
A survey of graphical languages for monoidal

categories

Peter Selinger

Dalhousie University

Abstract

This article is intended as a reference guide to various notions of monoidal cat-

egories and their associated string diagrams. It is hoped that this will be useful not

just to mathematicians, but also to physicists, computer scientists, and others who

use diagrammatic reasoning. We have opted for a somewhat informal treatment of

topological notions, and have omitted most proofs. Nevertheless, the exposition

is sufficiently detailed to make it clear what is presently known, and to serve as

a starting place for more in-depth study. Where possible, we provide pointers to

more rigorous treatments in the literature. Where we include results that have only

been proved in special cases, we indicate this in the form of caveats.
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1 Introduction

There are many kinds of monoidal categories with additional structure — braided,

rigid, pivotal, balanced, tortile, ribbon, autonomous, sovereign, spherical, traced, com-

pact closed, *-autonomous, to name a few. Many of them have an associated graphical

language of “string diagrams”. The proliferation of different notions is often confusing

to non-experts, and occasionally to experts as well. To add to the confusion, one con-

cept often appears in the literature under multiple names (for example, “rigid” is the

same as “autonomous”, “sovereign” is the same as “pivotal”, and “ribbon” is the same

as “tortile”).

In this survey, I attempt to give a systematic overview of the main notions and their

associated graphical languages. My initial intention was to summarize, without proof,

only the main definitions and coherence results that appear in the literature. However,

it quickly became apparent that, in the interest of being systematic, I had to include
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some additional notions. This led to the sections on spacial categories, and planar and

braided traced categories.

Historically, the terminology was often fixed for special cases before more general

cases were considered. As a result, some concepts have a common name (such as

“compact closed category”) where another name would have been more systematic

(e.g. “symmetric autonomous category”). I have resisted the temptation to make major

changes to the established terminology. However, I propose some minor tweaks that

will hopefully not be disruptive. For example, I prefer “traced category”, which can

be combined with various qualifying adjectives, to the longer and less flexible “traced

monoidal category”.

Many of the coherence results are widely known, or at least presumed to be true, but

some of them are not explicitly found in the literature. For those that can be attributed,

I have attempted to do so, sometimes with a caveat if only special cases have been

proved in the literature. For some easy results, I have provided proof sketches. Some

unproven results have been included as conjectures.

While the results surveyed here are mathematically rigorous, I have shied away

from giving the full technical details of the definitions of the graphical languages and

their respective notions of equivalence of diagrams. Instead, I present the graphical lan-

guages somewhat informally, but in a way that will be sufficient for most applications.

Where appropriate, full mathematical details can be found in the references.

Readers who want a quick overview of the different notions are encouraged to first

consult the summary chart at the end of this article.

An updated version of this article will be maintained at arXiv:0908.3347, and I

encourage readers to contact me with corrections, literature references, and updates.

Graphical languages: an evolution of notation. The use of graphical notations for

operator diagrams in physics goes back to Penrose [30]. Initially, such notations ap-

plied to multiplications and tensor products of linear operators, but it became gradually

understood that they are applicable in more general situations.

To see how graphical languages arise from matrix multiplication, consider the fol-

lowing example. Let M : A → B, N : B ⊗ C → D, and P : D → E be linear maps

between finite dimensional vector spaces A,B,C,D,E. These maps can be combined

in an obvious way to obtain a linear map F : A ⊗ C → E. In functional notation, the

map F can be written

F = P ◦N ◦ (M ⊗ idC). (1.1)

The same can be expressed as a summation over matrix indices, relative to some chosen

basis of each space. In mathematical notation, suppose M = (mj,i), N = (nl,jk),
P = (pm,l), and F = (fm,ik), where i, j, k, l,m range over basis vectors of the

respective spaces. Then

fm,ik =
∑

j

∑

l

pm,lnl,jkmj,i. (1.2)

In physics, it is more common to write column indices as superscripts and row indices

as subscripts. Moreover, one can drop the summation symbols by using Einstein’s
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summation convention.

F ik
m = P l

mN
jk
l M i

j . (1.3)

In (1.2) and (1.3), the order of the factors in the multiplication is not relevant, as all the

information is contained in the indices. Also note that, while the notation mentions the

chosen bases, the result is of course basis independent. This is because indices occur

in pairs of opposite variance (if on the same side of the equation) or equal variance (if

on opposite sides of the equation). It was Penrose [30] who first pointed out that the

notation is valid in many situations where the indices are purely formal symbols, and

the maps may not even be between vector spaces.

Since the only non-trivial information in (1.3) is in the pairing of indices, it is

natural to represent these pairings graphically by drawing a line between paired indices.

Penrose [30] proposed to represent the maps M,N,P as boxes, each superscript as an

incoming wire, and each subscript as an outgoing wire. Wires corresponding to the

same index are connected. Thus, we obtain the graphical notation:

k

F
m

i =

k

N
l

P
m

i
M

j (1.4)

Finally, since the indices no longer serve any purpose, one may omit them from the no-

tation. Instead, it is more useful to label each wire with the name of the corresponding

space.

C

F
E

A =

C

N
D

P
E

A
M

B
(1.5)

In the notation of monoidal categories, (1.5) can be expressed as a commutative dia-

gram

A⊗ C
F

M⊗idC

E

B ⊗ C
N

D,

P

(1.6)

or simply:

F = P ◦N ◦ (M ⊗ idC). (1.7)

Thus, we have completed a full circle and arrived back at the notation (1.1) that we

started with.

Organization of the paper. In each of the remaining sections of this paper, we will

consider a particular class of categories and its associated graphical language.
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2 Categories

We only give the most basic definitions of categories, functors, and natural transforma-

tions. For a gentler introduction, with more details and examples, see e.g. Mac Lane

[29].

Definition. A category C consists of:

• a class |C| of objects, denoted A, B, C, . . . ;

• for each pair of objects A,B, a set homC(A,B) of morphisms, which are de-

noted f : A → B;

• identity morphisms idA : A → A and the operation of composition: if f : A →
B and g : B → C, then

g ◦ f : A → C,

subject to the three equations

idB ◦ f = f, f ◦ idA = f, (h ◦ g) ◦ f = h ◦ (g ◦ f)

for all f : A → B, g : B → C, and h : C → D.

The terms “map” or “arrow” are often used interchangeably with “morphism”.

Examples. Some examples of categories are: the category Set of sets (with functions

as the morphisms); the category Rel of sets (with relations as the morphisms); the

category Vect of vector spaces (with linear maps); the category Hilb of Hilbert spaces

(with bounded linear maps); the category UHilb of Hilbert spaces (with unitary maps);

the category Top of topological spaces (with continuous maps); the category Cob of

n-dimensional oriented manifolds (with oriented cobordisms). Note that in each case,

we need to specify not only the objects, but also the morphisms (and technically the

composition and identities, although they are often clear from the context).

Categories also arise in other sciences, for example in logic (where the objects are

propositions and the morphisms are proofs), and in computing (where the objects are

data types and the morphisms are programs).

Many concepts associated with sets and functions, such as inverse, monomorphism

(injective map), idempotent, cartesian product, etc., are definable in an arbitrary cate-

gory.
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Object A
A

Morphism f : A → B
A

f
B

Identity idA : A → A
A

Composition t ◦ s
A

s
B

t
C

Table 1: The graphical language of categories

Graphical language. In the graphical language of categories, objects are represented

as wires (also called edges) and morphisms are represented as boxes (also called nodes).

An identity morphisms is represented as a continuing wire, and composition is repre-

sented by connecting the outgoing wire of one diagram to the incoming wire of another.

This is shown in Table 1.

Coherence. Note that the three defining axioms of categories (e.g., idB ◦ f = f )

are automatically satisfied “up isomorphism” in the graphical language. This property

is known as soundness. A converse of this statement is also true: every equation that

holds in the graphical language is a consequence of the axioms. This property is called

completeness. We refer to a soundness and completeness theorem as a coherence the-

orem.

Theorem 2.1 (Coherence for categories). A well-formed equation between two mor-

phism terms in the language of categories follows from the axioms of categories if and

only if it holds in the graphical language up to isomorphism of diagrams.

Hopefully it is obvious what is meant by isomorphism of diagrams: two diagrams

are isomorphic if the boxes and wires of the first are in bijective correspondence with

the boxes and wires of the second, preserving the connections between boxes and wires.

Admittedly, the above coherence theorem for categories is a triviality, and is not

usually stated in this way. However, we have included it for sake of uniformity, and

for comparison with the less trivial coherence theorems for monoidal categories in the

following sections. The proof is straightforward, since by the associativity and unit

axioms, each morphism term is uniquely equivalent to a term of the form ((fn ◦ . . .) ◦
f2) ◦ f1 for n ≥ 0, with corresponding diagram

f1 f2 · · · fn .

Remark 2.2. We have equipped wires with a left-to-right arrow, and boxes with a mark-

ing in the upper left corner. These markings are of no use at the moment, but will

become important as we extend the language in the following sections.
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Technicalities

Signatures, variables, terms, and equations. So far, we have not been very precise

about what the wires and boxes of a diagram are labeled with. We have also glossed

over what was meant by “a well-formed equation between morphism terms in the lan-

guage of categories”. We now briefly explain these notions, without giving all the

formal details. For a more precise mathematical treatment, see e.g. Joyal and Street

[22].

The wires of a diagram are labeled with object variables, and the boxes are la-

beled with morphism variables. To understand what this means, consider the fa-

miliar language of arithmetic expressions. This language deals with terms, such as

(x + y + 2)(x + 3), which are built up from variables, such as x and y, constants,

such as 2 and 3, by means of operations, such as addition and multiplication. Variables

can be viewed in three different ways: first, they can be viewed as symbols that can

be compared (e.g. the variable x occurs twice in the given term, and is different from

the variable y). They can also be viewed as placeholders for arbitrary numbers, for

example x = 5 and y = 15. Here x and y are allowed to represent different numbers

or the same number; however, the two occurrences of x must denote the same number.

Finally, variables can be viewed as placeholders for arbitrary terms, such as x = a+ b

and y = z2.

The formal language of category theory is similar, except that we require two sets

of variables: object variables (for labeling wires) and morphism variables (for label-

ing boxes). We must also equip each morphism variable with a specified domain and

codomain. The following definition makes this more precise.

Definition. A simple (categorical) signature Σ consists of a set Σ0 of object variables,

a set Σ1 of morphism variables, and a pair of functions dom, cod : Σ1 → Σ0. Ob-

ject variables are usually written A,B,C, . . ., morphism variables are usually written

f, g, h, . . ., and we write f : A → B if dom(f) = A and cod(f) = B.

Given a simple signature, we can then build morphism terms, such as f ◦ (g ◦ idA),
which are built from morphism variables (such as f and g) and morphism constants

(such as idA), via operations (i.e., composition). Each term is recursively equipped with

a domain and a codomain, and we must require compositions to respect the domain and

codomain information. A term that obeys these rules is called well-formed. Finally,

an equation between terms is called a well-formed equation if the left-hand side and

right-hand side are well-formed terms that moreover have equal domains and equal

codomains.

The graphical language is also relative to a given signature. The wires and boxes are

labeled, respectively, with object variables and morphism variables from the signature,

and the labeling must respect the domain and codomain information. This means that

the wire entering (respectively, exiting) a box labeled f must be labeled by the domain

(respectively, codomain) of f .

The above remark about the different roles of variables in arithmetic also holds for

the diagrammatic language of categories. On the one hand, the labels can be viewed

as formal symbols. This is the view used in the coherence theorem, where the formal

labels are part of the definition of equivalence (in this case, isomorphism) of diagrams.
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The labels can also be viewed as placeholders for specific objects and morphisms

in an actual category. Such an assignment of objects and morphisms is called an inter-

pretation of the given signature. More precisely, an interpretation i of a signature Σ in

a category C consists of a function i0 : Σ0 → |C|, and for any f ∈ Σ1 a morphism

i1(f) : i0(dom f) → i0(cod f). By a slight abuse of notation, we write i : Σ → C for

such an interpretation.

Finally, a morphism variable can be viewed as a placeholder for an arbitrary (pos-

sibly composite) diagram. We occasionally use this latter view in schematic drawings,

such as the schematic representation of t ◦ s in Table 1. We then label a box with a

morphism term, rather than a formal variable, and understand the box as a short-hand

notation for a possibly composite diagram corresponding to that term.

Functors and natural transformations.

Definition. Let C and D be categories. A functor F : C → D consists of a func-

tion F : |C| → |D|, and for each pair of objects A,B ∈ |C|, a function F :
homC(A,B) → homD(FA,FB), satisfying F (g ◦ f) = F (g) ◦ F (f) and F (idA) =
idFA.

Definition. Let C and D be categories, and let F,G : C → D be functors. A natural

transformation τ : F → G consists of a family of morphisms τA : FA → GA, one for

each object A ∈ |C|, such that the following diagram commutes for all f : A → B:

FA
τA

Ff

GA

Gf

FB
τB

GB.

Coherence and free categories. Most coherence theorems are proved by character-

izing the free categories of a certain kind.

Definition. We say that a category C is free over a signature Σ if it is equipped with an

interpretation i : Σ → C, such that for any category D and interpretation j : Σ → D,

there exists a unique functor F : C → D such that j = F ◦ i.

Theorem 2.3. The graphical language of categories over a signature Σ, with identities

and composition as defined in Table 1, and up to isomorphism of diagrams, forms the

free category over Σ.

Theorem 2.1 is indeed a consequence of this theorem: by definition of freeness,

an equation holds in all categories if and only if it holds in the free category. By the

characterization of the free category, an equation holds in the free category if and only

if it holds in the graphical language.

3 Monoidal categories

In this section, we consider various notions of monoidal categories. We sometimes

refer to these notions as “progressive”, which means they have graphical languages
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where all arrows point left-to-right. This serves to distinguish them from “autonomous”

notions, which will be discussed in Section 4, and “traced” notions, which will be

discussed in Section 5.

3.1 (Planar) monoidal categories

A monoidal category (also sometimes called tensor category) is a category with an

associative unital tensor product. More specifically:

Definition ([29, 23]). A monoidal category is a category with the following additional

structure:

• a new operation A⊗B on objects and a new object constant I;

• a new operation on morphisms: if f : A → C and g : B → D, then

f ⊗ g : A⊗B → C ⊗D;

• and isomorphisms

αA,B,C : (A⊗B)⊗ C
∼=
−→ A⊗ (B ⊗ C),

λA : I ⊗A
∼=
−→ A,

ρA : A⊗ I
∼=
−→ A,

subject to a number of equations:

• ⊗ is a bifunctor, which means idA ⊗ idB = idA⊗B and (k ⊗ h) ◦ (g ⊗ f) =
(k ◦ g)⊗ (h ◦ f);

• α, λ, and ρ are natural transformations, i.e., (f⊗(g⊗h))◦αA,B,C = αA′,B′,C′ ◦
((f ⊗ g)⊗ h), f ◦ λA = λA′ ◦ (idI ⊗ f), and f ◦ ρA = ρA′ ◦ (f ⊗ idI);

• plus the following two coherence axioms, called the “pentagon axiom” and the

“triangle axiom”:

(A⊗ (B ⊗ C))⊗D

αA,B⊗C,D

A⊗ ((B ⊗ C)⊗D)
idA⊗αB,C,D

((A⊗ B)⊗ C)⊗D

αA,B,C⊗idD

αA⊗B,C,D

A⊗ (B ⊗ (C ⊗D)),

(A⊗B)⊗ (C ⊗D)
αA,B,C⊗D

(A⊗ I)⊗B

ρA⊗idB

αA,I,B

A⊗ (I ⊗B)

idA⊗λB

A⊗B.

When we specifically want to emphasize that a monoidal category is not assumed

to be braided, symmetric, etc., we sometimes also refer to it as a planar monoidal

category.

9



Tensor product S ⊗ T
T

S

Unit object I (empty)

Morphism f : A1 ⊗ . . . ⊗An →B1 ⊗ . . . ⊗Bm

An Bm

A1

..

. f B1

..

.

Tensor product s⊗ t

C
t

D

A
s

B

Table 2: The graphical language of monoidal categories

Examples. Examples of monoidal categories include: the category Set (of sets and

functions), together with the cartesian product ×; the category Set together with the

disjoint union operation +; the category Rel with either × or +; the category Vect (of

vectors spaces and linear functions) with either ⊕ or ⊗; the category Hilb of Hilbert

spaces with either ⊕ or ⊗; the categories Top and Cob with disjoint union +. Note

that in each case, we need to specify a category and a tensor product (in general there

are multiple choices). Technically, we should also specify associativity maps etc., but

they are usually clear from the context.

Graphical language. We extend the graphical language of categories as follows. A

tensor product of objects is represented by writing the corresponding wires in parallel.

The unit object is represented by zero wires. A morphism variable f : A1⊗. . .⊗An →
B1⊗ . . .⊗Bm is represented as a box with n input wires and m output wires. A tensor

product of morphisms is represented by stacking the corresponding diagrams. This is

shown in Table 2.

Note that it is our convention to write tensor products in the bottom-to-top order.

Similar conventions apply to objects as to morphisms: thus, a single wire is labeled

by an object variable such as A, while a more general object such as A ⊗ B or I is

represented by zero or more wires. For more details, see “Monoidal signatures” below.

Coherence. It is easy to check that the graphical language for monoidal categories

is sound, up to deformation of diagrams in the plane. As an example, consider the

following law, which is a consequence of bifunctoriality:

(idC ⊗ g) ◦ (f ⊗ idB) = (f ⊗ idD) ◦ (idA ⊗ g).
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Translated into the graphical language, this becomes

B g D

A
f

C
=

B g D

A
f

C,

which obviously holds up to deformation of diagrams. We have the following coher-

ence theorem:

Theorem 3.1 (Coherence for planar monoidal categories [21, Thm. 1.5], [22, Thm. 1.2]).

A well-formed equation between morphism terms in the language of monoidal cate-

gories follows from the axioms of monoidal categories if and only if it holds, up to

planar isotopy, in the graphical language.

Here, by “planar isotopy”, we mean that two diagrams, drawn in a rectangle in the

plane with incoming and outgoing wires attached to the boundaries of the rectangle,

are equivalent if it is possible to transform one to the other by continuously moving

around boxes in the rectangle, without allowing boxes or wires to cross each other or

to be detached from the boundary of the rectangle during the moving. To make these

notions mathematically precise, it is usually easier to represent morphism as points,

rather than boxes. For precise definitions and a proof of the coherence theorem, see

Joyal and Street [21, 22].

Caveat 3.2. Technically, Joyal and Street’s proof in [21, 22] only applies to planar

isotopies where each intermediate diagram during the deformation remains progres-

sive, i.e., with all arrows oriented left-to-right. Joyal and Street call such an isotopy

“recumbent”. We conjecture that the result remains true if one allows arbitrary planar

deformations. Similar caveats also apply to the coherence theorems for braided and

balanced monoidal categories below.

The following is an example of two diagrams that are not isomorphic in the planar

embedded sense:

B

f h g

A

6=

B

f
A

g

h

(3.1)

where f : I → A⊗B, g : A⊗B → I , and h : I → I . And indeed, the corresponding

equation g ◦ ((ρA ◦ (idA⊗h)◦ρ−1
A )⊗ idB)◦f = g ◦ ((λA ◦ (h⊗ idA)◦λ

−1
A )⊗ idB)◦f

does not follow from the axioms of monoidal categories. This is an easy consequence

of soundness.

Note that because of the coherence theorem, it is not actually necessary to memo-

rize the axioms of monoidal categories: indeed, one could use the coherence theorem

as the definition of monoidal category! For practical purposes, reasoning in the graph-

ical language is almost always easier than reasoning from the axioms. On the other

hand, the graphical definition is not very useful when one has to check whether a given

category is monoidal; in this case, checking finitely many axioms is easier.
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Relationship to traditional coherence theorems. Many category theorists are fa-

miliar with coherence theorems of the form “all diagrams of a certain type commute”.

Mac Lane’s traditional coherence theorem for monoidal categories [28] is of this form.

It states that all diagrams built from only α, λ, ρ, id, ◦, and ⊗ commute.

The coherence results in this paper are of a more general form (cf. Kelly [26,

p. 107]). Here, the object is to characterize all formal equations that follow from a given

set of axioms. We note that the traditional coherence theorem is an easy consequence of

the general coherence result of Theorem 3.1: namely, if a given well-formed equation

is built only from α, λ, ρ, id, ◦, and ⊗, then both the left-hand side and right-hand side

denote identity diagrams in the graphical language. Therefore, by Theorem 3.1, the

equation follows from the axioms of monoidal categories. Analogous remarks hold for

all the coherence theorems of this article.

Technicalities

Monoidal signatures. To be precise about the labels on diagrams of monoidal cate-

gories, and about the meaning of “well-formed equation” in the coherence theorem, we

introduce the concept of a monoidal signature. This generalizes the simple signatures

introduced in Section 2. Monoidal signatures were introduced under the name tensor

schemes by Joyal and Street [21, 22]. We give a non-strict version of the definition.

Definition ([22, Def. 1.4], [21, Def. 1.6]). Given a set Σ0 of object variables, let

Mon(Σ0) denote the free (⊗, I)-algebra generated by Σ0, i.e., the set of object terms

built from object variables and I via the operation ⊗. For example, if A,B ∈ Σ0, then

the term (A⊗B)⊗ (I ⊗A) is an element of Mon(Σ0).
A monoidal signature consists of a set Σ0 of object variables, a set Σ1 of morphism

variables, and a pair of functions dom, cod : Σ1 → Mon(Σ0).

The concept of well-formed morphism terms and equations (in the language of

monoidal categories) is defined relative to a given monoidal signature. In the graphical

language, wires and boxes are labeled by object variables and morphism variables as

before. An object term expands to zero or more parallel wires, by the rules of Table 2.

As before, the labellings must respect the domain and codomain information, which

now involves possibly multiple wires connected to a box. Just as we sometimes label

a box by a morphism term in schematic drawings to denote a possibly composite dia-

gram, we sometimes label a wire by an object term, such as S and T in Table 2. In this

case, it is a short-hand notation for zero or more parallel wires.

Given a monoidal signature Σ and a monoidal category C, an interpretation i :
Σ → C consists of an object function i0 : Σ0 → |C|, which then extends in a unique

way to î0 : Mon(Σ0) → |C| such that î0(A⊗B) = î0(A)⊗ î0(B) and î0(I) = I , and

for any f ∈ Σ1 a morphism i1(f) : i0(dom f) → i0(cod f).
The remaining graphical languages in this Section 3 are all given relative to a

monoidal signature.

Monoidal functors and natural transformations.
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Definition. A strong monoidal functor (also sometimes called a tensor functor) be-

tween monoidal categories C and D is a functor F : C → D, together with natural

isomorphisms φ2 : FA⊗FB → F (A⊗B) and φ0 : I → FI , such that the following

diagrams commute:

(FA⊗ FB)⊗ FC
φ2⊗id

α

F (A⊗B)⊗ FC
φ2

F ((A⊗B)⊗ C)

F (α)

FA⊗ (FB ⊗ FC)
id⊗φ2

FA⊗ F (B ⊗ C)
φ2

F (A⊗ (B ⊗ C)),

FA⊗ I
ρ

id⊗φ0

FA

FA⊗ FI
φ2

F (A⊗ I),

F (ρ)

I ⊗ FA
λ

φ0⊗id

FA

FI ⊗ FA
φ2

F (I ⊗A).

F (λ)

Definition. Let C and D be monoidal categories, and let F,G : C → D be strong

monoidal functors. A natural transformation τ : F → G is called monoidal (or a tensor

transformation) if the following two diagrams commute for all A,B:

FA⊗ FB
φ2

τA⊗τB

F (A⊗B)

τA⊗B

GA⊗GB
φ2

G(A ⊗B),

I

id

φ0

F (I)

τI

I
φ0

G(I).

Coherence and free monoidal categories. Similarly to what we stated for cate-

gories, the coherence theorem for monoidal categories is a consequence of a character-

ization of the free monoidal category. However, due to the extra coherence conditions

in the definition of a strong monoidal functor, the definition of freeness is slightly more

complicated.

Definition. A monoidal category C is a free monoidal category over a monoidal sig-

nature Σ if it is equipped with an interpretation i : Σ → C such that for any monoidal

category D and interpretation j : Σ → D, there exists a strong monoidal functor

F : C → D such that j = F ◦ i, and F is unique up to a unique monoidal natural

isomorphism.

As before, the coherence theorem can be re-formulated as a freeness theorem.

Theorem 3.3. The graphical language of monoidal categories over a monoidal signa-

ture Σ, with identities, composition, and tensor as defined in Tables 1 and 2, and up to

planar isotopy of diagrams, forms a free monoidal category over Σ.

Most of the coherence theorems (and conjectures) of this article can be similarly

formulated in terms of freeness. An exception to this are the traced categories without

braidings in Sections 5.1–5.4 and 7.5, as explained in Remark 5.4. From now on, we

will only mention freeness when it is not entirely automatic, such as in Section 4.1.
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3.2 Spacial monoidal categories

Definition. A monoidal category is spacial if it satisfies the additional axiom

ρA ◦ (idA ⊗ h) ◦ ρ−1
A = λA ◦ (h⊗ idA) ◦ λ

−1
A , (3.2)

for all h : I → I .

In the graphical language, this means that

h

A

=

A

h
,

so in particular, it implies that the two terms in (3.1) are equal. The author does not

know whether the concept of a spacial monoidal category appears in the literature, or

if it does, under what name.

Graphical language. The graphical language for spacial monoidal categories is the

same as that for monoidal categories, except that planarity is dropped from the notion

of diagram equivalence, i.e., diagrams are considered up to isomorphism. Obviously

the axioms are sound; we conjecture that they are also complete.

Conjecture 3.4 (Coherence for spacial monoidal categories). A well-formed equation

between morphism terms in the language of spacial monoidal categories follows from

the axioms of spacial monoidal categories if and only if it holds, up to isomorphism of

diagrams, in the graphical language.

Note that, in the case of planar diagrams, the notion of isomorphism of diagrams

coincides with ambient isotopy in 3 dimensions. This explains the term “spacial”.

3.3 Braided monoidal categories

Definition ([23]). A braiding on a monoidal category is a natural family of isomor-

phisms cA,B : A⊗B → B ⊗A, satisfying the following two “hexagon axioms”:

(B ⊗A)⊗ C
αB,A,C

B ⊗ (A⊗ C)
idB⊗cA,C

(A⊗B)⊗ C

cA,B⊗idC

αA,B,C

B ⊗ (C ⊗A).

A⊗ (B ⊗ C)
cA,B⊗C

(B ⊗ C)⊗A

αB,C,A
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(B ⊗A)⊗ C
αB,A,C

B ⊗ (A⊗ C)
idB⊗c

−1

C,A

(A⊗B)⊗ C

c
−1

B,A
⊗idC

αA,B,C

B ⊗ (C ⊗A).

A⊗ (B ⊗ C)
c
−1

B⊗C,A

(B ⊗ C)⊗A

αB,C,A

Note that every braided monoidal category is spacial; this follows from the natural-

ity (in I) of cA,I : A⊗ I → I ⊗A.

A braided monoidal functor between braided monoidal categories is a monoidal

functor that is compatible with the braiding in the following sense:

FA⊗ FB
φ2

cFA,FB

F (A⊗B)

FcA,B

FB ⊗ FA
φ2

F (B ⊗A).

Graphical language. One extends the graphical language of monoidal categories

with the braiding:

Braiding cA,B

B A

A B

In general, if A and B are composite object terms, the braiding cA,B is represented

as the appropriate number of wires crossing each other.

Note that the braiding satisfies cA,B◦c−1
A,B = idA⊗B , but not cA,B◦cB,A = idA⊗B .

Graphically:

B A B

A B A

= idA⊗B,

B A B

A B A

6= idA⊗B.

Example 3.5. The first hexagon axiom translates into the following in the graphical

language:

(idB ⊗ cA,C) ◦ αB,A,C ◦ (cA,B ⊗ idC) = αB,C,A ◦ (cA,B⊗C) ◦ αA,B,C
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C C A

B A C

A B B

=

C A

B C

A B

Example 3.6. The Yang-Baxter equation is the following equation, which is a conse-

quence of the hexagon axiom and naturality:

(cB,C⊗idA)◦(idB⊗cA,C)◦(cA,B⊗idC) = (idC⊗cA,B)◦(cA,C⊗idB)◦(idA⊗cB,C).

In the graphical language, it becomes:

C C A A

B A C B

A B B C

=

C B B A

B C A B

A A C C

Theorem 3.7 (Coherence for braided monoidal categories [22, Thm. 3.7]). A well-

formed equation between morphisms in the language of braided monoidal categories

follows from the axioms of braided monoidal categories if and only if it holds in the

graphical language up to isotopy in 3 dimensions.

Here, by “isotopy in 3 dimensions”, we mean that two diagrams, drawn in a 3-

dimensional box with incoming and outgoing wires attached to the boundaries of the

box, are isotopic if it is possible to transform one to the other by moving around nodes

in the box, without allowing nodes or edges to cross each other or to be detached from

the boundary during the moving. Also, the linear order of the edges entering and exiting

each node must be respected. This is made more precise in Joyal and Street [22].

Caveat 3.8. The proof by Joyal and Street [22] is subject to some minor technical

assumptions: graphs are assumed to be smooth, and the isotopies are progressive, with

continuously changing tangent vectors.

3.4 Balanced monoidal categories

Definition ([23]). A twist on a braided monoidal category is a natural family of iso-

morphisms θA : A → A, satisfying θI = idI and such that the following diagram

commutes for all A,B:

A⊗B

θA⊗B

cA,B

B ⊗A

θB⊗θA

A⊗B B ⊗A.
cB,A

(3.3)

A balanced monoidal category is a braided monoidal category with twist.

A balanced monoidal functor between balanced monoidal categories is a braided

monoidal functor that is also compatible with the twist, i.e., such that F (θA) = θFA

for all A.
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Graphical language. The graphical language of balanced monoidal categories is

similar to that of braided monoidal categories, except that morphisms are represented

by flat ribbons, rather than 1-dimensional wires. A ribbon can be thought of as a pair of

parallel wires that are infinitesimally close to each other, or as a wire that is equipped

with a framing [22]. For example, the braiding looks like this:

cA,B = .

The twist map θA is represented as a 360-degree twist in a ribbon, or in several rib-

bons together, if A is a composite object term. This is easiest seen in the following

illustration.

θA = , θA⊗B = .

The meaning of (3.3) should then be obvious.

Theorem 3.9 (Coherence for balanced monoidal categories [22, Thm. 4.5]). A well-

formed equation between morphisms in the language of balanced monoidal categories

follows from the axioms of balanced monoidal categories if and only if it holds in the

graphical language up to framed isotopy in 3 dimensions.

3.5 Symmetric monoidal categories

Definition. A symmetric monoidal category is a braided monoidal category where the

braiding is self-inverse, i.e.:

cA,B = c−1
B,A

In this case, the braiding is called a symmetry.

Remark 3.10. Because of equation (3.3), a symmetric monoidal category can be equiv-

alently defined as a balanced monoidal category in which θA = idA for all A.

Remark 3.11. The previous remark notwithstanding, there exist symmetric monoidal

categories that possess a non-trivial twist (in addition to the trivial twist θA = idA).

Thus, in a balanced monoidal category, the symmetry condition cA,B = c−1
B,A does

not in general imply θA = idA. In other words, a balanced monoidal category that is

symmetric as a braided monoidal category is not necessarily symmetric as a balanced

monoidal category. An example is the category of finite dimensional vector spaces and

linear bijections, with θA(x) = nx, where n = dim(A).

Examples. On the monoidal category (Set,×) of sets with cartesian product, a sym-

metry is given by c(x, y) = (y, x). On the category (Vect,⊗) of vector spaces with

tensor product, a symmetry is given by c(x⊗ y) = y ⊗ x.
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Graphical language. The symmetry is graphically represented by a crossing:

Symmetry cA,B

B A

A B

Theorem 3.12 (Coherence for symmetric monoidal categories [22, Thm. 2.3]). A well-

formed equation between morphisms in the language of symmetric monoidal categories

follows from the axioms of symmetric monoidal categories if and only if it holds, up to

isomorphism of diagrams, in the graphical language.

Note that the graphical language for symmetric monoidal categories is up to iso-

morphism of diagrams, without any reference to 2- or 3-dimensional structure. How-

ever, isomorphism of diagrams is equivalent to ambient isotopy in 4 dimensions, so we

can still regard it as a geometric notion.

4 Autonomous categories

Autonomous categories are monoidal categories in which the objects have duals. In

terms of graphical language, this means that some wires are allowed to run from right

to left.

4.1 (Planar) autonomous categories

Definition ([23]). In a (without loss of generality strict) monoidal category, an exact

pairing between two objects A and B is given by a pair of morphisms η : I → B ⊗A

and ǫ : A⊗B → I , such that the following two adjunction triangles commute:

A
idA⊗η

idA

A⊗B ⊗A

ǫ⊗idA

A,

B
η⊗idB

idB

B ⊗A⊗B

idB⊗ǫ

B.

(4.1)

In such an exact pairing, B is called the right dual of A and A is called the left dual of

B.

Remark 4.1. The maps η and ǫ determine each other uniquely, and they are respectively

called the unit and the counit of the adjunction. Moreover, the triple (B, η, ǫ), if it

exists, is uniquely determined by A up to isomorphism. The existence of duals is

therefore a property of a monoidal category, rather than an additional structure on it.

Moreover, every strong monoidal functor automatically preserves existing duals.

Definition ([20, 21, 23]). A monoidal category is right autonomous if every object A

has a right dual, which we then denote A∗. It is left autonomous if every object A has

a left dual, which we then denote ∗A. Finally, the category is autonomous if it is both

right and left autonomous.
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Remark 4.2 (Terminology). A [right, left, –] autonomous category is also called [right,

left, –] rigid, see e.g. [32, p. 78]. Also, the term “autonomous” is sometimes used in the

weaker sense of “monoidal closed”. Although this latter usage is no longer common, it

still lives on in the terminology “*-autonomous category” (Barr [4], see also Section 9).

If we wish to emphasize that an autonomous category is not necessarily symmetric

or braided, we sometimes call it a planar autonomous category.

Graphical language. If A is an object variable, the objects A∗ and ∗A are both rep-

resented in the same way: by a wire labeled A running from right to left. The unit and

counit are represented as half turns:

Dual A∗, ∗A
A

Unit ηA : I → A∗ ⊗A

A

A
η′A : I → A⊗ ∗A

A

A

Counit ǫA : A⊗A∗ → I

A

A
ǫ′A : ∗A⊗A → I

A

A

More generally, if A is a composite object represented by a number of wires, then

A∗ and ∗A are represented by the same set of wires running backward (rotated by 180

degrees), and the units and counits are represented as multiple wires turning.

Example 4.3. The two diagrams in (4.1), where B = A∗, translate into the graphical

language as follows:

A

A

A

=
A

,

A

A

A

=
A

.

Example 4.4. For any morphism f : A → B, it is possible to define morphisms

f∗ : B∗ → A∗ and ∗f : ∗B → ∗A, called the adjoint mates of f , as follows:

f∗ =

B

A
f

B

A

∗f =

A

A
f

B

B

With these definitions, (−)∗ and ∗(−) become contravariant functors.

Theorem 4.5 (Coherence for planar autonomous categories [21, Thm. 2.7]). A well-

formed equation between morphisms in the language of autonomous categories follows

from the axioms of autonomous categories if and only if it holds in the graphical lan-

guage up to planar isotopy.
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Here, the notion of planar isotopy is the same as before, except that the wires are

of course no longer restricted to being oriented left-to-right during the deformation.

However, the ability to turn wires upside down does not extend to boxes: the notion

of isotopy for this theorem does not include the ability to rotate boxes. See Joyal and

Street [21] for a more precise statement.

Caveat 4.6. The proof by Joyal and Street [21] assumes that the diagrams are piecewise

linear.

Note that the same theorem applies to left autonomous, right autonomous, or au-

tonomous categories. Indeed, each individual term in the language of autonomous

categories involves only finitely many duals, and thus may be translated into a term of

(say) left autonomous categories by replacing each object variable A by A∗∗∗...∗, for a

sufficiently large, even number of ∗’s. The resulting term maps to the same diagram.

The same coherence theorem also holds for categories that are only right (or left)

autonomous. This is a consequence of the following proposition.

Proposition 4.7. Each right (or left) autonomous category can be fully embedded in

an autonomous category.

Proof. Let C be a right autonomous category, and consider the strong monoidal functor

F : C → C given by F (A) = A∗∗. This functor is full and faithful, and every object

in the image of F has a left dual. Now let Ĉ be the colimit (in the large category of

right autonomous categories and strong monoidal functors) of the sequence

C
F
−→ C

F
−→ C

F
−→ . . .

Then Ĉ is autonomous, and C is fully and faithfully embedded in Ĉ. The proof for

left autonomous categories is analogous. ✷

Corollary 4.8 (Coherence for right (left) autonomous categories). A well-formed equa-

tion between morphisms in the language of right (left) autonomous categories follows

from the axioms of right (left) autonomous categories if and only if it holds in the

graphical language up to planar isotopy.

Proof. It suffices to show that an equation (in the language of right autonomous cat-

egories) holds in all right autonomous categories if and only if it holds in all au-

tonomous categories. The “only if” direction is trivial, since every autonomous cat-

egory is right autonomous. For the opposite direction, suppose some equation holds in

all autonomous categories, and let C be a right autonomous category. Then C can be

faithfully embedded in an autonomous category Ĉ. By assumption, the equation holds

in Ĉ, and therefore also in C, since the embedding is faithful. ✷

Technicalities

Autonomous signatures. The diagrams of autonomous categories, and the concept

of well-formed equation in the coherence theorem, are defined relative to the notion of

an autonomous signature. These were called autonomous tensor schemes by Joyal and

Street [21]. We give a non-strict version of the definition.
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Definition. [21, Def. 2.5] Given a set Σ0 of object variables, let Aut(Σ0) denote the

free (⊗, I, ∗(−), (−)∗)-algebra generated by Σ0, i.e., the set of object terms built from

object variables and I via the operations ⊗, ∗(−), and (−)∗). For example, if A,B ∈
Σ0, then the term B∗ ⊗ (∗∗I ⊗A)∗ is an element of Aut(Σ0).

An autonomous signature consists of a set Σ0 of object variables, a set Σ1 of mor-

phism variables, and a pair of functions dom, cod : Σ1 → Aut(Σ0).

The concept of a right autonomous signature and left autonomous signature are

defined analogously. The remaining graphical languages in this Section 4 are all given

relative to an autonomous signature.

Functors and natural transformations of autonomous categories. Any strong monoidal

functor preserves exact pairings: if η : I → B ⊗A and ǫ : A⊗B → I define an exact

pairing, then so do

F̂ η : I
φ0

−→ FI
Fη
−−→ F (B ⊗A)

(φ2)−1

−−−−→ FB ⊗ FA

and

F̂ ǫ : FA⊗ FB
φ2

−→ F (A⊗B)
Fǫ
−−→ FI

(φ0)−1

−−−−→ I.

In particular, if C and D are autonomous categories and F : C → D is a monoidal

functor, by uniqueness of duals, there will be a unique induced natural isomorphism

F (A∗) ∼= (FA)∗ such that

I

ηFA

F̂ ηA

F (A∗)⊗ FA

∼=⊗id

(FA)∗ ⊗ FA

and

FA⊗ F (A∗)

id⊗∼=

F̂ ǫA
I,

FA⊗ (FA)∗

ǫFA

and similarly for F (∗A) ∼= ∗(FA).
For natural transformations, we have the following lemma:

Lemma 4.9 (Saavedra Rivano [32, Prop. 5.2.3], see also [23, Prop. 7.1]). Suppose

τ : F → G is a monoidal natural transformation between strong monoidal functors

F,G : C → D. If A has a right dual A∗ in C, then τA∗ and (τA)
∗ are mutually inverse

in D (up to the above canonical isomorphism), or more precisely:

F (A∗)
τA∗

∼=

G(A∗)

∼=

(FA)∗ (GA)∗
(τA)∗

In particular, if C is autonomous, then any such monoidal natural transformation is

invertible.
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Coherence and free autonomous categories. The graphical language, as we have

defined it above for autonomous categories, is sufficient for the purposes of Theo-

rem 4.5. However, it does not characterize the free autonomous category over an au-

tonomous signature as stated. For example, consider a signature with a single mor-

phism variable f : A → A. The problem is that there are clearly some diagrams, such

as

A
f

A (4.2)

which are not translations of any well-formed term of autonomous categories. Indeed,

for this diagram to correspond to a well-formed term, we would have to have e.g. f :
A∗∗ → A or f : A → ∗∗A.

Joyal and Street [21] characterize the free autonomous category by equipping each

edge with a winding number. Effectively, the horizontal segments of edges are labeled

with pairs (A, n), where A is an object variables and n is an integer winding number.

Left-to-right segments have even winding numbers, right-to-left segments have odd

winding numbers, and winding numbers increase by one on counterclockwise turns,

and decrease by one on clockwise turns. The winding numbers on the input and output

of each box, and on the global inputs and outputs, are restricted to be consistent with

the domain and codomain information, where e.g. A∗∗ corresponds to (A, 2), and ∗∗∗B

to (B,−3). See [21] for precise details. Here is an example of a well-formed diagram

of type I → B∗∗ ⊗A, where g : I → A⊗B:

(   ,1)B

(   ,0)B

A(   ,0)

(   ,2) B

g

Theorem 4.10. The graphical language (with winding numbers) of autonomous cate-

gories over an autonomous signature Σ, up to planar isotopy of diagrams, forms a free

autonomous category over Σ.

We remark that if a diagram of planar autonomous categories can be labeled with

winding numbers, then this labeling is necessarily unique. In particular, for the pur-

poses of Theorem 4.5, there is no harm in dropping the winding numbers, because by

hypothesis, the theorem only considers diagrams that are the translation of well-formed

terms, whose winding numbers can therefore uniquely reconstructed.

4.2 (Planar) pivotal categories

A pivotal category is an autonomous category with a suitable isomorphism A ∼= A∗∗.

Definition ([15, 16, 19]). A pivotal category is a right autonomous category equipped

with a monoidal natural isomorphism iA : A → A∗∗.
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Note that any pivotal category is immediately left autonomous, therefore autonomous.

The requirement that iA is a monoidal natural transformation here means that iI is the

canonical isomorphism I ∼= I∗∗, and that the following diagram commutes, where the

horizontal arrow is the canonical isomorphism derived from the autonomous structure:

A⊗B

iA⊗iB iA⊗B

A∗∗ ⊗B∗∗
∼=

(A⊗B)∗∗.

(4.3)

The following property, which is sometimes taken as part of the definition of piv-

otal categories [19, Def. 3.1.1], is a direct consequence of Saavedra Rivano’s Lemma

(Lemma 4.9).

Lemma 4.11. In any pivotal category, the following diagram commutes:

A∗
iA∗

idA∗

A∗∗∗

i∗A

A∗.

Remark 4.12. One can equivalently define a pivotal category as an autonomous cate-

gory equipped with a monoidal natural isomorphism (of contravariant monoidal func-

tors) φ : A∗
∼=
−→ ∗A. This was done by Freyd and Yetter [16]. Condition (S) of [16,

Def. 4.1] is also a consequence of Saavedra Rivano’s Lemma, and is therefore redun-

dant.

Remark 4.13 (Terminology). Freyd and Yetter [16] also introduced the term sovereign

category for a pivotal category.

A pivotal functor between pivotal categories is a monoidal functor that also satisfies

FA
F (iA)

iFA

F (A∗∗)

∼=

(FA)∗∗.

Graphical language. The graphical language for pivotal categories is the same as

that for autonomous categories, where the isomorphism iA : A → A∗∗ is represented

like an identity map. Of course, there are now additional diagrams that are the transla-

tion of well-formed terms. For example, when f : A → A, then (4.2) is a well-formed

diagram of pivotal categories, but not of autonomous categories. Indeed, in the case of

pivotal categories, the problem of winding numbers (discussed before Theorem 4.10)

disappears, as winding numbers are taken modulo 2, and hence add nothing beyond

orientation.
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Theorem 4.14 (Coherence for pivotal categories). A well-formed equation between

morphisms in the language of pivotal categories follows from the axioms of pivotal

categories if and only if it holds in the graphical language up to planar isotopy, includ-

ing rotation of boxes.

Caveat 4.15. Only special cases of this theorem have been proved in the literature.

Freyd and Yetter [16, Thm. 4.4] considered the case of the free pivotal category gener-

ated by a category. In our terminology, this means that they only considered diagrams

for pivotal categories over simple signatures, rather than over autonomous signatures.

In other words, they only considered boxes of the form

A
f

B
,

with exactly one input and one output. Joyal and Street’s draft report [19] claims the

general result but contains no proof.

The notion of planar isotopy for pivotal categories includes the ability to rotate

boxes in the plane of the diagram. For example, the following two diagrams are isotopic

in this sense:

f = f (4.4)

This also explains why we have marked a corner of each box. With the ability to rotate

boxes, we need to keep track of their “natural” orientation, so that the diagrams from

(4.4) can also be represented like this:

f

More generally, the adjoint mate of f : A → B can be represented by a rotated box:

f∗ =

B

A
f

B

A

=
B

f
A

(4.5)

Also note that is f is a composite diagram, then the whole diagram may be rotated to

obtain f∗.
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4.3 Spherical pivotal categories

Definition (Barrett and Westbury [5]). A pivotal category is spherical if for all objects

A and morphisms f : A → A,

A
f

A =
A

f
A

(4.6)

The intuition behind the “spherical” axioms is that diagrams should be embedded

in a 2-sphere, rather than the plane. It is then obvious that the left-hand side of (4.6)

can be continuously transformed into the right-hand side, namely by moving the loop

across the back of the 2-sphere.

Failure of coherence. The spherical axiom is not sound for the graphical language

of diagrams embedded in the 2-sphere. The problem is that the notion of “diagram

embedded in the 2-sphere” is not compatible with composition or tensor. The following

is a consequence of the spherical axiom, but does not hold up to isotopy in the 2-sphere.

g

A
f

A

=

g

A
f

A =

g

A
f

A

Note that this counterexample is similar to the spacial axiom (3.2), but does not quite

imply it. If one adds the spacial axiom, as we are about to do, then any notion of

isotopy is lost and equivalence of diagrams collapses to isomorphism.

4.4 Spacial pivotal categories

Definition. A pivotal category is spacial if it satisfies the spacial axiom (3.2) and the

spherical axiom (4.6).

Graphical language and coherence. The graphical language for spacial pivotal cat-

egories is the same as that for planar pivotal categories, except that equivalence of dia-

grams is now taken up to isomorphism. Clearly, the axioms are sound for the graphical

language. We conjecture that they are also complete.

Conjecture 4.16 (Coherence for spacial pivotal categories). A well-formed equation

between morphisms in the language of spacial pivotal categories follows from the ax-

ioms of spacial pivotal categories if and only if it holds in the graphical language up

to isomorphism.
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4.5 Braided autonomous categories

An braided autonomous category is an autonomous category that is also braided (as a

monoidal category). The notion of braided autonomous categories is not extremely nat-

ural, as the graphical language is only sound for a restricted form of isotopy called reg-

ular isotopy. Nevertheless, it is useful to collect some facts about braided autonomous

categories.

Lemma 4.17 ([23, Prop. 7.2]). A braided monoidal category is autonomous if and only

if it is right autonomous.

Proof. If η : I → B ⊗ A and ǫ : A ⊗ B → I form an exact pairing, then so do

c−1
A,B ◦ η : I → A ⊗ B and ǫ ◦ cB,A : B ⊗ A → I . Therefore any right dual of A is

also a left dual of A. ✷

In any braided autonomous category C, we can define a natural isomorphism bA :
A∗∗ → A. This follows from the proof of Lemma 4.17, using the fact that both A and

A∗∗ are right duals of A∗. More concretely, bA and its inverse are defined by:

bA = A∗∗ ηA⊗id
−−−−→ A∗ ⊗A⊗A∗∗

id⊗cA,A∗∗
−−−−−−→ A∗ ⊗A∗∗ ⊗A

ǫA∗⊗id
−−−−→ A,

b−1
A = A

id⊗ηA∗
−−−−→ A⊗A∗∗ ⊗A∗

c
−1

A∗∗,A
⊗id

−−−−−−→ A∗∗ ⊗A⊗A∗ id⊗ǫA−−−−→ A∗∗.

Here we have written, without loss of generality, as if C were strict monoidal. Graphi-

cally, bA and its inverse look like this:

bA =

A∗∗ A

A∗

b−1
A =

A∗

A A∗∗

We must note that although bA is a natural isomorphism, it is not canonical. In general,

there exist infinitely many natural isomorphisms A ∼= A∗∗. Also, b is not a monoidal

natural transformation, and therefore does not define a pivotal structure on C. A gen-

eral braided autonomous category is not pivotal.

Graphical language and coherence. The graphical language braided autonomous

categories is obtained simply by adding braids to the graphical language of autonomous

categories. However, the correct notion of equivalence of diagrams is neither planar

isotopy (like for autonomous categories), nor 3-dimensional isotopy (like for braided

monoidal categories), but an in-between notion called regular isotopy [25].

It is well-known that 3-dimensional isotopy of links and tangles is equivalent to

planar isotopy of their (non-degenerate) projections onto a 2-dimensional plane, plus

the three Reidemeister moves [31] shown as (R1)–(R3) in Figure 3. To extend this to

diagrams with nodes, one also has to add the moves (Λ1) and (Λ2).

Regular isotopy is defined to be the equivalence obtained by dropping Reidemeister

move (R1). Note that regular isotopy is an equivalence on 2-dimensional representation

of 3-dimensional diagrams (and not of 3-dimensional diagrams themselves).
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(R1) = =

(R2) =

(R3) =

(Λ1) =
... ...

... ...

(Λ2) =
... ...

... ...

Table 3: Reidemeister moves and Λ-moves

Theorem 4.18 (Coherence for braided autonomous categories). A well-formed equa-

tion between morphisms in the language of braided autonomous categories follows

from the axioms of braided autonomous categories if and only if it holds in the graphi-

cal language up to regular isotopy.

Caveat 4.19. Only special cases of this theorem have been proved in the literature.

Freyd and Yetter [16, Thm. 3.8] proved this only for diagrams over a simple signature.

4.6 Braided pivotal categories

Lemma 4.20 (Deligne, see [43, Prop. 2.11]). Let C be a braided autonomous cate-

gory. Then giving a twist θA : A → A on C (making C into a balanced category)

is equivalent to giving a pivotal structure iA : A → A∗∗ (making C into a pivotal

category).

The lemma is remarkable because the concept of a braided autonomous category

does not include any assumption relating the braided structure to the autonomous struc-

ture. Moreover, the axioms for a twist depend only on the braided structure, whereas

the axioms for a pivotal structure depend only on the autonomous structure. Yet, they

are equivalent if C is braided autonomous.

Proof of Lemma 4.20: Recall the natural isomorphism bA : A∗∗ → A that was defined

in Section 4.5 for any braided autonomous category. Given a twist θA : A → A, we

define a pivotal structure by

iA = A
θA−−→ A

b
−1

A−−→ A∗∗. (4.7)

Conversely, given a pivotal structure iA : A → A∗∗, we define a twist by

θA = A
iA−→ A∗∗ bA−−→ A. (4.8)

The two constructions are clearly each other’s inverse. To verify their properties, it is

obvious that iA is a natural isomorphism if and only if θA is a natural isomorphism.

Moreover, θI = id iff iI = b−1
I , and b−1

I is the canonical isomorphism I ∼= I∗∗. What

remains to be shown is that θ satisfies equation (3.3) if and only if i satisfies equation
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(4.3). However, this is a direct consequence of the following fact about b, which is

easily verified:

A∗∗ ⊗B∗∗

∼=

cA,B

B∗∗ ⊗A∗∗

bB⊗bA(A⊗B)∗∗

bA⊗B

A⊗B B ⊗A.
cB,A

✷

Corollary 4.21. A braided pivotal category is the same thing as a balanced autonomous

category. ✷

Remark 4.22. While Lemma 4.20 establishes a one-to-one correspondence between

twists and pivotal structures, the correspondence is not canonical. Indeed, instead of

(4.7) and (4.8), we could have equally well used

iA = A
θ
−1

A−−→ A
b′A−−→ A∗∗ (4.9)

and

θA = A
b′A−−→ A∗∗ i

−1

A−−→ A, (4.10)

where

b′A = A A**.

In fact, there are a countable number of such similar one-to-one correspondences, all

induced by the existence of a monoidal natural transformation b′A
−1 ◦ iA ◦ bA ◦ iA :

A → A. They all coincide if and only if the category is tortile, as discussed in the next

section.

Graphical language and coherence. The graphical language for braided pivotal cat-

egories is the same as the graphical language for pivotal categories, with the addition of

braids. Equivalence of diagrams is up to regular isotopy, just as for braided autonomous

categories (see Section 4.5).

Theorem 4.23 (Coherence for braided pivotal categories). A well-formed equation be-

tween morphisms in the language of braided pivotal categories follows from the axioms

of braided pivotal categories if and only if it holds in the graphical language up to reg-

ular isotopy.

Caveat 4.24. Only special cases of this theorem have been proved in the literature.

Freyd and Yetter [16, Thm. 4.4] proved this only for diagrams over a simple signature.

Remark 4.25. The equation

=
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holds up to regular isotopy, as it can be proved using only the Reidemeister moves (R2)

and (R3). It is therefore valid in braided pivotal categories (or even braided autonomous

categories). On the other hand, the equation

=

holds up to isotopy, but not up to regular isotopy (because regular isotopy preserves

total curvature, as pointed out by Freyd and Yetter [15, p. 169]). It is therefore not

valid in braided pivotal categories. The use of regular isotopy does not seem natural,

and this is precisely the reason why Joyal and Street introduced tortile categories, which

we discuss in the next section.

Remark 4.26. A braided pivotal category is not in general spherical (and therefore also

not spacial). Indeed, instead of the spherical axiom (4.6), only the following holds up

to regular isotopy:

  f
  f=

Along with Remark 4.22, this is further evidence that braided pivotal categories (and

braided autonomous categories) are not “natural” notions.

4.7 Tortile categories

Lemma 4.27. Consider a braided pivotal category, which is equivalently balanced

autonomous via (4.7) and (4.8). For any object A the following are equivalent:

(a) (ǫA∗ ⊗ idA)◦(idA∗⊗c−1
A∗∗,A)◦(ηA⊗ idA∗∗)◦iA◦(ǫA∗⊗ idA)◦(idA∗⊗cA,A∗∗)◦

(ηA ⊗ idA∗∗) ◦ iA = idA, or graphically:

= AA AA

(b) θA∗ = (θA)
∗.

Proof. The proof is a straightforward calculation, but it is best explained by the fact

that the following hold in the graphical language:

θA = A A (θA)
∗ = *A *A θA∗ = *A *A (θA∗)−1 = *A *A .

Therefore, the equation (b) is equivalent to

*A *A *A
*A=

,

which is the adjoint mate of (a). ✷
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Remark 4.28. The condition in Lemma 4.27(a) holds if and only if the two definitions

of θA from (4.8) and (4.10) coincide.

Definition ([23]). A tortile category is a braided pivotal category satisfying the con-

dition of Lemma 4.27(a). Equivalently, a tortile category is a balanced autonomous

category satisfying the condition of Lemma 4.27(b).

Remark 4.29 (Terminology). A tortile category is also sometimes called a ribbon cat-

egory, see e.g. [42].

Graphical language and coherence. The graphical language for tortile categories

is like the graphical language for braided pivotal categories, except that morphisms

are represented by ribbons, rather than wires. These ribbons are just like the ones for

balanced categories from Section 3.4. Units and counits are represented in the obvious

way, for example

ηA = , ǫA = .

The twist map θA : A → A can be represented in several equivalent ways:

θA = = = .

Note that these diagrams are equivalent up to framed 3-dimensional isotopy, and define

the same morphism in a tortile category. (On the other hand, in a mere braided piv-

otal category, the latter two diagrams are not equal). Also note that the map bA from

Section 4.5 is also represented in the graphical language as

bA = ,

but this is of type bA : A∗∗ → A, whereas θA : A → A. They differ, of course, only

by an invisible pivotal map iA : A → A∗∗.

Theorem 4.30 (Coherence for tortile categories). A well-formed equation between

morphisms in the language of tortile categories follows from the axioms of tortile cat-

egories if and only if it holds in the graphical language up to framed 3-dimensional

isotopy.

Caveat 4.31. Only special cases of this theorem have been proved in the literature.

Shum [34, Thm. 6.1] proved it for the case of the free tortile category generated by a

category, i.e., for diagrams over a simple signature only.

4.8 Compact closed categories

A compact closed category is a tortile category that is symmetric (as a balanced monoidal

category) in the sense of Section 3.5. Equivalently, because of Remark 3.10, a compact

closed category is a tortile category in which θA = idA for all A.

30



The definition can be simplified. Notice that a right autonomous symmetric monoidal

category is automatically autonomous (by Lemma 4.17), balanced (with θA = idA) and

therefore pivotal (by Lemma 4.20). Moreover, it is tortile (because θA∗ = (θA)
∗ =

idA∗ ). We can therefore define:

Definition. A compact closed category is a right autonomous symmetric monoidal

category.

Remark 4.32. By analogy with Remark 3.11, it is possible for a compact closed cate-

gory to possess a non-trivial twist (with the associated non-trivial pivotal structure), in

addition to the trivial twist θA = idA, making it into a tortile category. In other words,

for a given tortile category, the symmetry condition cA,B = c−1
B,A does not in general

imply θA = idA. However, it does imply θ2A = idA, as the following argument shows:

θ2A = = = idA.

To construct an example where θ 6= id, consider the category C of finite-dimensional

real vector spaces and linear functions. Define an equivalence relation on objects by

A ∼ B iff dim(A⊗B) is a square. Then define a subcategory C∼ by

homC∼(A,B) =

{

homC(A,B) if A ∼ B,

∅ else.

Then C∼ is compact closed. Let N+ = {1, 2, 3, . . .} be the positive integers, and

consider some multiplicative homomorphism φ : N+ → {−1, 1}. Any such homo-

morphism is determined by a sequence a1, a2, . . . ∈ {−1, 1} via

φ(pn1

1 pn2

2 · · · pnk

k ) = an1

1 an2

2 · · · ank

k ,

where pi is the ith prime number. Finally, define the twist map θA as multiplication by

the scalar φ(dim(A)), or as idA if A is 0-dimensional. With this twist, C∼ is tortile.

In fact, this shows that there exists a continuum of possible twists on C∼.

Examples. The monoidal category (Rel,×) is compact closed with A∗ = A. The

category (FdVect,⊗) of finite dimensional vectors spaces is compact closed with A∗

the dual space of A, and similarly for the category of finite dimensional Hilbert spaces

(FdHilb,⊗). The corresponding categories of possibly infinite dimensional spaces

are not autonomous. (Cob,+) is compact closed with A∗ equal to A with reversed

orientation.

Graphical language and coherence. The graphical language for compact closed cat-

egories is like that of tortile categories, except that we remove the framing and twist

maps, and use symmetries instead of braidings.

Theorem 4.33 (Coherence for compact closed categories). A well-formed equation be-

tween morphisms in the language of compact closed categories follows from the axioms

of compact closed categories if and only if it holds, up to isomorphism of diagrams, in

the graphical language.
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(a)

f

(b)

f

Table 4: (a) A traced diagram. (b) An autonomous diagram that is not traced.

Caveat 4.34. The special case of diagrams over a simple signature was proven by

Kelly and Laplaza [27, Thm. 8.2]. The general case does not appear in the literature.

5 Traced categories

The graphical languages considered in Section 3 were progressive, which means that all

wires were oriented left-to-right. By contrast, the graphical languages of autonomous

categories in Section 4 allow wires to be oriented left-to-right or right-to-left. We now

turn out attention to an intermediate notion, namely traced categories.

Like autonomous graphical languages, traced graphical languages permit loops,

but with a restriction: all wires must be directed left-to-right at their endpoints. In

other words, traced diagrams are like autonomous diagrams, but are taken relative to

a monoidal signature (see Section 3.1), rather than an autonomous signature (see Sec-

tion 4.1). Table 4 shows a typical example of a traced diagram, and a typical example

of an autonomous diagram that is not a traced diagram.

Logically, we should have considered traced categories before pivotal categories,

because traced categories have less structure than pivotal categories (i.e., every pivotal

category is traced, and not the other way around). However, many of the coherence

theorems of this section are consequences of the corresponding theorems for pivotal

categories, and therefore it made sense to present the pivotal notions first.

Symmetric traced categories and their graphical language (in the strict monoidal

case, and with one additional axiom) were first introduced in the 1980’s by Ştefănescu

and Căzănescu under the name “biflow” [38, 10, 11]. Joyal, Street, and Verity later

rediscovered this notion independently, generalized it to balanced monoidal categories,

and proved the fundamental embedding theorem relating balanced traced categories to

tortile categories [24].

Remark 5.1. Joyal, Street, and Verity use the term traced monoidal category. How-

ever, I prefer traced category, usually prefixed by an adjective such as planar, spacial,

balanced, symmetric. The word “monoidal” is redundant, because one cannot have a

traced structure without a monoidal structure. Also, by putting the adjective before the

word “traced”, rather than after it, we make it clear that the traced structure, and not

just the underlying monoidal structure, if being modified.
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5.1 Right traced categories

Definition. A right trace on a monoidal category is a family of operations

TrXR : hom(A⊗X,B ⊗X) → hom(A,B),

satisfying the following four axioms. For notational convenience, we assume without

loss of generality that the monoidal structure is strict.

(a) Tightening (naturality in A,B): TrXR ((g⊗idX)◦f ◦(h⊗idX)) = g◦(TrXR f)◦h;

(b) Sliding (dinaturality in X): TrYR (f ◦ (idA ⊗ g)) = TrXR ((idB ⊗ g) ◦ f), where

f : A⊗X → B ⊗ Y and g : Y → X ;

(c) Vanishing: TrIR f = f and TrX⊗Y
R f = TrXR (TrYR (f));

(d) Strength. TrXR (g ⊗ f) = g ⊗ TrXR f .

A (planar) right traced category is a monoidal category equipped with a right trace.

These axioms are similar to those of Joyal, Street, and Verity [24], except that we

have omitted the yanking axioms which does not apply in the planar case, and we have

replaced the non-planar “superposing” axiom by the planar “strength” axiom. I do not

know whether this set of planar axioms appears in the literature.

Graphical language and coherence. The right trace of a diagram f : A ⊗ X →
B⊗X is graphically represented by drawing a loop from the output X to the input X ,

as follows:

TrXR f =
X X

A
f

B

(5.1)

Note that in the graphical language of right traced categories, parts of wires can be

oriented right-to-left, but each wire must be oriented left-to-right near the endpoints.

The four axioms of right traced categories are illustrated in the graphical language in

Table 5. The axioms of right traced categories are obviously sound for the graphical

language, up to planar isotopy. We conjecture that they are also complete.

Conjecture 5.2 (Coherence for right traced categories). A well-formed equation be-

tween morphism terms in the language of right traced categories follows from the ax-

ioms of right traced categories if and only if it holds in the graphical language up

planar isotopy.

This is a weak conjecture, in the sense that there is not much empirical evidence to

support it, nor is there an obvious strategy for a proof. If this conjecture turns out to be

false, the axioms for right traced categories should be amended until it becomes true.
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Table 5: The axioms of right traced categories

The concept of a left trace is defined similarly as a family of operations

TrXL : hom(X ⊗A,X ⊗B) → hom(A,B),

satisfying symmetric axioms. A left trace is graphically depicted as follows:

TrXL g =

A B

X
g

X (5.2)

We say that a monoidal functorF preserves right traces if F (TrXR f) = TrFX
R ((φ2)−1◦

Ff ◦ φ2), and similarly for left traces.

5.2 Planar traced categories

Definition. A planar traced category is a monoidal category equipped with a right

trace and a left trace, such that the two traces satisfy three additional axioms:

(a) Interchange: TrXR (TrYL f) = TrYL (TrXR f), for all f : Y ⊗A⊗X → Y ⊗B⊗X ;

(b) Left pivoting: TrBR (idB ⊗ f) = TrAL (f ⊗ idA), for all f : I → A⊗B;

(c) Right pivoting: TrBR (idB ⊗ f) = TrAL (f ⊗ idA), for all f : A⊗B → I .

Graphical language and coherence. The graphical language of planar traced cate-

gories consists of diagrams using the left and right trace together, modulo planar iso-

topy. The axioms of interchange, left pivoting, and right pivoting are shown graphically

in Table 6. Compare also equation (4.4) on page 4.4. The axioms are clearly sound;

we conjecture that they are also complete:
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= = =

(a) interchange (b) left pivoting (c) right pivoting

Table 6: Axioms relating left and right trace

Conjecture 5.3 (Coherence for planar traced categories). A well-formed equation be-

tween morphism terms in the language of planar traced categories follows from the

axioms of planar traced categories if and only if it holds in the graphical language up

planar isotopy.

As for right traced categories, this conjecture is weak. If it turns out to be false,

then one should amend the axioms of planar traced categories accordingly.

Remark 5.4. Even if the conjecture is true, the graphical language does not in itself

give an easy description of the free planar traced category. This is because there are

diagrams, such as the following, that “look” planar traced, but are not actually the

diagram of any planar traced term (not even up to planar isotopy).

It is not obvious how to characterize the “planar traced” diagrams intrinsically, or how

to extend the notion of planar traced categories to encompass all such diagrams.

Remark 5.5. An autonomous category is not necessarily traced. However, every pivotal

category is planar traced with the obvious definitions of left and right trace:

TrXR f = (idB ⊗ ǫX) ◦ ((f ◦ (idA ⊗ i−1
X ))⊗ idX∗) ◦ (idA ⊗ ηX∗),

TrXL f = (ǫX∗ ⊗ idB) ◦ (idX∗ ⊗ ((iX ⊗ idB) ◦ f)) ◦ (ηX ⊗ idA).

In the graphical language, this looks just like the diagrams (5.1) and (5.2). As a con-

sequence, each diagram of planar traced categories can be regarded as a diagram of

planar pivotal categories, but not the other way around.

5.3 Spherical traced categories

The concept of a spherical traced category is analogous to that of spherical pivotal

categories from Section 4.3.

Definition. A planar traced category satisfies the spherical axiom if for all f : A → A,

TrAL f = TrAR f, (5.3)

35



or equivalently, in the graphical language:

A
f

A
= A

f
A

A spherical traced category is a planar traced category satisfying the spherical axiom.

Every spherical pivotal category is spherical traced.

Failure of coherence. Just like for spherical pivotal categories, the graphical lan-

guage of spherical traced categories is not coherent for any geometrically useful notion

of equivalence of diagrams.

5.4 Spacial traced categories

Definition. A spacial traced category is a planar traced category if it satisfies the

spacial axiom (3.2) and the spherical axiom (5.3).

Graphical language and coherence. The graphical language for spacial traced cat-

egories is the same as that for planar traced categories, except that equivalence of dia-

grams is now taken up to isomorphism.

Conjecture 5.6 (Coherence for spacial traced categories). A well-formed equation be-

tween morphism terms in the language of spacial traced categories follows from the

axioms of spacial traced categories if and only if it holds, up to isomorphism of dia-

grams, in the graphical language.

Remark 5.7. Every spacial pivotal category is clearly spacial traced. I do not know

whether conversely every spacial traced category can be faithfully embedded in a spa-

cial pivotal category. If this is true, then Conjecture 5.6 follows from Conjecture 4.16.

5.5 Braided traced categories

Braided traced categories, like braided pivotal categories, are a somewhat unnatural

notion, because coherence is only satisfied up to regular isotopy. (If one considers

full isotopy, one obtains the more natural notion of balanced traced categories, which

we will consider in the next section). Nevertheless, we include this section on braided

traced categories, not least because it is the first traced notion for which we can actually

prove a coherence theorem (modulo Caveat 4.24).

Definition. A braided traced category is a planar traced category with a braiding (as a

monoidal category), such that

(TrAL cA,A) ◦ (TrAR c−1
A,A) = idA, (5.4)

or graphically:

=

.
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Lemma 5.8. (a) The axiom (5.4) does not follow from the remaining axioms.

(b) In the presence of the remaining axioms, (5.4) is equivalent to

(TrAL c−1
A,A) ◦ (TrAR cA,A) = idA, (5.5)

or graphically:

=
.

(c) In the presence of the remaining axioms of braided traced categories, the left

and right pivoting axioms are redundant.

Proof. (a) To see this, consider morphism terms in the language of braided traced

categories with one object generator and no morphism generators. Define the de-

gree of a term to the be tensor product of all traced-out objects, i.e., deg(id) = I ,

deg(f ◦ g) = deg(f) ⊗ deg(g), deg(TrXR f) = X ⊗ deg(f), etc. This is well-defined

up to isomorphism. All the axioms of planar traced categories and braided categories

respect degree; the only axioms where the left-hand side and right-hand side could po-

tentially have different degree are sliding in Table 5 and pivoting in Table 6. However,

in the absence of morphism generators, it is easy to show that all morphism terms are

of the form f : A → B where A ∼= B. Therefore, neither sliding nor pivoting change

the degree (the latter because it is vacuous). Therefore degree is an invariant. On the

other hand, (5.4) is not degree-preserving; therefore it cannot follow from the other

axioms.

(b) The following graphical proof sketch can be turned into an algebraic proof:

= =

=

=

==

= =

(c) Here is a proof sketch for the left pivoting axiom. Notably, the second to last
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step uses dinaturality (sliding).

= =

= = =

Remark 5.9. Each braided traced category possesses a balanced structure (as a braided

monoidal category) given by θA = TrAL c−1
A,A, with inverse θ−1

A = TrAR cA,A (cf. (5.4)).

However, this twist is not canonical; for example, another twist can be defined by

θ′A = TrAR cA,A with inverse θ′A
−1 = TrAL c−1

A,A (cf. (5.5)). In fact, there are countably

many other possible twists. This is entirely analogous to Remark 4.22. The various

twists coincide if and only if the yanking equation (5.6) holds, yielding a balanced

traced category as discussed in Section 5.6 below.

We note that every braided pivotal category is braided traced, with the traced struc-

ture as given in Remark 5.5. Moreover, there is an embedding theorem giving a partial

converse:

Theorem 5.10 (Representation of braided traced categories). Every braided traced

categoryC can by fully and faithfully embedded into a braided pivotal category Int(C),
via a braided traced functor.

Proof. The proof exactly mimics the Int-construction of Joyal, Street, and Verity [24],

except that we must replace the twist by , and be careful only to use the braided

traced axioms. We omit the details, which are both lengthy and tedious. ✷

Remark 5.11. A braided traced category is not necessarily spherical (and therefore not

spacial). This is analogous to Remark 4.26.

Graphical language and coherence. The graphical language for braided traced cat-

egories is obtained by adding braids to the graphical language of planar traced cate-

gories. Equivalence of diagrams is up to regular isotopy (see Section 4.5).

Theorem 5.12 (Coherence for braided traced categories). A well-formed equation be-

tween morphisms in the language of braided traced categories follows from the axioms

of braided traced categories if and only if it holds in the graphical language up to

regular isotopy.

Proof. Soundness is easy to check by inspection of the axioms. Completeness is a con-

sequence of Theorems 4.23 and 5.10. Namely, consider an equation in the language

of braided traced categories that holds in the graphical language up to regular isotopy.

The diagrams corresponding to the left-hand side and right-hand side of the equation
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can also be regarded as diagrams of braided pivotal categories, and since they are reg-

ularly isotopic, the equation holds in all braided pivotal categories by Theorem 4.23.

Since any braided traced category C can be faithfully embedded in a braided pivotal

category Int(C) by Theorem 5.10, an equation that holds in Int(C) must also hold in

C. It follows that the equation in question holds in all braided traced categories C, and

therefore, it is a consequence of the axioms. ✷

Caveat 5.13. Because of the dependence on Theorem 4.23, Caveat 4.24 also applies

here.

5.6 Balanced traced categories

Definition ([24]). A balanced traced category is a balanced monoidal category equipped

with a right trace Tr, and satisfying the following yanking axioms:

TrX(cX,X) = θX and TrX(c−1
X,X) = θ−1

X (5.6)

Graphical language and coherence. The graphical language of balanced traced cat-

egories combines the ribbons and twists of balanced categories with the loops of traced

categories. The trace is represented as expected:

TrX f = .

Note that there is no need to postulate a left trace, because a left trace is definable from

the right trace and braidings as follows:

TrXL f = :=

Remark 5.14. The defined left trace automatically satisfies interchange and the pivoting

axioms (Table 6), as well as the spherical axiom (5.3) and the braided traced axiom

(5.4). The spacial axiom (3.2) is satisfied by any braided monoidal category. Therefore,

any balanced traced category is spacial traced and braided traced.

The graphical validity of the yanking axiom is easily verified using a shoe string:

= , = .

Every tortile category is balanced traced, with the traced structure as given in Re-

mark 5.5. Moreover, there is an embedding theorem:
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Theorem 5.15 (Representation of balanced traced categories [24, Prop. 5.1]). Every

balanced traced category can be fully and faithfully embedded into a tortile category,

via a balanced traced functor.

Theorem 5.16 (Coherence for balanced traced categories). A well-formed equation

between morphisms in the language of balanced traced categories follows from the

axioms of balanced traced categories if and only if it holds in the graphical language

up to framed isotopy in 3 dimensions.

Proof. This follows from Theorems 4.30 and 5.15, by the exact same argument that

was used in the proof of Theorem 5.12. ✷

Caveat 5.17. Because of the dependence on Theorem 4.30, Caveat 4.31 also applies

here.

Remark 5.18. In any braided monoidal category with a right trace, the twist and its in-

verse are definable by equation (5.6). These maps are automatically natural and satisfy

θI = idI and (3.3). However, they are not automatically inverse to each other. There-

fore, a balanced traced category could be equivalently defined as a braided monoidal

category with a right trace, satisfying

TrX(c−1
X,X) = TrX(cX,X)−1.

5.7 Symmetric traced categories

Definition ([11, 10, 24]). A symmetric traced category is a symmetric monoidal cate-

gory with a right trace Tr, satisfying the symmetric yanking axiom:

TrX(cX,X) = idX .

Remark 5.19. Because of Remark 3.10, a symmetric traced category can be equiva-

lently defined as a balanced traced category in which θA = idA for all A.

Obviously every compact closed category is symmetric traced with the structure

from Remark 5.5. Here, too, we have an embedding theorem:

Theorem 5.20 (Representation of symmetric traced categories [24]). Every symmetric

traced category can be fully and faithfully embedded into a compact closed category,

via a symmetric traced functor.

Example 5.21 ([24]). Consider the category Rel of sets and relations, with biproducts

given by disjoint union A + B. Given a relation R : A + X → B + X , define its

trace TrX(R) : A → B by (a, b) ∈ TrX(R) iff there exists n ≥ 0 and x1, . . . , xn ∈ X

such that aRx1 Rx2 R . . . R xn Rb. This defines a symmetric traced category which

is not compact closed.
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Graphical language and coherence. The graphical language is like that of planar

traced categories, combined with the symmetry. A typical diagram looks like this:

.

The notion of equivalence of diagrams is isomorphism.

Theorem 5.22 (Coherence for symmetric traced categories). A well-formed equation

between morphisms in the language of symmetric traced categories follows from the

axioms of symmetric traced categories if and only if it holds in the graphical language

up to isomorphism of diagrams.

Proof. A consequence of Theorems 4.33 and 5.20, as in Theorems 5.12 and 5.16.

Caveat 5.23. Because of the dependence on Theorem 4.33, Caveat 4.34 also applies

here.

Remark 5.24. Strict symmetric traced categories, with the additional axiom

TrX(idA⊗X) = idA, (5.7)

first appear in the work of Ştefănescu under the name “biflow”. A precursor of the

definition appears in [38], and the axioms were given their modern form by Căzănescu

and Ştefănescu [10, 11]. The paper [38] also contains a detailed proof sketch of coher-

ence, namely, that the graphical language, modulo isomorphism and the equation (5.7),

forms the free biflow over a monoidal signature. This proof sketch remains valid with

respect to the modern definition, provided that one assumes coherence for symmetric

monoidal categories.

6 Products, coproducts, and biproducts

In this section, we consider graphical languages for monoidal categories where the

monoidal structure is given by a categorical product, coproduct, or biproduct. The

main difference with the graphical languages of “purely” monoidal categories from

Sections 3–5 is that equivalence of diagrams must now be defined up to diagrammatic

equations.

6.1 Products

Definition. In a category, a product of objects A and B is given by an object A × B,

together with morphisms π1 : A × B → A and π2 : A × B → B, such that for all

objects C and pairs of morphisms f : C → A and g : C → B, there exists a unique

morphism h : C → A⊗B such that the following diagram commutes:

C

f g
h

A A⊗B
π1 π2

B.
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Naturality axioms:

∆B ◦ f = (f ⊗ f) ◦∆A : A → B ⊗B

✸B ◦ f = ✸A : A → I

Commutative comonoid axioms:

(idA ⊗∆A) ◦∆A = (∆A ⊗ idA) ◦∆A : A → A⊗A⊗A

(idA ⊗✸A) ◦∆A = ρ−1
A : A → A⊗ I

(✸A ⊗ idA) ◦∆A = λ−1
A : A → I ⊗A

cA,A ◦∆A = ∆A : A → A⊗A

Coherence axioms:

∆I = λ−1
I : I → I ⊗ I

(idA ⊗ cB,A ⊗ idB) ◦∆A⊗B = ∆A ⊗∆B : A⊗B → A⊗A⊗B ⊗B

✸I = idI : I → I

✸A⊗B = λI ◦ (✸A ⊗✸B) : A⊗B → I

Table 7: The axioms for products

The unique morphism h is often written as h = 〈f, g〉. An object I is terminal if for

all objects C, there exists a unique morphism h : C → I . A finite product category (or

cartesian category) is a category with a chosen terminal object, and a chosen product

for each pair of objects.

Equivalently, a finite product category can be described as a symmetric monoidal

category, together with natural families of copy and erase maps

∆A : A → A⊗A, ✸A : A → I

subject to a number of axioms, shown in Table 7.

Graphical language. We extend the graphical language of symmetric monoidal cat-

egories by adding the following representations of the copy and erase maps.

Copy ∆A : A → A⊗A
A

•

A

A

Erase ✸A : A → I A
•

As usual, if A is a composite object term, a wire labeled A should be replaced

by multiple parallel wires. Table 8 contains graphical representations of some of the

axioms for finite product categories.

Note that the projections π1 : A × B → A and π2 : A × B → B, and the pairing
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=

=

=

=

  f

  f

... ...

... ...

  f

  f
...

...

...

...
=

=

Commutative comonoid axioms Naturality

Table 8: Graphical representation of some product axioms

h : C → A⊗B of f : C → A and g : C → B, are represented graphically as follows:

  g

  f2π

π1 =
=h

=

Coherence. As the equivalences in Table 8 demonstrate, coherence in the graphical

language of finite product categories does not hold up to isomorphism or isotopy of

diagrams. Rather, it holds up to manipulations of diagrams. So unlike the graphical

languages considered in Sections 2–5, we now have to consider axioms on diagrams.

Theorem 6.1 (Coherence for finite product categories). A well-formed equation be-

tween morphism terms in the language of finite product categories follows from the

axioms of finite product categories if and only if it holds in the graphical language, up

to isomorphism of diagrams and the diagrammatic manipulations shown in Table 8.

This theorem is a simple consequence of coherence for symmetric monoidal cat-

egories (Theorem 3.12), together with the fact that all the axioms of finite product

categories, except those shown in Table 8, hold up to isomorphism of diagrams.

6.2 Coproducts

The definition of coproducts and initial objects is dual to that of products and terminal

objects, i.e., it is obtained by reversing all the arrows in Section 6.1. Explicitly, an

object 0 is initial if for all objects C, there exists a unique morphism h : 0 → C.

A coproduct of objects A,B is given by an object A + B, together with morphisms

ι1 : A → A+B and ι2 : B → A+B, such that for all objects C and pairs of morphisms

f : A → C and g : B → C, there exists a unique morphism h : A + B → C such

that h ◦ ι1 = f and h ◦ ι2 = g. One often writes h = [f, g]. A category with finite

coproducts is also called a co-cartesian category.
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Dualizing the presentation of Section 6.1, one can equivalently define a finite co-

product category as a symmetric monoidal category with natural families of merge and

initial maps

∇A : A⊗A → A, ✷A : I → A,

satisfying the duals of the axioms in Table 7.

Graphical language. The graphical language of finite coproduct categories is ob-

tained by dualizing that of finite product categories, with the duals of the axioms from

Table 8.

Merge ∇A : A⊗A → A

A

•
A

A

Initial ✷A : I → A
•

A

6.3 Biproducts

Definition. An object is called a zero object if it is initial and terminal. If 0 is a

zero object, then there is a distinguished map A → 0 → B between any two objects,

denoted 0A,B. A biproduct of objects A1 andA2 is given by an objectA1⊕A2, together

with morphisms ιi : Ai → A1 ⊕ A2 and πi : A1 ⊕ A2 → Ai, for i = 1, 2, such that

A ⊕ B is a product with π1, π2, a coproduct with ι1, ι2 and such that πi ◦ ιj = δij .

Here δii = idAi
and δij = 0Aj ,Ai

when i 6= j. We say that C is a biproduct category

if it has a chosen zero object 0 and a chosen biproduct for any pair of objects.

Remark 6.2. The axiom πi ◦ ιj = δij is equivalent to the assertion that the symmetric

monoidal structure defined by ⊕ “as a product” coincides with the symmetric monoidal

structure defined by ⊕ “as a coproduct”. Therefore, a biproduct category is symmetric

monoidal in a canonical way.

Equivalently, a biproduct category can be defined as a symmetric monoidal cate-

gory, together with natural families of morphisms

∆A : A → A⊗A, ✸A : A → I, ∇A : A⊗A → A, ✷A : I → A,

satisfying the axioms in Table 7, as well as their duals.

Graphical language. The graphical language of biproducts is obtained by combining

the graphical languages for products and coproducts. In this case, one has the equalities

in Table 9, which are consequences of the naturality axioms in Table 8. Note that the

axiom πi ◦ ιj = δij holds automatically in the graphical language.

Theorem 6.3 (Coherence for biproduct categories). A well-formed equation between

morphism terms in the language of biproduct categories follows from the axioms of

biproduct categories if and only if it holds in the graphical language, up to isomorphism

of diagrams, the diagrammatic manipulations shown in Table 8, and their duals.
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=

= =

= (empty)

Table 9: Some biproduct laws

This theorem is a simple consequence of coherence for symmetric monoidal cate-

gories, together with the fact that the axioms in Table 8 (and their duals) are exactly the

graphical representations of the axioms in Table 7 (and their duals) that do not already

hold up to graphical isomorphism.

6.4 Traced product, coproduct, and biproduct categories

It potentially makes sense to revisit each of the notions of Sections 3–5 and consider

the case where the monoidal structure is given by a product, coproduct, or biproduct.

Since products, coproducts, and biproducts are automatically symmetric, we do not

need to consider the weaker notions (such as balanced, braided, etc).

Moreover, we do not need to consider any autonomous cases, because an au-

tonomous category where the tensor is given by a product (or coproduct) is trivial.

Indeed, for any objects A,B, the morphisms f : A → B are in one-to-one correspon-

dence with morphism A ⊗ B∗ → I . Since I is terminal, there is exactly one such

morphism, and therefore there is a unique morphism between any two objects. Such a

category is equivalent to the one-object one-morphism category.

Therefore, the only new notion from Sections 3–5 that admits non-trivial examples

in the context of products, coproducts, or biproducts is that of a symmetric traced

category.

Definition. A traced product [coproduct, biproduct] category is a symmetric traced

category where the tensor is given by a categorical product [coproduct, biproduct].

Example 6.4 ([24]). The symmetric traced category (Rel,+) from Example 5.21 is a

traced biproduct category.

Example 6.5. Consider the category Set⊥ whose objects are sets, and whose mor-

phisms are partial functions, regarded as a subcategory of Rel from Example 6.4. In

this category, the empty set 0 is a zero object, and the disjoint union operation A + B

defines a coproduct (but not a product). Trace is given as in Example 6.4. With these

definitions, Set⊥ is a traced coproduct category.

Graphical language. As expected, the graphical language of traced product [coprod-

uct, biproduct] categories is given by adding a trace (as in Section 5) to the graphical

language of finite product [finite coproduct, biproduct] categories.
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Theorem 6.6 (Coherence for traced product [coproduct, biproduct] categories). A well-

formed equation between morphism terms in the language of traced product [coprod-

uct, biproduct] categories follows from the respective axioms if and only if it holds in

the graphical language, up to isomorphism of diagrams, and the diagrammatic manip-

ulations shown in Table 8 and/or their duals (as appropriate).

Remark 6.7. In computer science, traces arise naturally in the context of data flow

(as fixed points), and in the context of control flow (as iteration). The two situations

correspond to traced product categories and traced coproduct categories, respectively.

The duality between data flow and control flow was first described by Bainbridge [3].

The following are typical examples of a data flow diagram (on the left) and a control

flow diagram (on the right). The data flow diagram represents the fixed point expression

y = (3 + x)(x + y), parametric on an input x. The control flow diagram represents a

generic “while loop”. Note that data flow diagrams have a notion of “copying” data,

whereas control flow diagrams have a dual notion of “merging” control paths.

x
y

3

body
condition

Proposition 6.8 (Căzănescu and Ştefănescu [10, 11]). In a category with finite co-

products, giving a trace is equivalent to giving an iteration operator. Here, an iteration

operator is a family of operations

iterX : hom(X,A+X) → hom(X,A),

natural in A and dinatural in X , satisfying

1. Iteration: iter(f) = [idA, iter(f)] ◦ f , for all f : X → A+X;

2. Diagonal property: iter(iter(f)) = iter((idA + [idX , idX ]) ◦ f), for all f : X →
A+X +X .

Dually, on a finite product category, giving a trace is equivalent to a fixed point opera-

tor fixX : hom(A×X,X) → hom(A,X).

This makes precise the intuitive idea that in the presence of coproducts, the while

loop in Remark 6.7 is sufficient for constructing arbitrary traces.

Remark 6.9. In the presence of the other axioms, the diagonal property is equivalent to

the so-called Bekič Lemma:

iter[f, g] = [idA, iter([idA+X , iter(g)] ◦ f)] ◦ [in2, iter(g)],

for all f : X → A+X + Y and g : Y → A+X + Y [36, Prop. B.1].

Remark 6.10. Iteration operators in the sense of Proposition 6.8 were first defined,

using different but equivalent axioms, by Căzănescu and Ungureanu [12, 9], under the

name “algebraic theory with iterate”.
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Proposition 6.11 ([11]). In a category with finite biproducts, giving a trace is equiva-

lent to giving a repetition operation, i.e., a family of operators

∗ : hom(A,A) → hom(A,A)

satisfying

1. f∗ = id + ff∗,

2. (f + g)∗ = (f∗g)∗f∗.

3. (fg)∗f = f(gf)∗ (dinaturality).

Here, f + g denotes the morphism ∇A ◦ (f ⊕ g) ◦∆A : A → A, for f, g : A → A.

6.5 Uniformity and regular trees

Definition. Suppose we are given a traced category with a distinguished subclass of

morphisms called the strict morphisms. Then the trace is called uniform if for all

f : A ⊗ X → B ⊗ X , g : A ⊗ Y → B ⊗ Y , and strict h : X → Y , the following

implication holds:

(idB ⊗ h) ◦ f = g ◦ (idA ⊗ h) ⇒ TrX(f) = TrY (g).

Equivalently, in pictures:

=f
h h g ⇒ =f g .

whenever h is strict. Note that uniformity is not an equational property.

Proposition 6.12 ([11]). A traced coproduct category is uniformly traced if and only

if for all f : X → A+X , g : Y → A+ Y , and strict h : X → Y ,

(idA + h) ◦ f = g ◦ h ⇒ iterX(f) = iterY (g) ◦ h.

Moreover, a traced biproduct category is uniformly traced if and only if for all f :
X → X , g : Y → Y , and strict h : X → Y ,

h ◦ f = g ◦ h ⇒ h ◦ f∗ = g∗ ◦ h.

In the particular case where the class of strict morphisms is taken to be the small-

est co-cartesian subcategory containing all objects, Ştefănescu [36, 35] proved that the

free uniformly traced coproduct category over a monoidal signature is given by the

graphical language of traced coproduct categories, modulo a suitable notion of simula-

tion equivalence on diagrams. This simulation equivalence is easiest to describe in the

case where all morphism variables are of input arity 1. In this case, two diagrams are

simulation equivalent if and only if they have the same infinite tree unwinding. There

is also an analogous result for biproducts. We refer the reader to [36, 37, 40] for full

details.
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The following is an example of an equation that holds up to infinite tree unwinding,

but fails in general traced coproduct categories:

f f
f= (6.1)

Ésik’s “iteration theories” [14] are a direct equational axiomatization of such infinite

tree unwindings. They include an iteration operator as in Proposition 6.8, but with an

infinite family of additional properties, such as (6.1).

6.6 Cartesian center

Sometimes it is useful to consider notions that are weaker than product categories, yet

still have copy and erase maps ∆A : A → A ⊗ A and ✸A : A → I . For example, it

is common to drop the naturality axioms, while retaining the commutative comonoid

and coherence axioms (see Tables 7 and 8). An equivalent way to describe such a

category is as a symmetric monoidal category with (faithful) cartesian center [18], i.e.,

a symmetric monoidal category with a symmetric monoidal subcategory that contains

all the objects and is cartesian. Similar ideas have occurred, with varying degrees of

explicitness, in the literature on flowcharts, see e.g. [12, 7, 39].

Similarly, if one omits naturality from the axioms for coproducts, one obtains cat-

egories with a co-cartesian center. A weakened version of biproducts is obtained by

combining the axioms of cartesian center and co-cartesian center. In this case, one

requires the operations ∆, ✸, ∇, ✷ to be natural with respect to one another, yielding

the properties from Table 9. More generally, one may require any subset of the oper-

ations ∆, ✸, ∇, ✷ to exist, and a further subset to be natural transformations. As the

reader may imagine, this leads to a nearly endless number of categorical notions and

corresponding graphical languages; see e.g. [39, 40].

7 Dagger categories

The concept of a dagger category (also called involutive category or *-category in the

literature) is motivated by the category of Hilbert spaces, where each morphism f :
A → B has an adjoint f † : B → A.

Definition. A dagger category is a category C together with an involutive, identity-

on-objects, contravariant functor † : C → C.

Concretely, this means that to every morphism f : A → B, one associates a

morphism f † : B → A, called the adjoint of f , such that for all f : A → B and

g : B → C:

id
†
A = idA : A → A,

(g ◦ f)† = f † ◦ g† : C → A,

f †† = f : A → B,
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Example 7.1. The category Hilb of Hilbert spaces and bounded linear maps is a dagger

category, where f † : B → A is given by the usual adjointness property of linear

algebra, i.e., 〈f †x | y〉 = 〈x | fy〉 for all x ∈ B and y ∈ A.

Definition. (Unitary map, self-adjoint map) In a dagger category, a morphism f :
A → B is called unitary if it is an isomorphism and f−1 = f †. A morphism f : A →
A is called self-adjoint or hermitian if f = f †.

A dagger functor between dagger categories is a functor that satisfies F (f †) =
(Ff)† for all f .

Graphical language. The graphical language of dagger categories extends that of

categories. The adjoint of a morphism variable f : A → B is represented diagrammat-

ically as follows:

f : A → B
A

f
B

f † : B → A
B

f
A

More generally, the adjoint of any diagram is its mirror image. Note that the mirror

image of a box is visually distinguishable because we have marked the upper left corner

of each box representing a morphism variable. Also note that, while we have taken the

mirror image of each box, we have reversed the location, but not the direction, of the

wires. Contrast this with (4.5).

Theorem 7.2 (Coherence for dagger categories). A well-formed equation between two

morphism terms in the language of dagger categories follows from the axioms of dag-

ger categories if and only if it holds in the graphical language up to isomorphism of

diagrams.

Proof. This is a consequence of coherence for categories, from Theorem 2.1. As usual,

soundness is easy to check. For completeness, notice that any morphism term t of

dagger categories can be transformed, via the axioms (g ◦ f)† = f † ◦ g†, id† = id, and

f †† = f , into an equivalent term t′ with the property that † is only applied to morphism

variables in t′. Such a term can be regarded as a term in the language of categories,

over the extended set of morphism variables {f, f †, . . .}. Now if t and s are two terms

that have isomorphic diagrams, then by soundness, t′ and s′ have isomorphic diagrams.

By Theorem 2.1, t′ and s′ are provably equal from the axioms of categories. Therefore

t and s are provably equal from the axioms of dagger categories. ✷

We now consider “dagger notions” for the various monoidal categories from Sec-

tions 3–5.
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7.1 Dagger monoidal categories

Definition. A dagger monoidal category is a monoidal category that is a dagger cat-

egory, such that the dagger structure is compatible with the monoidal structure in the

following sense:

(a) (f ⊗ g)† = f † ⊗ g†, for all f, g;

(b) the canonical isomorphisms of the monoidal structure, αA,B,C : (A⊗B)⊗C →
A⊗ (B ⊗ C), λA : I ⊗A → A, and ρA : A⊗ I → A, are unitary.

Graphical language. The graphical language of dagger monoidal categories is like

the graphical language of monoidal categories, with the adjoint of a diagram given by

its mirror image. For example,













A

f

E

B D

g

F

C G













†

=

E A

F D f B

G g C

Theorem 7.3 (Coherence for planar dagger monoidal categories). A well-formed equa-

tion between morphism terms in the language of dagger monoidal categories follows

from the axioms of dagger monoidal categories if and only if it holds, up to planar

isotopy, in the graphical language.

Proof. This is a consequence of coherence for planar monoidal categories, from The-

orem 3.1. The proof is analogous to that of Theorem 7.2. Note that the axioms of

dagger monoidal categories are precisely what is needed to ensure that all occurrences

of † can be removed from a morphism term, except where applied directly to a mor-

phism variable. ✷

7.2 Other progressive dagger monoidal notions

We can now “daggerize” the other progressive monoidal notions from Section 3:

Definition. • A dagger monoidal category is spacial if it is spacial as a monoidal

category.

• A dagger braided monoidal category is a dagger monoidal category with a uni-

tary braiding cA,B : A⊗B → B ⊗A.

• A dagger balanced monoidal category is a dagger braided monoidal category

with a unitary twist θA : A → A.

• A dagger symmetric monoidal category [33] is a dagger braided monoidal cate-

gory such that the unitary braiding is a symmetry.

50



Graphical languages. In each case, the graphical language extends the correspond-

ing language from Section 3, with the dagger of a diagram taken to be its mirror image.

Each notion has a coherence theorem, proved by the same method as Theorems 7.2

and 7.3. The requirements that the braiding and twist are unitary ensures that the

dagger can be removed from the corresponding terms. The respective caveats from

Section 3 also apply to the dagger cases.

Example 7.4. The category Hilb of Hilbert spaces is dagger symmetric monoidal, with

the usual tensor product and symmetry.

7.3 Dagger pivotal categories

In defining dagger variants of the notions of Section 4, we find that the notion of a dag-

ger autonomous category and a dagger pivotal category coincide. This is because the

presence of a dagger structure on an autonomous category already induces a canonical

isomorphism A ∼= A∗∗, which automatically satisfies the pivotal axioms under mild

assumptions.

To be more precise, consider a dagger monoidal category that is also right au-

tonomous (as a monoidal category). Because ηA : I → A∗ ⊗ A has an adjoint

η
†
A : A∗ ⊗A → I , we can define a family of isomorphisms

iA = A
∼=
−→ I ⊗A

ηA∗⊗idA
−−−−−→ A∗∗ ⊗A∗ ⊗A

idA∗∗⊗η
†
A−−−−−−→ A∗∗ ⊗ I

∼=
−→ A∗∗.

We can represent this schematically as follows (but bearing in mind that we do not yet

have a formal graphical language to work with):

A
iA

A∗∗

=

A

η
†
AA∗

ηA∗
A∗∗

(7.1)

Lemma 7.5. The following are equivalent in a right autonomous, dagger monoidal

category:

• the family of isomorphisms iA : A → A∗∗, as defined above, determines a

pivotal structure;

• for all A,B, the canonical isomorphisms (A ⊗ B)∗ ∼= B∗ ⊗ A∗ and I∗ ∼= I

(determined by the right autonomous structure) are unitary, and for all f : A →
B, the equation f∗† = f †∗ holds.

Proof. By a direct calculation from the definitions, one can check three separate and

independent facts:

• For any given f : A → B, the diagram

A
iA

f

A∗∗

f∗∗

B
iB

B∗∗
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commutes if and only if f∗† = f †∗. In particular, the family iA is a natural

transformation if and only if this condition holds for all f .

• The diagram from (4.3),

A⊗B

iA⊗iB iA⊗B

A∗∗ ⊗B∗∗
∼=

(A⊗B)∗∗,

commutes if and only if the canonical isomorphism (A ⊗ B)∗ ∼= B∗ ⊗ A∗ is

unitary.

• The morphism iI : I → I∗∗ is equal to the canonical isomorphism (from the

right autonomous structure) if and only if the canonical isomorphism I → I∗ is

unitary.

Since the three conditions are the defining conditions for a pivotal structure, the lemma

follows. ✷

Lemma 7.6. Under the equivalent conditions of Lemma 7.5, the following hold:

(a) iA is unitary.

(b) iA = A
∼=
−→ A⊗ I

idA⊗ǫ
†
A∗

−−−−−→ A⊗A∗ ⊗A∗∗ ǫA⊗idA∗∗
−−−−−−→ I ⊗A∗∗

∼=
−→ A∗∗:

A
iA

A∗∗

=
ǫ
†
A∗

A∗∗

A∗

A
ǫA

(c) η
†
A = ǫA∗ ◦ (idA∗ ⊗ iA):

A

η
†
AA∗ =

A
iA

A∗∗

ǫA∗
A∗

(d) ǫ
†
A = (i−1

A ⊗ idA∗) ◦ ηA∗ :

ǫ
†
A

A∗

A
= ηA∗

A∗

A∗∗

i−1

A

A

Proof. To prove (a), first consider

(iA)
† =

ηA

A

A∗

A∗∗ η
†
A∗
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By definition of adjoint mates, we have

(iA)
†∗ =

A∗

η
†
A∗A∗∗

ηA∗∗
A∗∗∗

But this is just the definition of iA∗ , therefore (iA)
†∗ = iA∗ . By definition, iA is unitary

iff (iA)
† = i−1

A , iff (iA)
†∗ = (i−1

A )∗, iff iA∗ = (i−1
A )∗ = (i∗A)

−1. Since i is a monoidal

natural transformation, this holds by Saavedra Rivano’s Lemma (Lemma 4.9).

To prove (b), note that the right-hand side is the inverse of (iA)
†. Therefore, (b) is

equivalent to (a).

Finally, equations (c) and (d) are restatements of the definition of iA from (7.1). ✷

Remark 7.7. The equivalence between (a) and (b) in Lemma 7.6 holds only if iA is

defined as in (7.1). It does not hold for an arbitrary pivotal structure on a right au-

tonomous dagger monoidal category.

Armed with these results, we finally state the two equivalent definitions of a dagger

pivotal category:

Definition. A dagger pivotal category is defined in one of the following equivalent

ways:

1. as a dagger monoidal, right autonomous category such that the natural isomor-

phisms (A⊗B)∗ ∼= B∗ ⊗A∗ and I∗ ∼= I (from the right autonomous structure)

are unitary, and such that f∗† = f †∗ holds for all morphisms f ; or

2. as a pivotal, dagger monoidal category satisfying the condition in Lemma 7.6(c)

(or equivalently, (d)).

The first form of this definition is much easier to check in practice. The second

form is more suitable for the proof of the coherence theorem below.

Remark 7.8. In a dagger pivotal category, the operation (−)∗ arises from an adjunction

(in the categorical sense) of objects, with associated unit, counit, and adjoint mates.

On the other hand, the operation (−)† arises from an adjunction (in the linear algebra

sense) of morphisms. The two concepts should not be confused with each other.

Graphical language. The graphical language of dagger pivotal categories is like that

of pivotal categories, where the adjoint of a diagram is given, as usual, by its mirror

image. For example:















A

g C
B

B















†

=
g

A

C
B

B
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Note that in the graphical language, adjoint mates f∗ : B∗ → A∗ are represented by

rotation and adjoints f † : B → A by mirror image. Therefore, each morphism variable

f : A → B induces four kinds of boxes:

f =
A

f
B

f † =
B

f
A

f∗† =
A

f
B

f∗ =
B

f
A

Also note that, unlike the informal notation used above, the graphical language

does not explicitly display the isomorphism iA : A → A∗∗, and it does not explicitly

distinguish ηA : I → A∗ ⊗ A from ǫ
†
A∗ : I → A∗ ⊗ A∗∗. This is justified by the

following coherence theorem.

Theorem 7.9 (Coherence for dagger pivotal categories). A well-formed equation be-

tween morphisms in the language of dagger pivotal categories follows from the axioms

of dagger pivotal categories if and only if it holds in the graphical language up to

planar isotopy, including rotation of boxes (by multiples of 180 degrees).

Proof. This follows from coherence of pivotal categories (Theorem 4.14), by the same

argument used in the proof of Theorem 7.3. The equations from Lemma 7.6(c) and

(d), and the fact that iA is unitary, can be used to replace η
†
A, ǫ

†
A, and i

†
A by equivalent

terms not containing †. ✷

7.4 Other dagger pivotal notions

It is possible to define dagger variants of the remaining pivotal notions from Section 4:

Definition. A dagger pivotal category is spherical (respectively spacial) if it is spher-

ical (respectively spacial) as a pivotal category.

Definition. A dagger braided pivotal category is a dagger pivotal category with a

unitary braiding cA,B : A⊗B → B ⊗A.

Remark 7.10. Like any braided pivotal category, a dagger braided pivotal category is

balanced by Lemma 4.20. However, in general the resulting twist θA : A → A is not

unitary. In fact, θA is unitary in this situation if and only if θA∗ = (θA)
∗, i.e., if and

only if the category is tortile.

Definition. A dagger tortile category is defined in one of the following equivalent

ways:

1. as a dagger braided pivotal category in which the canonical twist θA, defined as

in Lemma 4.20, is unitary;

2. as a tortile, dagger monoidal category such that the braiding is unitary, and such

that ǫA and ηA satisfy the (equivalent) conditions of Lemma 7.6(c) and (d); or
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3. as a dagger balanced monoidal category that is right autonomous and satisfies

θA =

A A

ηA A∗ η
†
A

(7.2)

The first form of this definition emphasizes the relationship to dagger pivotal cate-

gories. The second form is easiest to check if a category is already known to be tortile.

Finally, the third form takes ǫA, ηA, cA,B and θA as primitive operations and does not

mention the pivotal structure iA at all. The pivotal structure, in this case, is definable

from (4.7) or (7.1), with the condition (7.2) ensuring that the two definitions coincide.

Definition ([1, 33]). A dagger compact closed category is a dagger tortile category

such that θA = idA for all A. Equivalently, it is a dagger symmetric monoidal category

that is right autonomous and satisfies

ηA

A

A∗ = ǫ
†
A

A∗ A

A A∗ (7.3)

The equivalence of the two definition is immediate from the third form of the defini-

tion of dagger tortile categories. Note that (7.2) is equivalent to (7.3) in the symmetric

case. Further, these conditions are equivalent to the condition in Lemma 7.6(d).

Example 7.11. The category FdHilb of finite dimensional Hilbert spaces is dagger

compact closed, with A∗ the usual dual space of linear functions from A to I , and with

f † the usual linear algebra adjoint.

Graphical languages. Each of the notions defined in this section (except the spher-

ical notion) has a graphical language, extending the corresponding graphical language

from Section 4, with the dagger of a diagram taken to be its mirror image. Each no-

tion has a coherence theorem, proved by the same method as Theorems 7.2 and 7.3.

As expected, equivalence of diagrams is up to isomorphism (for spacial dagger piv-

otal categories); up to regular isotopy (for dagger braided pivotal categories); up to

framed 3-dimensional isotopy (for dagger tortile categories); and up to isomorphism

(for dagger compact closed categories).

7.5 Dagger traced categories

There is no difficulty in defining dagger variants of each of the traced notions of Sec-

tion 5. A (left or right) trace on a dagger monoidal category is called a dagger trace if

it satisfies

(Tr f)† = Tr(f †). (7.4)

For example: a dagger right traced category is a right traced dagger monoidal category

satisfying (7.4). A balanced traced category is dagger balanced traced if it is dagger

balanced and satisfies (7.4). And similarly for the other notions. The representation

theorems of Section 5 extend to these dagger variants:
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Theorem 7.12 (Representation of dagger braided/balanced/symmetric traced categories).

Every dagger braided [balanced, symmetric] traced category can be fully and faithfully

embedded in a dagger braided pivotal [dagger tortile, dagger compact closed] cate-

gory, via a dagger braided [balanced, symmetric] traced functor. ✷

The proof, in each case, is by Joyal, Street, and Verity’s Int-construction [24], which

respects the dagger structure.

Graphical languages. The graphical language of each class of traced categories ex-

tends to the corresponding dagger traced categories, in a way suggested by equation

(7.4). As usual, the dagger of a diagram is its mirror image, thus for example















X X

A
f

B















†

=
X X

B
f

A

The coherence theorems of Section 5 extend to this setting.

7.6 Dagger biproducts

In a dagger category, if A⊕B is a categorical product (with projectionsπ1 : A⊕B → A

and π2 : A ⊕B → B), then it is automatically a coproduct (with injections π
†
1 : A →

A ⊕ B and π
†
2 : B → A ⊕ B). It therefore makes sense to define a notion of dagger

biproduct.

Definition. A dagger biproduct category is a biproduct category carrying a dagger

structure, such that π
†
i = ιi : Ai → A1 ⊕A2 for i = 1, 2.

As in Section 6.3, we can equivalently define a dagger biproduct category as a

dagger symmetric monoidal category, together with natural families of morphisms

∆A : A → A⊗A, ✸A : A → I, ∇A : A⊗A → A, ✷A : I → A,

such that ∆†
A = ∇A and ✸

†
A = ✷A, satisfying the axioms in Table 7.

Graphical language. The graphical language of dagger biproduct categories is like

that of biproduct categories, where the dagger of a diagram is taken to be its mirror

image. For example,









  f
  g









†

=   g
  f
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Theorem 7.13 (Coherence for dagger biproduct categories). A well-formed equation

between morphism terms in the language of dagger biproduct categories follows from

the axioms of dagger biproduct categories if and only if it holds in the graphical lan-

guage, up to isomorphism of diagrams, the diagrammatic manipulations shown in Ta-

ble 8, and their duals.

Proof. By reduction to biproduct categories, as in the proofs of Theorems 7.2 and 7.3.

The axioms ∆†
A = ∇A and ✸

†
A = ✷A allow † to be removed from anywhere but a

morphism variable. ✷

Finally, there is an obvious notion of dagger traced biproduct category (which is

really a dagger traced dagger biproduct category), with graphical language derived

from traced biproduct categories.

8 Bicategories

A bicategory [6] is a generalization of a monoidal category. In addition to objects

A,B, . . . and morphisms f, g, . . ., one now also considers 0-cells α, β, . . ., which we

can visualize as colors. For example, consider the following diagram. It is a standard

diagram for monoidal categories, except that the areas between the wires have been

colored.

blue

red

green

yellow

f

g

A

F

E

green

D

B

C

As usual, we have objects A,B,C,D,E, F and morphisms f : A → C ⊗ D and

g : B ⊗ C → F ⊗ E. But now there are also 0-cells called green, red, yellow, and

blue. In such diagrams, each object has a source, which is the 0-cell just above it, and

a target, which is the 0-cell just below it. For example, we have A : green → yellow,

B : yellow → blue, and so on. It is now clear that, to be consistently colored, such

diagrams have to satisfy some coloring constraints. The constraints are:

• The tensor B ⊗ A of two objects may only be formed if the target of A is equal

to the source of B. In symbols, for any 0-cells α, β, γ, if A : α → β and

B : β → γ, then B ⊗A : α → γ.

• If f : A → B is a morphism, then A and B must have a common source and a

common target. In symbols, if f : A → B and A : α → β, then B : α → β.

• One also requires a unit object Iα : α → α for every color α.

As an illustration of the second property, consider f : A → C ⊗ D in the above

example, where A : green → yellow and C ⊗ D : green → yellow. Subject to the

above coloring constraints, a bicategory is then required to satisfy exactly the same
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axioms as a monoidal category. Notice, for example, that if f : A → B and g :
B → C and f, g are well-colored, then so is g ◦ f : A → C. Also, the identity maps

idA : A → A, the associativity map αA,B,C : (A⊗B)⊗C
∼=
−→ A⊗ (B ⊗C), and the

other structural maps are well-colored. In particular, a monoidal category is the same

thing as a one-object bicategory.

To give a detailed account of bicategories and their graphical languages is beyond

the scope of this paper. We have already discussed over 30 different flavors of monoidal

categories, and the reader can well imagine how many possible variations of bicate-

gories there are, with 2-, 3-, and 4-dimensional graphical languages, once one consid-

ers bicategorical versions of braids, twists, adjoints, and traces. There are even more

variations if one considers tricategories and beyond. We refer the reader to [6] for the

definition and basic properties of bicategories, and to [41], [2, Sec. 7] for a taste of

their graphical languages.

9 Beyond a single tensor product

All the categorical notions that we have considered in this paper have just a single

tensor product, which we represented as juxtaposition in the graphical languages. For

notions of categories with more than one tensor product, the graphical languages get

much more complicated. The details are beyond the scope of this paper, so we just

outline the basics and give some references.

Examples of categories with more than one tensor are linearly distributive cate-

gories [13] and *-autonomous categories [4]. Both of these notions are models of mul-

tiplicative linear logic [17]. These categories have two tensors, often called “tensor”

and “par”, and written

A⊗B and A

&

B.

The two tensors are related by some morphisms, such as A⊗(B

&

C) → (A⊗B)

&

C,

while other similar morphisms, such as (A⊗B)

&

C → A⊗ (B

&

C), are not present.

To make a graphical language for more than one tensor product, one must label the

wires by morphism terms, rather than morphism variables. One must also introduce

special tensor and par nodes as shown here:

B

⊗
A⊗B

A

A⊗B
⊗

B

A

B

&A

&

B

A

A

&

B &

B

A

,

along with similar nodes for the units. Equivalence of diagrams must be taken up

to axiomatic manipulations, such as the following, which is called cut elimination in

logic:
B

⊗
A⊗B

⊗

B

AA

=
B

A

.

Finally, one must state a correctness criterion, to explain why certain diagrams, such

as the left one following, are well-formed, while others, such as the right one, are not
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well-formed.

A⊗B
⊗

B

A

⊗
A⊗B A

&

B &

B

A

⊗
A⊗B

The resulting theory is called the theory of proof nets, and was first given by Girard

for unit-free multiplicative linear logic [17]. It was later extended to include the tensor

units by Blute et al. [8].

10 Summary

Table 10 summarizes the graphical languages from Sections 2–6. The name of each

class of categories is shown along with a typical diagram or equation. The arrows

indicate forgetful functors. We have omitted spherical categories, because they do not

possess a graphical language modulo a natural notion of isotopy.

The letter d indicates the dimension of the diagrams, and the letter i indicates the

dimension of the ambient space for isotopy. If i > d, then isotopy coincides with

isomorphism of diagrams. Special cases are “3f” for framed diagrams and framed iso-

topy in 3 dimensions; “2+” for two-dimensional diagram with crossings (i.e., isotopy is

taken on 2-dimensional projections, rather than on 3-dimensional diagrams); “reg” for

regular isotopy; and “rot” to indicate that isotopy includes rotation of boxes. Finally,

“eqn” indicates that equivalence of diagrams is taken modulo equational axioms.

The letter c indicates the status of a coherence theorem. This is usually a reference

to a proof of the theorem, or “conj” if the result is conjectured. A checkmark “
√

” indi-

cates a result that is folklore or whose proof is trivial. “int” indicates that the coherence

theorem follows from a version of Joyal, Street, and Verity’s Int-construction, and the

corresponding coherence theorem for pivotal categories. An asterisk “∗” indicates that

the result has only been proved for simple signatures.

Dagger variants can be defined of all of the notions shown in Table 10, except the

planar autonomous and braided autonomous notions. Finally, bicategories require their

own (presumably much larger) table and are not included here.
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Progressive Traced Autonomous

Category

d:1 i:1 c:
√

Right traced

d:2 i:2 c:conj

Planar autonomous

(rigid)

d:2 i:2 c:[21]

Planar monoidal

d:2 i:2 c:[21, 22]

Planar traced

d:2 i:2 c:conj

Planar pivotal

(sovereign)

d:2 i:2.rot c:[16]∗

Spacial monoidal

=

d:2 i:3 c:conj

Spacial traced

=

d:2 i:3 c:conj

Spacial pivotal

=

d:2 i:3 c:conj

Braided autonomous

d:2+ i:reg c:[16]∗

Braided monoidal

d:3 i:3 c:[22]

Braided traced

d:2+ i:reg.rot c:int∗

Braided pivotal

(balanced autonomous)

d:2+i:reg.rotc:[16]∗

Balanced monoidal

d:3f i:3f c:[22]

Balanced traced

=

=

d:3f i:3f c:int∗

Tortile (ribbon)

d:3f i:3f c:[34]∗

Symmetric monoidal

d:3 i:4 c:[22]

Symmetric traced

d:3 i:4 c:int∗

Compact closed

d:3 i:4 c:[27]∗

Product

=

d:3 i:eqn c:
√

Traced product

d:3 i:eqn c:
√

Coproduct

=

d:3 i:eqn c:
√

Traced coproduct

d:3 i:eqn c:
√

Biproduct

=

d:3 i:eqn c:
√

Traced biproduct

d:3 i:eqn c:
√

Table 10: Summary of monoidal notions and their graphical languages
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G. Păun, editor, Mathematical aspects of natural and formal languages, pages

43–62. World Scientific, Singapore, 1995. Also appeared as: INCREST Preprint

Series in Mathematics 42, Bucharest, 1988.
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[38] G. Ştefănescu. Feedback theories (a calculus for isomorphism classes of flowchart
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