserves sorts. The typical elements of
PStr are u, v, x,y, 2. With 0 we denote the unique morphism from the empty string
A to a, and with Sb the morphxsm Sb = <0p+1_, 1,+0_> : ab — ba.

By restnctmg to total defmed functions we obtain'a subtheory of PSIrS
denoted by StrS » which is the initial S-sorted theory. Thus every morphism of StrS
can be considered as a morphism in an’arbitrary S-serted theory V , through the unigue
theory morphism F : Strs—’r V, and we agree to omit.the writing'of F.
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In an S sorted theory T , suppose that 't-Is given, for every akeS"* , an
application
+ ¢ T(a,ab) = T(a,b)

called iterate | The {ollewing axiom
14) - tF - yg"' if feT(a,ac), ge T(k,bc)and ye,Str»S(a,b) are such that f(y+1c) = yg,

© gives other axioms by resiricting y to a particular subset of functions.

14-W) 14 only when y is a transposition Sg;
14-1s) I only when y is a bijective function;
i4-S) 14 only when y is a surjective function;
14-1) I¢ only when y is an injective function.

i1.] Deflnition. A theory T is with iterate if it is given an iterate 4 for
which the following axioms hold.

-

m it o=t for feT(a,ab)

b
12 (11 _+g)" = £, for 1€ T(a,ab), g€ Tib,ck

13) gt = <f+<(g<i+,lbc>)+,;~.&),f (g<f“’y1.5c-;s)"’f> , for £€T{a,abc), g € T(b,abc: -
14-W).

-+ 1.2 Definition. A theory with iterate is .with strong tterate if 14-S) holds.

Every theory with strong iterate is an iteration theory of Esik and-every
iteration theory is a theory with iterate. Two examples of Esik [10] show that thase
three types of theories really differ. These types oi theories differ only by axioms of
type I4). In the case of theories with iterate and of iteration theories the used axioms
of type 14) are equational, hence by a well known result such free teories exist. This s
no longer true for theories with étrong iterate.

2. 14 holds in a theory with stronyg iterate.

It is known (one proof may be found in our..Appendix-A) that in a theory with
iterate l4-ls) holds.

2.1 Lemma., In a theory with iterate 14-1) hiplds.



page -5-

Proof. Every injegtive tunction yé€Stri{a,b) can be written as y - (la:.oa,)z ’
where z is an isomorphism. The equality {(y+1 ): Y& y written  as
f(y,lc)(-,-"l 1 ):vz"lyg(-v"lu ) , shows that f(l +0 41 )u(l a0, Jh , where
h= 7{:(2 14.1 ) Since I4 is) is satisfied in a theory w:th lurate, then h+ = zgf" The
last ~ecessary fact is £ - (1 40 )h+ The equality f(l +0,+1 )— (1 +0 J h allows us
to write h as the tuple h = (f(la+0a+lc), h'>. By me._ms of axiom 13) the first

component of kY is
. T ooetitr 2001 " 1t 1> =
(]a+Oa,)h = (f(la+03,+lc)) <(h ((f(la-&Oa,o-lc)) y la.c>) ’ lc.) =

- T eft + =T '
= 17(6 1 D<hieq T (0,01 D51, DT> 1> =47 1
2.2 Proposition. In a theory with strong iterate I4) holds.

Proof. We put together I4-I), 14-S) both valid in a theory with strong iterate.
Every functiow fe€Str(a,b; can be written as a composition of a surjective one
ueStr(a,d) and of an injective one ve&Str(d,b). Now the proof is finished if we can
definc a morphism h € T(d,dc) such that f(uﬂ-c) = uyh and 'h(v+lc).-_- vg. It is natural to
take the j-th component of h to bu hi = f, (u+1.), where ke[lal] is such that u(k) = j
(f is the k-th component of f). ) .
l. The definition is correct as shows the Iotlowing chain-of 1mphcatxons

u(k) = u(k') -==> y(k) = y(k") ==> By(k) = By(k") ==> f (y+lc) = fk.(y+lc) ==>

== fk(u+l Hv+l ) = fk,(uH v+l ) ==> fk(" lc) = fk.(u+lc) ,
where the last one is based on the fact that v, being an injective function, has a right
inverse, i.e. there exists V such that vV = Ly .
2. The relation f(u+l ) = uh is just another wntmg of the definition of h.

3. The relation h(v+1 )_ vg will be shown by components. If j€[ld{] and ke[tal} are .
such that u(k) =j, then

hj(v+1c) = fk(u+lc)(v+lc) = fk(y+lc) = gy(k) = By(u() = gv(j)' O
Now our aim is to look for an identity like 14) for a partial function y. In this
process we need something to say what is the "domain" and the "image" of a morphism..

3. The initial theory with strong iterate.

If we can show that PStrS is the initial theery with (strong) iterate then, as for
Str , every partial function of PStrS can be considered as one in an arbitrary S-sorted
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theory with (stroag) iterate., Naturally, a morphism between two theories with (strong)
iterate is a theory morphism which preserves the iterate.

3.1 Freaposition. Every ca-continous theory is a theory with strong iteraie.

Proof. In a w-continous theory T, if ‘La denotes the feast element of

N
T(a,c) , then the iterate of € T(a,ac) is defined by
v
n)o

where f = _Ld c and £, =14 ,1 05 for n)l. We know (see [4,5,9)) that every
b
rational theory is with itercte, hence so is every w-continous theory. With a proof of

14) , the proposition is concluded.

Typically, suppose feT(a,ac), ge&Tb,bc) and y€&Stit(a,b) are such that

f(y+lc) = yg. An easy induction shows that fn :%n y for every n3o. Indeed, for n=0
the defintion

fo = .La,c =‘< .La gruey —La > and go = -Lb’c = <..I.

LX) l .>
¥ r .\ gt
1S Ial,c » bl,c b'b‘,c
allows us to see that the morphisms y J"b c and .La c have the same components,
] s
namely »
x?y..L = xb. L =4 =x>1 for ic[lal} !
177b,e T Ty(i)Tb,c apc i TTae ! W -

The inductive siep is

Y8ney = BB = f(y+lc)<gn,lc> =fyg , 1> = Kfn{’c’ =L

The last argument is the continuity of composition which yields

)’8+=YVgn=Vygn=an=f+. ]

n2o nxo n2o

Corollary. PStr isa theory with strcag iterate. - []

13

This corollary and the fact that PStr is the initial theory with iterate (see [6],
or compute, using as the meaning of the undefined morphisms "La b from PStr, the
?

morphisms l'g Oy in an arbitrary theory with iterate) lead to the following theorem.

3.2 Theorem. PStr is the initial theory with strong iterate. [}

4. Domains and Images.

“"Hére 'we give, for a morphism of a theory with iterate T , somethirg like
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domain and imagzs of a partial function. A substring of a string a is a function
x & PStrla,a) included in iiJl y that is x{j) = j or x(j} ic undefined. Then there is a
natural idemificstion of substrings of a \!l’ith subsets of 1{a}], which is used to defipe
inclusion, inion and inter.~ction of substrings. 'n fact, the subset of [fal) corresyonding
1o x, denoted by i x U, is its d=finidon domain.

For a motphism f€ T(a,b) the set of substrings x of b such that fx - f is
closed under intersection. Indeed, if fx =1 and ty=1f 1hen fuy = and vy = xny.
Similarly with the set of substrings x of a such that xf=1{. These show .the

correctness of the {ollowing definition.

The image of {e T(a,b), denoted by IrhT(f) , 1> the minimal substring x of b
such that Ix = f. The domain of {, dencted by Dom.(f), is the minimal substring x
of 1 such that xf = f.

In the particular case of PStr, wc sce that ﬂlmpStr(y)ﬂ is the usual image of
f , and similarlyfor demair. In addition the equalities y =y Impstr(y) = DomPStr(y) y
are still validin T . So, tor ye&PStr(...), the inclusions

!mT(y) < ImPStr(y) . DomT(y) c Dompstr(y)
hold. Let us point also three easy ubservations,

1. 1 lmT(f) € y then fy =1; -

2. ImpS"(x) =x ,if x is a substring;

3. }m.r(yf) = ImT(f) if y is a surjective function {¢~r this we see that yix = yf
iff fx={f , where the left-right implication is based on the fact that - y has a left

inverse z , i.e. zy = 1).

‘A substring x of a=a'a" has a unique decomposition as 'x = X| i+ xia" , with
xla' ’ xia.';' substrings of a', a" , respe<tively. We use the convention that unspecified
irmmages are computed in T.

-

4.1 Observations.
1) 'Im(f(y+g)) < I'"Fstr“m(f)/b y) +Im(g), for fé& T(a,bc), g€ T(c,d), y € PStr(b,e);
1p) Im(fy) = ImPStr(Im(f) y), with equality if y is an isomorphism;
2) Imf,g>) = Im(f) U Im(g);
3) Im(f") € m()f,, for fET(a,ab).
4) Im(f+g) = Im(f) + In(g);
5) Im(f(1,+0+1 ) = Im(f)/b + L ad* Im(f)/c , for f€T(a,bc).
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Proof. -

1). The equality f(veg) = £ Im(IXy+g) = f(fu‘n(i)iby > h‘n(f){cg) and the observation
y { i li t A
IW’T(}m‘f)ib y) &< i npstr(lm(f)iby } show that

Iy eg)impe , (Am(D]y) « Im(D) _5) = Hy+g)-

Now 1Ip) is & particular cese of this, for g = Iy - The reverse inclusior, when y is an
isoimorphism, is a conclusion of the following implications

fy = fylin(fy) ==> 1= fyim(fy)y" ! ==> In@®) € ylm(p)y™ ! ==>
“‘l . K "l
==>y rn{fly & Im(ly) ==> Impsir(lrn(f)y) = lmPStr(y Im(HY)C Ini(fy).

2). The obvious equivalence <f,g>x = <f,g> <==> fx = f and gx =g ., leads to
x 2 Im{cf,g>) <==> x 2 Im{f) and x 2 Im{g) <==> x 2 Im({)VIm(g)
which yields the desired equality.
3). All we need is to apply axioin I2). Indeed, f+(lm(f)lb) = (f(la”m(f)]b»}- = f+.
4). When one of these morphisms is OC and the other is {&€T(a,b) the relation holds

because Im(0C+{) = Lo+ Im({f) and Im(f+0¢).5: Im(f) + 'Lc,c' In the general case,

’

for icT(a,b), g€ T(c,d), the writing of f+g asa tuple gives a proof.
Im(f+g) = Im(<f+0d,0b+g>) = Im(f+0d) v !m(Obq»g) =
= (Im{f)+ "Ld,d) v (.l.b’blu»lm(g)) = Im{f)+Im(g).
5). The proof is based on 1p) for the isomorpnisin Sg+1c.
- by m- by »-=
!m(i(lb+0d+lc)) = Im(f(0d+1bc)(5d+lc), . Impstr(_lm(f(odﬂbc)) (Sd lc)) =
. b b :
= Impg, (IM(0 4+ XS +1 )).= Impq, U .Ld’d+lm(l))(5d+lc)) =

=1Im, ¢ Am(D)] + J_d,dnm(f)ic) =Im{D]y+ Ly |+ ImlD) . a
5. The extension of I4) when y is a partial function

Let us note that the axiom I4) for partial function y it is possible not to

work. We improve 14) by our demand that there are the same undefined components in
yg"' and f+, that is

Dom(y) it yg+. ‘

One more tricky condition is that the equations from Doml(y) f must not depend on

variables that there are not in Dom(y), that is

Im(Dom(y) ) & Dom(y)+1 .
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-

The special case wwhen y 13 a substring is separately proved in a lemma.

5.1 Lemma. If [:a-»ac is a morphisn in a theory with iterate and u is a
substring of a such that Im(uf) < u+IC , then
uf * - (uf,‘"‘.
Proof. We choose an isomerphism y :a«> a'a" , such that y'luv = la’+ 'La" at
By using I4-Is), we get
4 -1 -1,
{uf)’ = (yf(la.+ ..La.‘a”)y f (yHC}](y +lc)) =
, -1 -+ +
= Yy =
- Y(\la-"’ 'La'-'ai"'7 f (y+1c» - y((lav"' '-Laﬂ’.:n)g) 3

where g is a notation for y'lf (y+1c) « The condition Im(ul) & u+l_ , written in g
fooks s0,

’

Im@_ .+ J_au’a..)g) = Ym(y—luyy“ g (y+1 ) = Im(uf (y+lc)) <
i o My N ; -
< ImPStr(Im(ui;(>+lc)) S Imp e ((ued Xy +1c)) = !a,«.!_a..'a..uc .

This makes the a-component of g , denoted g' , to fulfil the condition
g' = 8'(la.+ -Lau,aﬂ"’ lC).

We are ready to prove the equality, c
+h o
(‘al*f J-an,au)g‘ = (( lal+ -Lan’an)g) 0

If g=<ghWe" , then the a'-component of g'i' is

+

gt gt ot 10 = @ e L ot W ctgrcgr F, 1> -

'all’al
. 4‘ R

= 8|+( J-a..’a.'+lc)<(g"<g"f', la"C>')‘ ' 1C> = g'+< J’a",C’ 1C> ’
and so the left morphism is

R i
(la,+.L ,a..)g = <g+<-1—an,crlc>: -Lan 2.

c

H

For the right morphism we see that (la.+ 'La" a,._,)g = <g', ‘La"
?

components of its iterate are

a"
,ala"c’  and so-‘the
+ + 1‘ . + - |+ )

T <L a8l ST 10 - et T 1o =g fea, 1 ane
-!-a“’c‘

Now we come back to f and {inish the proof.

(uf)+ = y((la,+ 'La",a")g)+ = y( l'a.+ J’a",a")gt*; vi1 art La..’a,,)y"lf+= u,f+ . a
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5.2 Proposition. [n a theory with strong {irrate, if f a-»ac, : b-»hbc dare
stch that Dom(y f(y+1 ) =yg , for one ye&PStrinb) , arct [ fulfils the conditinn
= «’ - ": D
rmgpem(y) i & Domiy) + 7, then

Dom(y) ! = v

Droof. A first stup is giver. by the above lernma, namely we have
Doinly) . {(Dom(y) f){

The proof goes on with -a choice of an isomorphisn: z:a-+a'a" such that

Ty = ufve £ l)’ with ve Str{a,b). This transform Domiy} £ to a canonical form h
b}

with the a"-component L,

h= 2" {Domly) )ze1 ) = 2 Domy) fz+1 ) = <271 Ly > Hzel ) =

s

Now we show the following identity

(ve L )g = 2t

a"’R
To a particular fact from this, namely to the cquality of its a'-compoenent,

-1
yg = 2 Domiy) f(z+lc)(v+ J’a",l*}c) = hiv+ J.a..,l +1 )

vg = h'(v+ J‘a",k+lc) = h'(la,+ J'a",).+1c)(\' % IC)

apply 14) using 2.2 . Therefore,. g"' h'+(.L A )\H )= h'+<.l_ a", c>' An eas':y
computation of -, gives wt = <hbe L av, _,1 >, ..L a", > hence, '

+ + -
h' = <vgt, 'L'a“,c> = (v+ J_a,,,\)<g ,0 > (ve L a",

The conclusion that the proposition holds is now obvious.

K)

Dom(y) £+ = (Domly) f)+ =zht = v+ R )g+ = yg+- 1

6. Some properties of a theory with iterate

We are giving for the begining three properties of a theory with iterate T.
6.1 Observations,

1 <«f, go 1, »t, 1 >=<f+1 ><gh1.> , for f€T(a,a%e), g& Tlrabe);
2) <f(1 +0 +1 ) g(O +1 )>+- <f+ g+> , for féT(a.ac) geT(b be);

3) (g(sa+1c»7‘<(f(sa+1 o <(g(Sa+1c))+, 1,7 1.3 = (g<f+,1bc>)* , for f€&T(a,abe),

g € T(b,abc).
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Proof. ' )
1) The second component of <f, g(O +l )>+ is (g(D +l KI+ bV = g'p and the
first one is f"'(g‘f' 1 e Therefore

<<, g0 1, C)>"’, 10> = <«<tteghl >, >, 15 =
= <ohegt1 >, <gh1 > = <ot ><ghy1 >
2) The second component of <K(1_+0,+1.), g(0_«1, It
(g(0,+1, )<(51 +0, +1 VT, lbc>)"' =gt
and the first one is
11 0 0t Mgt 1 > < thog1 gt = £

3) The axiorn 14-W) applied to <f g)(S +1 ) S ‘g (S +1 ) f(b +1 )> » Bives
(f,g>+ S <g(S +1 ) f(S +1 )>+ Based on 13) the equa!l 1ty of the second component
of <f,g)+ with the first of <g(S +1 ) f(S +1 )>+ gives the desired identity, -[] .

This part dedicated to theories with iterate is nearly finished. One more fact is
another axiomatic system. We shall use the following notations with the hope that, in

fact ambiguous, this notation wiil be clear evertime when it will be use-.

abc
Xb =0 +lb+0c .
1o . (g¢x abca’e x2PCAE ;b“'c'»"' , for 1 €T(abc,a'be’).

6.2 Proposition. In a theory T ,. if the axioms I1), 12}, 14-W) hold, ther the
axiom I3) is equivalent with the following couple of axioms, '

V1) (f*a)ﬂ: = rfﬂb , for fe T(ab,cbcj;

v2) <f,gpT%= <;r:°,'g>< f +’1c> s for f€T(a,ac), g€ T(b,ac).

Proof. Our proof begins with the implication V2) ==> V2') ', where \'2") is

vy <>t -« xpS><gt1 >, for £€T(a,be), g&T(bybe).
Indeed, using 14-W) in the secopd equality, we have  °

s2<t,g>7P = s2cx(0 41, ), g0+ 1, Y = <gll +0_+1 3, £(1,40_+1 )>

"o <g,f>"'b = <xgc,f><g+,l >

Now suppose that V2) holas, hence also V2') . Then we can write V1) more precisely,
i.e. for f = <g,h> € T(ab,abc),

<g,h>+ = (<g,h>’+a)+b = (<x:bc,h><g+, lb¢>)’+b = <g+, h<g"",lb c>>+b =
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be ; ) 7
= <g+',xb“> hegt R LI T gt <.(h<g+,]bt_>)+, 1 (h(g+,!bc>)+.).
So V1) is identical with 13). Thus the only necessary implication is I3) ==> V2). The

following computation shows its validity.

a ' \+
,pte <A1, 40, +1 ), g1 40 +1 37 =

- <t . U ) ¥y
= <f (Ob* lc)(...,lc>, (g(ia+0b+lc) <f (Ob”c"lbc)) > =

f

. ’ + ;
T, (g\f+(0b+lc),0b+lc>) > = <7, (g(ff,tc>(0b+lc))+> =

1)

<f+' g<f+,1c>) - (xzc,g><f+,lc>. . D

PART Il : FLOWCHART THEORIES

7. Flowchart operations
o If one trys to construct a flowchart theory, he needs a labeling set ¥, , for
internal vertices, and something to connect them. For this we use an S-sorted theory
with iterate T. The particular interesting case of connection with, possible undefined,
arrows is that of PStrS. ‘In all that follows we suppose £ is endowed with two
functions . : S

. : S > S*
Fin® Tout 2 ST

where rin(o‘) gives the number and the sorts of inputs into the “statement box"
reptesented by ¢ , and similarly rout(v') , for 1is outputs. The monoid extensions of

2 Y
. “—’S.

them are denoted by . , r :
in’ " out

7.1 Def:nition. A ¥ -flowchart over T , with input a and output D
(remember a,be S*) is a triple (i,t,e) , whcre:

iet(a, r?n(e)b) - is its input morfism;
téT(rZut(e), rfn(e)b) - is its transition morfism;
ee€X” - is thestring of labels of the ordered set of internal vertices.

The set of 5 -flowchart over T , between a and b, will be denoted by Fl2 T(a.b).
?

Its . typical elements are {, f', ... and their corresponding ccmponents are (i,t,e),

(i",t'ye", ... . For every internal vertex j&[lel] , denote by t]. its transition component,

. ) r* (e) * * .
ie. t.= x _out t. For r: (e), r: (e,.. use typically p, p', ... and identically
j ro t(e') in in
ut )

with q for r The last convention given here is to denote by

out”
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. * ‘ * b - ¥ * 1
Yin PStrS(rm;e), rin(e')) and Yout } PStrS(n out(e)’ rout(e )]

the extensions of y¢ PStrT {e,e') to the inputs and outputs, respectively. For example,

= <z ”"’Zlel> where, putting p,. = rin\ej),

the quite difficul' writing of Yin is Yin 2

IS '
P *rin(ej)’ z; are

e + 1 + 0

' if y(j) = k (hence p. = p'.),
P'yeeP'k-d P; PstPlen Tk

]
- if y(j) is undefined.

|

e

T
[
’
)
+

&jw

p

o7

e 1

S e et % e emoan s

cwf v - - - - -

Now the basic operations on flowcharts have the following exact definition.

The composition of f:a->»b with f':b—>c is
1= (i(lp+i'), <t(lp+§'), t'(OP+lp,c)>, ee').

The tupling of ita—c with {': b->c, making use of the notatiops x =. ngep-ﬁ-_lc

' X
and x' = 0p+1p‘c is
A, = (Kix,i'xD>, <ix,t'x'>, ee'),
The iterate of I1:1a ->»ab is
it - (78, t<xgb,i+a,xgb>, e).
8. Flowchart accessibility

In a flowchart f:a—»b , the set of substrings zs:le ’ such that their

extensions Zi %out fulfil the condition

i z c =z
ac) Im(i) U Im( outt) S ozt ’
iis «closed under intersection. It is more clearly, if we write this condition 'by
components using 4.3-2, i.e.

ac-i) Im(i) € z, +ly
ac-t) lm(tj) € z, +l for jellzi.

This makes consistent the following definition. |
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8.1 Definition. The accessible part of f is the minimal substring of e,
denoted by Ac{{) , with the property ac). '

In ord.. to help thu intuition we point here that = fulfils ac), 2s a set, if each
vertex, which is effective reachable by the input merfism, is in z and, for every vertex
from z it contains a'l vertices which are effective reachable by its transition
morphism,

Some progerties, connected with the behavicur of accessible part when one
makes a basic operatio'n, more or less intuitively c!.ear, are proved here, with the help
of 4.3 .

8.2 Proposition.

1) Aclf ) < Aclf) + Aclf);
2) Ac(Kf,f>) = Ac(f) + Actf');
3) ActfT) € Acth).

Proof.

1). For f:a-»b , f:b=>»c the substring Ac(f)+Ac(f') {fulfils ac). in £ £, more
precisely ac-i) and ac-t). Apply 4.3-1) to prove ac-i).

g

C

Im(i(lp+i'\) < Im(i)]p +Im(i") € Acll), + Ac(f‘)in + 1 N
For ac-t), if jell Ac(f)l] , the proof is as before and if jell Ac(f) . yas follows

Im(t";(OP-rlp,C)) = lm(0p4 t'j) = _LP’P-Hm(t'j) < AC(f)in + Ac(f’)in + lc.

2). In a similar manner it may be shown that if f:a—>c and f :b-c then the
substring Ac(f)+Ac(f’) fulfils ac) in <f,I">, In order to conciude that it really holds an
equality one has to show that 2|, fulfils ac) in f , and Z|o fulfils ac) in f' , where,
z = Ac(<{,f'>). Splitted in parts the condition ac-i) ,

lm((i(1p+0p,+ic), i'(Op-&-lp,c))) = zn +lc ,
gives the validity of ac-i) for z|, in f and for Zj g in- f'. Indeed, by' 4.1-5)

lm(i(lp+0p,+lc)) = lm(i)‘lp+ "Lp',p' + lm(i)|C and

Im(i (Op+1p.c)) = 'LP,P + Im(i").

Similarly ac-t) for z in <f,f*> ,i.e.

lm(ti(lp+0p.+lc)) €z, +l_, if ,eﬂz‘e[] and

lm(t'i(OPHp,C)) S oz 4l i ]Gﬂzle,[] ,

proves the validity of ac-t) for 2|, in f and for z|e, in f'.
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-

3). We shall show that Ac{f) fulfils ac) in { . An easy proof of ac—ii is
+a a + _ .
Imi )' !m((n(* %) )l = Im(its? ’lb))‘p = !m(ﬂ;p c Ac(f)in .

On the othei hand, if j¢ Ac(f)ﬂ , with the convuntion that Im(tj)‘p =u, Im(l+a)‘ .
the following coinputaticn

T h ta A
tj <x§b, 1+a, xg > {((bUv) + lb) = ti Hulv) + Ob, i3 Uv+lb), Op+1b> =

b . b b 47 b
= tj((uu v) +!ab) <xg , l+a, xg > = tj<xg , x+1, xg > :
leads to the desired conclusion, i.e.
pb .+a _pb . c ’
lm(tj(xp y T XY € UV sl Ac(s)in+ - 0

9. Syntactic equivalent flowcharts

Our introductory words lead to the conclusion that we have to consider as
equivalent twe fewcharts if one of them may be obtained from the other by deleting
some unaccessible vertices and by identifying some vertices, with-the same label.-and
such that, after identification, they yield the same tramsition com‘ponent. Here we are'

able to say precisely what this rneans.

2.1 Definition. We say that the.surjective partial funciion ye€ PStrz (e,e")
reduces the flowchart f:a—=>b~%0 [':a-» b ,and write f k—y——)f‘ , if the following
conditions hold. ’

wac) Ac(f) € Doml(y);
co-i}) i'= x(y +lb),

)t(yin+lb) = Youtt -

., co-1) Dom(y ut

out

Remarks.
I. The condition wac) says that y is total defined on the accessible part of f
and is cbviously valid if Doml(y) fulfils ac) in f. ; R )
2. The condition co) = co-i) + co-t) cerreldates the connection of f to that of
f'.- In particular, co-t) , written by components as
co-tc) t. (y gl =t y(5) for jelvom(y)l ,

only '
.shows that y has to identify two vertices if they yield the same Ltmsxtnon comiponent,

namely
co-t') tj(yin+lb) = 1, (y; +1p) 5 if P = y(k).

3. When they are given only a flowchaut: % and a surjective pagtial function
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YE pszrz(e,e‘) cvch that ‘wac) and co-t') hold, ane can find a unique ﬂowchart i, to
which y reduces {, In fact, for ' the inputis i'= i(yinnb) , and for ke&flje'll , the
k-th component of its transition is t', = tj(ymnb) , where jellel] is such that y(j) = k.
4. If the pariial function yé€ F’Str}:(e,e') is iotal detined, then wac) s
obvinuslv valid, and when v is injective co-t') is obvious.

5. Some examples of reductions are given inthe Appendix B.

The basic question is now to see what is happening when one makes more and
more possible reductions. The first remark is thut tiwre are some trivial reduciions,
given by isomorphisms. Such a reduction only permutes the writing order of vertices.
If f+—>1" and y is an isomorphism, then we say that { is isomorphic with { , and
writey f ~ f'. Another reduction is effective, i.e. really reduces the number of
vertices. A flowchart is said to be reduced (or minimal ) if it has no elfective
reductions. Now it scems to be clear that every flowchart has a finite chain of
‘reductions to a minimal ore. A more difficult problem is to show that different chains
give isomoiphi& minimal flowcharts. This problem is similar to that solved by Church-

Rosser theorem in the case of A-expressions.

Remember that [ x[ is the subset of [}al] corresponding to the substring x of
a. Therefore, if ye PStr(a,b) , then y({Ix{) ic the usual image of the set fix{l by
means of y.

9,2 Lemma. If ff—-}—l-%f' then ImPStr(Ar:-,'f)y) fulfils the condition a_c). in f\.
As its corresponding set is Y Ac(f) ) we have

OAc(fl < yQAchHD-

Proof. The similar proofs of ac-i) and ar-t) are based on &.3-1p) , which
allows us-tc use ac) for Ac{f) in f:a->b.

Im(i') = Im(i(yin+lb)) =4 Impstr(lm(i)(yin+lb)) =
< Impstr((/\c(f)in+lb)(yin+lb)) = “mPStr(AC(ﬂy))in +1
If jeyll Ac(D)D) , thatis j = y(k) with kellAc(f)] , then
lm(tj) = Im(t, (y, +1, DS .. € Umpe, (AcOY), + 1. O

The reduction is a reflexive relation. ft:is not. always a transitive one.
However, the following result holds.

9.3 Observation, If f}-;—&» f, f'i'?.ﬁ!!,.,ﬂﬂd[ ImPStr(AC(f)y) < Dogn(y? ., then

for every uEEle which fulfils ac)in f, one has IW f". In particular fi-y;.,—%f&t—
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From the supplementary condit;an,
written as yI Ac(D) < [ Dom(y) 1 , and [ ActIl € 0 Domy) 0, AclD) < u it folows
that uyy' fulfils wac) in f. Ar easy computation shows the validity of co-i} for Hy'y',
where as usuatlly b is the cosource of f.

Proof. 7he function yy' is surjective.

i - i‘(y' +l ) = 1(ym+lb)(y’in+lb) = i(ui - )(ymy + lb) = t(\uyy) +lb) |
No more difficult is to see that co-tc) holds. Indeed, for j¢[Donuyv)] , namely

jE 0 Domluy)l and y(id€ I Dom(yl{l , remark that

t"(uyy')(j): t yy(in = t')'(j)(}',in"k,‘b) = tj(yin*lbxy'in“b) =

= t. (u ot ! )\ymy n+1b) = tj((uyy’)in+ib). L3

9.4 Lemma. If ﬂ-—;—a»f”, f}-;,-—)-f' and there exists y-”ePStrl (2',e') such that
Y= Yy then ¥ f".
Y

Proof. From the equality y = y'y" it follows that y" is, as y s SUnective,
With 9.2), y" fulfils wac). Indeed,

I Dom(yM [} = @ Dom(y'y") ) = y'@ Doy} ) 2 v Ac()D 2 0 Aclf) § .

The inputs of {' and f" are correlated by y",
. '(y" +lb) = 1(v Y™, +lb) = i(yin+lb) =i",

where b is the cosource of f . For the last necessary fact, i.e. co-tc¢), let

je I Doyl , namely j=y'(k) with kel Dom(y'y")ll - | Dom(y) I . The following
computation finishes the proof,

tj(y"in“b) = tk(y'iny" +lb) t (y +1b) = *'"y(k) = t"y"(j) . 3

The basic fact of this paragraph, something as Church-Rosser property [12,13],
is contained in the following lemma.

9.5 Main lemma, If f iy-)f’ and f/—-)—)-,;—*f" then there exists f such that
fl—>[ and fr—>f.

A) Proof of 9.5 when y', y" are function (hence total defined).
Let ~ be the leas: equivalence relation on [lellx[lel] which contains ~' and ~s",
where ~' = Ker(y'y = {(j,k) | j,kellel]l and y'(j) = y'(k)} and ~" = Ker(y"). For ~ use
the following constructive definition

!‘ ' .= see =k S Ch th t
Peok <es> {t iere is a sequence of elements from [lel], j=n ,..,n_ u a

. for every I{p{m or nb ~'n yor n_ A" n

p+l 5] p+l°
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This allows us to see that «v , as ~ ', A" , may not identify elements of different
sorts. Thoreiore 0 has a representation as  ~s = Kerly) , for one surjeciive
yE Str.. (+,®). Lefore trying to show that y yiclds a reduction, i.e. fulfils co-t') , let us
denote by z', <" the functiens z'¢ Strz (e',"é) s 2"€ Strz (e".8) such that y'zt =y = y'z",
Use co-i") for ¥ in the foillowing way '
n_~'n ==> 1 (y. +l )=t (y'. +1 } ==>
p p+l "p in b np+l in b
== y! ! = vz == . = .
==> th O inzin”b) t (y in” 111+lb) > tn (y:n”b) b (ym”b)
p p+l , p p+l
where as usually b is the cosource of f{. Similarly for ~". Thesc two types of

implications and a glance at the definition of v , yicid the necessary implication, i.e.
i ~ k ='—’> tj(yin+lb) = tk(yin+-lb)a
. -~ ~
The remark already given shows that there js-a flowchart { such that f}—;—)f . By
lemma 9.4, z', z" have to be reductions. ]

The reduetion of the general case to this one is based on the {following lemma.

9.6 Lemma. Suppose that ff—?f is a reduction of [ by an injective-:
ze PStrZ.(e,E) with Dom(z) = Ac(f) . For every reduction ff-—)—;éf' , If f'f-;,—-)f’ is a
reduction of f' by an injective z'éPStrz (e',e') with [[Domiz"){] =yl Ac(f)[) , then
f+—>f' , where v is a total defined function. L

Proof. There exists a surjective iunction yé& PStrz(e,e') induced by y ., such
that zy = yz' (the restriction of y to corresponding domain and codomain, ordered

according to €, ¢'). By 9.3, yz' is a reduction and now by 9., Yy is a reductiom,

B) Proof of 9.5. In the foilowing diagram

the drawing of the parallelograms 1, 2 are basedon 9.6 and that of the parallelegram
_ 3, on case A). The two steps reductions f‘l-;%?‘ )-J-f‘fu and f" l—;;—>.f_"'-l—6ﬁr may be

done even in one step, as shows 9.3 (u', u" are total defined). R

It is clear that the isomorphism relation is an equivalence. With =3 , the
standard notatioir for the transitive closure of +->», the following proposition gives. a

positive answer to the starting question.
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1 2 .
9.7 Projpnsition. If 51"y 15 and fI , fz are minimal flowcharts,
then f‘I and l’z a2 isomorphic. .

Proof. Clcarly, we have to apply the m-in lemma in an inductive way. Sippose

20 21 2 .
f= 1'0;--:> fl' e f—>1 (hm =1y and f=f"%pf 1> . o N fz , Wwith
m,n30. The inductive variable is m+n. If m =0{or n=0) it is obvious, becausc f = £}
(¢ = f?‘) is minima! and all reductions are made by isomorphisms. If m>! and n>l epply

the main lemma, in order to obtin the T°°° morphisms from the following diagram,

s (12 ps gl gl
I I J

/—12! > .| fl(m ) )?lm
\

2(n-1) — on

\I TR

NG &-——?-f 2o g 2n-D 20

Remark that flm » &s reduction of f'lm = fl y is minimal and isomorphic with fl.

Sirnilarly for f2n’ By the inductive hypothesis flm >~ -f"Zn » hence fl' ~ ft. ]
A minimal flowchart {' stich that fi>>f' is called a total reduction of f
(by 9.7, two total reductions of f are isomeorphic). We say that two flowcharts are

equivalent , arnd write f = f' , if they have a common to*z! reduction.

Finally, we remark that = is indeed an equivalence relaticn,
10. The theory of reduced flowcharts

The aim of this paragraph is to introduce operaiions on quotient:sets

RFI g p(@b) = Flg p(ablz
3 ’ T Qy

where :-_-:a b is the restriction of = *tn Fl 5 T(a,b) , in order to yield a theory with
9

atd

iterate. These operations are induced by those of Fl =T " In order to show that this
k4
- makes sense we have to prove the compatibility of = with the operations of Fl =T
’

10.1 Lemma. The reduction (+—>) Iis eompatidble with composition, tupling
and iterate.
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Poof. 1) Composition. If f:a~»b and' f':b-»c have the reductions f->T

~ — S Y
and ' Hy‘ { we shall prove that f {' r—»yw, f f. The partial function y+y' is surjective

and by 8.2-1) fulfils wac) in f f'. An easy computation shows that co) holds,

i(lp+i‘) (yin+y‘in+lc) = i(yin+lb) (l...+i'(y'. +1 )) =i (1- +i)
Dom(yout+ y'out) <t(lp+i'), t'(0p+l ‘b)> (ym+y m+lc) =

= <Dom(y°ut) t(y. belﬁ +iy' in+lc»’ Dom(y'out) t'(y" m\tlc)(O.. +la )>_ )

Wout*Your! ™ g g+ ), t(O- I~ »

2) Tupling. In a shinilar manner, using 8.2-2), one can show that, if

f:a—»c,
f:b->c, fo-7->'f' and f'r?—}i , then <f,f'>W> <f,f>.

» The
third point of 8.2 shows the validity of wac). For co) use the following qomputation.

oy, 1) = G T el = 663 +1bx1 .y, +1b»+=

3) Iterate. Let fi—>f' be areduction of f:a—»ab. We claim that fi—»f'"

= Gily, 1, X2 +1b»* - (r(sp.ub»* -

v

b.
‘Domly,,) t<pr ita ,xg My, +1,) = Domly ) t<y. +0,, it %y, at1gh Ol =

pb +a pb +a pb
)t(yin+la+l)<x LI ,,x >. D

= Dom(y b = Y out € xp

out

10.2 Proposition. The equivalence relaiion = {s compatible with composition,
tupling and iterate.

* ‘Proof. By a usual trick we shall equlize with identities the: number of

~elementary reductions (+~») which appear in f *>f and £ +5>f. This extends the
compatibility with composition and tupling from 3 to +%> . The rompatibility of
> with iterate is an easy consequence of 10.1 .

We shall now prove the compatibility.
f=f:a—>band ' = :b->c , then there exisi two minimal flowcharts T anf 'fu'
such that "f+%» 1 <*~f  and £ 1% T e,
fPF>f < +ff ,hence ff' = f
are left to the reader. [

of the relation = with composition. If

The above note shows that
. The compatibility of = with tupling and iterate

This proposition allows:'us to introduce, in a consistent way, operations in
=T
Definition. The result of an operation ( composition, tupling or iterate) in
is thev¢lass of corresponding operation in
=T
representation of its arguments.

RF1 Fl T computed with some
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10.3 Theorem. RF T is a theory with iterate.

Proof. FlE,T is a category with associative tupling (sce [6], or compute
directly). Tt. distinguished morphisms are
"2 = (x;:, 0, A) , for kellayl,
where A denotes the empty string. Hence <xall ,...,x'a‘> = l _
In order to see that RF!E,T is an algebraic theory we have to .prove the
validity of two axioms.

I _
a) x2 <t nildh = .

for kellat] , where a= 3yl and. f = G/, t), ei) : ai——> b . for.j€[lal). In fact we
have to prove formally what we intuitively know, i.e.

a_.l lal k = <. oy
xk <{ ’_"’f > )———%-y f N where y= <-L.t k,-u,l Tl -L |a‘ k>.
) . . ;€ ,e e ,e e 1 lal
Remark that y is a surjective, partial function. The notation x) = x Pi'wp +dp
p _

(remember p = r (e)) allows us to write. the left expresion as

k(f yose ,fla' (1 Xy <tlxl, ..,t‘ al }a!> el... e‘al)

At the begining we show that Doml(y) fulfils wac) in Xy <fl,...,£|ﬂf§;{9g?3;-split‘te’d»in ag~i) -
and ac-t). Indeed,

Ky o oK ,
lm(x x & Im(x) < Dom())in«»lb

and similarly for JDom(y)l 2y = Ie vt lI +m , with meflle]] , because the j-th

cornponent of the transxtxon morphism is the m-th-comporent of tl(Txk

For co) remark that x (v oty =1 ky therefore
p .

xk(yin+1b) =i , and
1.1
Dom(yout) <tox ,...,tlal |a')(y +1 )- .
<.L * (e )P b? *** ! t X (y +l ), ese ,.L * (e ‘a‘),pkb> yout K
out

b) f =<x5 t,...,x‘a|
for f:a->b. With its intuitive meaning in mind we ‘look for a proof of
<x? f,...,x‘ ‘f> l-——+ f , where, making use of the notation w( n) = W...W by n times,.y

is given by y= <1e,...,le> : e(lal)--b e. This is a surjective, total function. We.oply

have to show co0). A direct computation of the right expresion gives

(x? f,...,xf’alb = (<x? ixl,...,xa ix‘a'>, <txl,...,tx'a|>, e(lal))

tal
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<x llxl,.,\(

1

\a ii a|> <! " .lp>+l )= <xl |,...,x{ t:> =i ,and

<tx ,...,txgd"} ( (lp,...,lp»-lb) 2 Klyeenytd = y t.

“out

The second step is to show that in RFI 5T the axioms of iterate hoid, in the
equivalcnt form of 6.2, L.e. I1), 12}, V1), V2), 14-W). In the Appendix C we show how
look some axioms written for partial iterates.

m ity = 'l

for f:a~»ab. More precisely, f<f+,lb> b;é- f+ , where y = <1e,le> tee—>e, Of
course y is a surjective, total function. By computing the right hand side we obiain
the follwing representation,

1<ft, > = (il +<:+a,x"b>) <t(l +<."‘a,pr>), t<xgb,l+a pb>(o 1, ee).
Remark that y fulfils co). Indeed,

B = gb i, Pbs . x(S vl )<x"‘a

= ishe ) s W1 it

b
i up+<1+a,xp ) (€11 >4 1>

<t(1p+<€l a,pr>) t(xgb, ita pb>(0 0> (K11 >e )_

PP
= <t<xgb,n+a 20>, t<xgo,l+a,\rgb>> - t(pr i¥23 PP

yout 2] 2 ’xb *

I2) holds in F} o1 (see [6], or compu1ie), hence also in RF! T

Before trying to prove V1), V2) we remark that the partia’ iterate for f: abc —»a'be’
can be computed with the following formula

£tb _ (i'fb’ Kxga:c', xt.;bc i+b, x;é'a’c’>' e) .

vi) (tytb _ gt

for f: ab = abc , holds even in Fl T T Indeed,

(¢taytb . (i-f-a, t<prc, xzb i~{-a gbc> e)

b be ab,, b
, x: ita g > <xgc x; otayt , xgc>, e) =

4-ab : b. ab,. Yayihl -~ _ab,.
= te ’ t<ch, 2 ita <xp bb(l" " ,ch*. xﬁ (1+a)*b, xgc>. e) =
- (i‘f‘ab’ R <xgc' x:b(i+a)+b, xgb(i-fa)'i'b, x2c>, e) =

= (TP oy PPe

-

= (l*ab, t <ch, (l+a)+b, ch>, e) = f+ab = f+
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va) <« = o35 mat o,

for f:a-»ac and {': b-»ac., We shail compute iy turn the left and the right side.

caesta (G100 o1 200l D5 60 1 2,00 e D, eent? -
= (g <t(l ;s OP,+laC>,t‘(Op+lp;a Ry <g;’:,'c, xibg, xgp'c>, ee')
where
g = (<i(1‘p+cp,+13c>,i'(op+19,ac)>‘*‘El -
. <x-§1"a°, 0 01 <x§§.'c, (i(1p+op,+ldc)ﬁ"', xgp'°> -
- <i+‘*(1p+op,+1c), i'<xg!"c, i+.a“p*°p~”ac)' xEP'C» )
Hence the transition component is

Lo PP fa pp'c pp'c .4a
<|.\Xp y 1 (1P+Op,+lac), Xe >, t'<xp, y 1 (1p+0

pp'c
w1, xPPS >
On the other hand because lp,+<i+a,xgc> = <x PPC it30

P

! o+ Ik xP'P> , the right side
is
<@ttt o - (x5, 1,00 «it?,xP%, t<xg°,i-+“:xg°>, e) =
.+a . '‘pc .pa !
=( < it (Op,+1pc), 1'<x§p R it (Op,+lpc), xg pcy >,

T \ ' {
<r<x P'PC 130 o1 ), xPPSs, 1<xPPC T30 41

¥ole
p p'ipc” X p p* g X' 2> el

' L L] .
Now it is clear that the isomorphism S: : ex’—>e'e reduces the left to the right
flowchart. As V.E.Ciz#nescu remark, V2 holds even in FliT and I?) may be
4
replaced with V1), V2'), as well.

*

15-1Is) y(y'lf(yd c)+= +

for any f:a~»ac and any isomorphism y: a=3»b . A direct computation gives
-1 + -l +
yly f(y+lc)) =y (y i (1p+y+lc), t(lp+y+lc), e) =

. pC pc
=y (g, 1;(lp-a-y+lc)<xp 18X s e)
where Co
: -1. b -1 b
g =y l(lp+y+lc))+ = (y l(1p+y+lc)(5p+lc»+=
- (70301 Uyt I =y GesBen T =yt b

" Therefore

oy e 0oy (71, oyl OB, y L3P, ) -

=y R abS it GBS, e .0
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11. When '.s RF1 £T 2 theory with strong iterate ?

For futier reasons (an answer of following question: When two syntactic
equivalent flowchart ar» semantic equivalert ?) we ask when RF| 31 is a theory with
sirong iterate. Obviously, T must be a theory with strong iterate. But, uniortunately,
‘we are able-to show that RFIZ,T is with s*trong iterat~ only when T , in addition;
fulfils the condition

ASY Imy(f y) = Impg, (Imy(f) y) , for every: ye PStr(...),

and then call it an almost syntactical theory. Firstly a femma.

11.1 Lemma. If T is an almost syntactical thcory with-iterate, then the
reduction is even a transitive relation, i.e. - = —>,

" Proof. .By 9.2, 9.3 the only obstruction for the equality T 2 fei S
y(@ Ac(f) e lAdD, if f!—?-f' and f:a~»b. We shall prove this in its equivaleat

form y ([I Ac()D =2 UAc(f)B ,keeping in mind that Ac(f) is the minimal substcing-of
e which fulfils ac) in .f. Using AS) in

'lm(i(yin+lb)) =Im@i") & Ac(f')in-&l
one has an inclusxon
e y at! A IO D < [lAc(f') R0

hoo

equivalent with ac-i), )
. -1
C £
| ) 0 Im{D] =(y ([]_ Aclf) min“b .
For ac-t) if-je y"l(ﬂ Ac(f)d , that is y(j)e D) Ac(£) ]l , as before
Im(t, (Y +lba = Im(t’ ( )I < AL(f) *lb

leads to the desxrated inclusion. - --[

11.2 Theorem. If T is @ ulmost syntactical theory with strong iterate, then
RF1 5T is with strong iterate. '

Proof. We have only to show 14-S)

* = yt)" if f:a-rac, f:b>bc and yeStr(ab) is a surjective function
“such that f(y+lc) =yf. .cr '

Let us suppose that f, f are minimal flowcharts. Then yf' isr also a minimal
flowchart. Indeed, if it is not so and u €PStr(b,a) is a left inverse of y,i.e. uy= lb ,
then every effietive reduction yi'g—z-,-"- " are still effective reduction for

f= uyf'p-z-p ut" -5 but ' has no effective rcdyctions. Hence the equxvalence
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f(y+lc) =yi' s in‘faét a reduction {!wlc)b-z-*yf . This recuction is also good for f+ y
i.e. 1H—>y(f)*. The first remark is that z fulils ac), making effective use of the
condition AS). Indeed '
| i3] Im)|_ === Iml(l_+y+l N|_ < Dom(z, )
Im(i I‘p )’P AS) ' P y c ’? In
and for j€[j Dom(z)], ‘
pc fa p<y < Im(t)! I itayy ===
lm(ti(xp % A o )'p m( ))]p U Imdi )'p po
- 'ﬂ B
--lm(ti(lp+y+lc))lpU Im(i ),P c Dom(zin).
The reduction f(y+lc) l—z-> yf' , shows that
i(lp+y+lc)(zm+lbc) =yi' and
Dom(zout) t(lp+y'+lc)(z?,‘.+lbc) =z, t -
Let apply 14-S) to the first eqality written as
rc@ P .
‘[l(sp+1cha+zin+lc)] (y+lp,c) =y (i (sp,_qc);.
This gives co-i}. |
| e 1 )= yot?
1"'a(zin. 1) =y("" .
For the transition component, the computation looks as-follows.

< PC e _PpC _ . A 3 Cyy
Dom(zout) t<xp il x0T (zin+lc) = Dom(zout) t<&in+oc§; t%indcs"' K=

'C _.nth 'Co
= Dom(zout) I(Zin-o-lac)(x:' , )’(l')+ , xg (‘l -

= P'c nytd _poy _
= Dom(zout) t(zin+lac)(lp,+y+lc) <vp, , (Y-, X > =

] . b \
=Z t'<x:. < (x')"~ , xzc> - a
12, Seman*ic equivalence (the main result)

We are now attaining the main question. If one prescribes a morphism
Yr:T=>Q and a rank-preserving function P51 2>Q ., ise.
cps: (¥)e Q(rin(q'),rout((r)) , then every flowchart of Fl T has a ngtural semantic
interpretation i @ theory with iterate Q , defined by

‘f*_(i,t',e) = prld <Cpk () oW, 1>

for (i,t,e)¢ Flz,.r(a,b) , where Cf; : (Z%,) =>(Q,+) is the unique monoid extensigvaf
‘fs; . Have tw® Syntactic equivalent flowchart the same interpretation? This is:the
point where we need Q to be with strong iterate.
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12,1 Proposition. If T is with iterate, then two syntactic equivalent flowchart
of Fl T are semantic equivalent in every Q with strong iterate. Formally, for every
(gt s Pl 5 the cove extension cf fulfils

f=r=> &"tH= ¢,

Proof. It is'enough to prove this for elementary reductions, i.e. for {,f'; a-awb
P ‘F - # 1 '
t>f ==> ¢ (0= g7 (1), '

Let us suppose that Doml(y) fulfils ac) in £ We try to apply the most generalt 14)
made in >.2 . The passing from e to e' may be done with the following formula.

Domy; ) ?£ ©Wout = Yin ‘fZ' ().

Making use of-the remark lmQ(Dom(yin) (fé:L (e < Dom(yout) , one can cbtain a first
relation

Dom(yin) ‘f% (e) ch(t)(yin"‘lb) = Domdy; ). (f; (e) Dom(yout) Cf.r(t)(y +1b) =
= Dom(y. ) ?5 {e) Yout (10T(t') =Y, (P;' (e") ({’T(t')"‘

- In order to sho'w that the restriction-to Dem(y ) gives an itself system, we prove the
second condition :

lmQ(Dom(yin) (fz* le) (f.r(t)) = lmQ(Dom(yin) Cfé' (e) Dom(y’hlix)l?.r(t))g

< ImQ( CfT(Dom(Vout) t) < ImT(Dom(y )t). = Dom(y ) Iy

out
ac)
Therefore, we may use 5.2 in the following computatijon
* ] < R t (]
QL) = <pr) < (e preen®, 1>
= ) <y (pf () pr(ent, 1> < by 5.2

= Qi) <Domly; ) (45 () (f--l‘-(t))"', 1> =
= @7t (Domly, )e1,) < (@ (&) pr(ent, 1> =
= @) < (95 (o) P, 1> = g,
where the passing to the last line is based on
Im (‘foi)) S Im e Dorﬁ(y. )+l .

In the general case, if Doml{y) € Ac(f) and f'=> 1" is a reduction by an injective z

with- Dom(z) = Im (Ac(f)y) , then by 9.3 f§ f' . Remark that Dom{z) and

PStr Ac(f)yz # + +
Dom(Ac(f)yz) fulfil ac). The above proof give ¢*¥() = ¢ (") and o (f) = ¢pT (1)
hence the proposition is concluded. ]
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12.2 MAIN THECOREM. If RFIZ.,T is with strong iterate, then RHZ' T tc
the theory with strong iterate, freely generated by TV X . In particular, this is t;'uo if

T is an alinost syntactical theory with strong itercie.

Proof. - We have to show that there exist a rank-preserving .unction
: 2 -» RF] E:T
such that., for every rank-preserving function q,. 2 X -> RFlz T and morphism of
theories with strong atcrate Pt T~wQ -, there exists a unique morphlsm of theories
with strong iterate &f : RFl 5, T-+ Q ,suchthat I Ie L' o ¥ (pz and IT (f ({T
Clearly the application

and a morphisin of theories with strong iterate I.r :T— RFI}: T
?

for i€T(a,b) gives even a theory with strong iterate morphism. I ¢ ,.defined by

lz(v)-‘-(lrin(o;)-l‘o o ) 1]

s 0 + l y
cour(@)? Crite) e (9)
is obviously a rank-preserving function. By 12. l the extension

gFite) = P <Ch @ @, 1>
is well defined even in RFi xT" The remained proof is reproduce here from [6] making
R ] -

use of 6.1.

1) When f:a-~b and f': b —rc, are two flowcharts im Bl =T one can see that
1

G 1) = Qrlil D (g (oo Prctll i, 100 sty D, 1> 2

Pl i) < <PTle) Pl LD, ¢F (e Pl )(op+1p.c)>+, 1> =
P () Ps. (e) Prlett +i) ¥, Lo < Py, (e ‘{’T(‘t'»“‘, 1>
= ) <C @ (@) Prdl e T, @rin < Gled prentLi >

@rD g (@) ot L), @i <Cep (e Praent, '1C> -

ppti) < cp,; (@ prant, 1> <pT(1') « sz(e') prendi1> =

]

= p* o) ¢*un.
2) In the tupling case, for f:a-»c and f:b-»c making use of the foucwmg
notations x 1p+0p,+lc s X'= op+lpc y the computatior is
fT(<05) = prlcin,in>) (@ (ee) <pT(<tx,t~x->))‘-" 1g
= Qriinin?) << @hle) P x.,. g»zi_e—)‘cf @, 13-

< prlide, Qrie> (g (@) Prrs (G (e) Preen® i 2
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LMORL ‘fi (e) ch(m*, 10 @0 (g () pren®, 1 5>
<, ¢*ur

3) If f:a--ab, then the tollowing cemputation <'.ows that ((# preserves the iterate.

"

ul

g*iuh = ¢t <(c{>2 (&) Pyt <xB®, (P, EDNF, 1> -

b
= (P NSH+ ); < (&) PrltdSaei ) < QLS +1b»"' >)’*‘, o=

= oy < e (&) @reant, 15T - gty
Remark that for ge T(a.b}

1) = §FE0, M) = @<L 1,5 = @r@<C,, 1> = Prle)

and if p:rn(ﬂ‘),q=l' (') , then

out

: \u - » wh -
ﬂ\aﬁf )(8) = (lp+0q 0P+lq )= (lp+Cq)<( ?2(7)(0P+lq,, ’ 1q>_

The last step of the proof is the umiqueness of the extension and is a direct consequence
of the representation
Giyt,e) = 1) <3 (@) (t))“‘L 1>

making use of the equalities Iy f-ﬁ Cf.r ’ lz (f ({Jz and the preservation of
- composition, tupling’and iterate by any morphism of theories with (strong) iterate. ]

The interesting particular case is that of PStr.

12.3 Coreltary. RFIl X, PStr is the theory with strong 1terate freely generated.
9
byZ. O

- On the other hand, by Esik result [9], when Z has lrin(u‘)] =1 for every

v€ X, , the iteration theory freely generated by 3, is.that of 3 -rational trees,
denoted RTX. Hence

12.4 Corollary. If [r; (#)[=1 for every 0eX’, then RF1. 5,pstr nd R7g-
4
are isomorphic iteration theories. [} ’
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Appendix A

with iterate T , J4-Is) nolds.

Proof. Let fe¢T(g,ac), geT(b,bc) and yeStr(a,b) be such that f(y+lc) = yg.
Suppose that y is an isomnorphism. We construct the following system

-1 .
(y(Oa+lb+OC), y f(la+0b+ lC)> :ab-» abc .

Using 13), the b-component of its iterate is

(y"lf(l 40 1) <ty(0_+1 +0 0%, 1,

>)"'=

= (y f(l +Ob : \<y(lb+o ), l >)+_‘: (y"lf<y(lb+0c), 0b+lc>)+=
= (y f(y+lc))f = g+ .

In order-to use 14-W)

, let us permute with SZ

the components

<y'lf(0b+1a

C»’ Y(lb+0ac)> : ba =»bac.

Again -13) 'allows us to compute the b.-.component of its iterate, as follows

(y” f(Ob ac

.y 1<(y(1b+0 K<y i,

= y i<ty I)+l> y f«f'*'1> y

yt <y(1,40 )dy'lf(obu‘_“:))+ 1ac>)+ 1

C

>)+
et

Using 14-W) these morphism are equal i.e. f+- yg"’ =

Appendixz B
=~ "\
(r o
A 3T sl‘&‘_fl v
, oy
2 | IZ 6 |1 2 ‘z_' 'I," X
.\ T YA
Y «’/ ) *c*“\

> =

> = y"f(y(y lf,O >)+ 12> =
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Suppose f is a one-sorted flowchart : 3~ 4. Then JAc(f)=11,2,3,4}. .

1 2 3 4 5 6
fr—»f where y = 4 ¥ & ¥ ¥ }
y 352 4 1
) 1 2 3 4 5 6
A total reduction of fis“«;-'rf“ where v = + & & & ¢ &
I 1 2 2

fll
1 2 3 4§ 5 6 :
Thefunction y = 4+ 4 ¢ & § & do not give a reduction.
1 1 2 3
Appendix C

We shatl suppose that T is a theory with itcrate.

10) - 2= a st = gu s )™ @ r:abe >abe
a'=ad@ and ¢’ = &¢ (this means that no matter where b 1is in cosource).

Proof. 10 = (f <x abca‘éc , ibca‘éc , kil‘?:ca cc>)+_
= U .+sb+1 ) <x3ACAEE | @beate | abeadly) | gy .+sb+1~))+b

and sitnilarly for left shifts. [}

11) f (xa A , abr- f'“) :,,bm ¢y = fﬁj for f:abc—>»a'bc’.

be the corresponding components of f. Making use of

Proof. Let f
is the third of the permuted

s §
the isomciphism y = l S% the second component of {

a’
system

( )f <x abca c , xibca'c' . xabc:ac> ( *’Sb*l

acba'c' _acba'c' _acba'c
=<{ a' f > <x » Xy » Xer -

)=

a'c
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= <A, 000> (oac+sa,+1 J .

with 13) the b-cornponent of its iterate is (fb(Sz C,))+ . Hence xibcf+b fulfils the
identity )

abc th abc +b _abl a'c' _abc .b abca'c’

Xy, { b\S .+l £, la'c'> = X f <xa, » Xy, f X b 2N
The ac-component of permure.ﬁd system now is

b ...alc abc 4b _abeca'c
SIRICATIRNCN SESPR LIS BRI S PSSt Lal AR >.
Return to the starting system and write

abc f-!-b i 't a'c' _abc f-rb sbta'c

L
i."b = kia+5§)<<fa,ic>,fb><xz,c ' Xp R xebca c> =1 KXo s X y X >

With similar methods can be obtained the follcwing identities.
! +b _ .+b | e ' byt
2p) (f(g+1b+h)) =f"(g+h) , fer f:abc —»>a'bc',g:a +a", h: ¢ —>c"

v2) <f,g>*°= dac g><x f*a,x > ,for f:a->dac, g: b-»dac.
Appendix D

Remark. If [{]leRFl, (a,b) denotes the class of f&Fl (a,b) ther
. K o 271- N :,T

Im (f) < Im ) < im (). V im(t)}_ .
RF1, 1 Flg o "l b Y imqtly

Lemma i. If T is an almost syntac'.i::al theory, thcn for one minimal
f€ Fl o r(a,b), we have
e 3

I"’RFi‘,:T an = Im”);‘:r 2
and for any f€ Flz r(@b),

Im ) =Im_ ()] U Im.(t)], .
FIZ,T T /b T /b.

Proof. An identity '{f]y =[f] , means fy = f , more precisely f)’i—;*f - As
z € PStr z(e,e) is surjective, it follows that z is even an isomorphism. The reduction
leads to two identities in T |

1= ,i.(lp"y)(zin; 1) =J‘i(zin+y)
Zoutt = ,t(lp*y)(?‘in*lb) = t(z; +y).

Using AS) we obtain two equalities
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!mT(i) = meStr(lm'r‘i)(zin* y) and Im(t) = !mpstr(lmT(t)(zin+y))
which give | .
lm,].(i)lb = ImPStr(lm'[(i)'by) and lm.r(t)ib - !mPStr(}mT(t)'by) .
This says that vy Im (i), U lmT(t)'b » hence Im T ) = me(i)'bu lmTu)”b .
“The second part is a particular result from this proof, for i;j = le . 4

Lemma 2. If f}-)—}-)f' and y is a towal function, then

Im M) = Im M,
Flyr Fls,r

everytime when T is an almost syntactical theory.

Proof. As Yout IS Surjective it follows that

Imp, . () = Imp (), U Imp(t)]y = Im Gy, U Imopy

.._; mr(i( Ly, U Imop el p*Y))fb = Ima @)}y U im0, :,.lmF-l 5 . O

outt')lb =

43

Proposition. If T is an almest syntactical theory,. then F1 z.}, and RFl
1
are almost syntactical theories.

T

Proof. For Fli T the proposition easy concluded, makiﬁg use of the lemma |
) S
given in this appendix, :

Img E’T(fy) = Imp G ey, U Tmo(tQ oy =

= Impsy (Mm@, U Imdt)) y) < Imp g, (Imp)

Dy).
Z’T ’
In the case of R‘F‘i‘-z 1t » it f is minimal, then fy is an accessible flowchart (its
¥ ' .

accessible part is le). Indeed, if z c |

Im.() ¢ z; tlp <==> lmT(i(lp+y)) ¢z +l,  and

ImT(g) S z 4l <==2> lmT(i§IP+y)) S 7+l for every jelzl.

I f'elfy] is minimal, then fyl;-»- f' and z is a total function. Using lemma 2, we
finish the proof, .

(") = Im (f) y) =

T
m
RFI %,T

lmRFl ([f]Y) = Im

(fy) =Im
Fl
T

=T
«y yy. O

U
Fl PStr'El g1

= Im I

PStr(
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