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Abstract

Recently, there has been some interest in autonomous categories (such as compact
closed categories) in which the objects are self-dual, in the sense that A ∼= A

∗, or even
A = A

∗, for all objects A. In this talk, we investigate which coherence conditions
should be required of such a category. We also investigate what graphical language
could be used to reason about such a category.

1 Introduction

1.1 Self-duality

It is well-known that each finite dimensional vector space A is isomorphic, but not naturally
isomorphic, to its dual space A∗. Moreover, if A is an inner product space, then there exists
a natural bijection between A and A∗, but (in the case of complex inner product spaces) it is
skew linear instead of linear, and therefore again A and A∗ are not naturally isomorphic. On
the other hand, there are autonomous categories (such as the category of finite dimensional
real inner product spaces, or the category of finite sets and relations) that are equipped with
a naturally arising family of isomorphisms A ∼= A∗.

It therefore makes sense to study autonomous categories that are equipped with a family
of isomorphisms hA : A → A∗. Such a family may either arise naturally from the category
itself, or it might be imposed by arbitrary choice as an additional structure. In any case,
it makes sense to ask which coherence conditions, if any, the isomorphisms hA should
satisfy. It also makes sense to consider a strict version in which A = A∗, and to ask
whether any coherence conditions should be imposed. Finally, in light of the fact that there
are sound and complete graphical languages for various notions of autonomous categories
[6], it makes sense to ask whether there is a sound and complete graphical language for
autonomous categories with the additional structure of A = A∗.

A similar structure of self-duality was recently described, in the more general context
of involutive monoidal categories, by Egger [1].
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1.2 Self-duality without coherence

There are two possible approaches to coherence. The first is to start with an autonomous
(for example, compact closed) category, and to equip each object A with a chosen isomor-
phism hA : A → A∗, without requiring any naturality or coherence conditions at all. In
this approach, each object is equipped with a chosen “self-duality structure”, which is in-
dependent of any other object. It is akin, for example, to equipping each finite dimensional
vector space with an arbitrarily and independently chosen basis. In this case, the structure
chosen on, say, A⊗B or A∗ does not need to bear any relationship to the structure chosen
on A or B. There is an obvious sound and complete graphical language, namely the usual
language of autonomous categories, extended with basic boxes

hA
A A*

and their inverses, satisfying no special laws.
The strict version of this notion is to require A = A∗ for all objects without any coher-

ence. Equivalently, for each object A, one requires a unit η̂A : I → A ⊗ A and a counit
ε̂A : A ⊗ A → I , satisfying the usual two laws for an exact pairing, i.e.,

A
idA⊗η̂

idA

A ⊗ A ⊗ A

ε̂⊗idA

A,

A
η̂⊗idA

idA

A ⊗ A ⊗ A

idA⊗ε̂

A,

(1.1)

with no additional conditions imposed. Note that, in the absence of coherence conditions,
it is not possible to write

η̂A =

A

A and ε̂A =

A

A

in the graphical language, because the graphical language would then validate additional
laws (think of the graphical representation of η̂A⊗B , for example). So even in the strict
case, the only available graphical language (which is then sound and complete) is the same
as in the non-strict case, i.e.,

η̂A =
hA

A

A−1
and ε̂A =

hAA

A
. (1.2)

In particular, even in the strict formulation there is no reason to expect any particular
equations to hold between morphisms. For example, in the presence of a symmetric
monoidal structure (or more generally, a pivotal structure), there is a canonical isomor-
phism iA : A → A∗∗, usually depicted as the identity in the graphical language. In the
setting of strict self-duality without coherence, we of course have A = A∗∗; however, there
is no reason to expect the canonical map iA : A → A∗∗ to be equal to the identity of A.
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Indeed, in the graphical language, the map iA will then have to be depicted as

hA

hA

AA

−1

,

which is not a diagram for the identity morphism.

1.3 Self-duality with coherence

In light of the above, it seems reasonable to require the self-duality isomorphisms hA :
A → A∗ to satisfy some coherence axioms. Preferably the coherence axioms should be
chosen in such a way that (a) they are valid in relevant examples, and (b) there is a good
graphical language.

Note that the assumption A ∼= A∗ is not as benign as it might first appear. For example,
because an isomorphism (A⊗B)∗ ∼= B∗

⊗A∗ is present in any autonomous category, we
obtain a derived isomorphism

A ⊗ B
hA⊗B
−−−−→ (A ⊗ B)∗

∼=
−→ B∗

⊗ A∗ h−1

B ⊗h−1

A
−−−−−−→ B ⊗ A. (1.3)

If the original category was assumed to be symmetric monoidal (or more generally, braided
monoidal), one would certainly want to require (1.3) to be equal to the symmetry (or braid-
ing). And even if the underlying category was not assumed to possess a braiding (or sym-
metry), the self-duality assumption forces a braiding upon us via (1.3).

The morphism (1.3) also has implications for the graphical language. The isomorphism
(A⊗B)∗ ∼= B∗

⊗A∗ is usually represented in the graphical language like an identity (and
in planar autonomous categories this is the only possible choice). Therefore, because of
(1.3), it is not possible to represent hX : X → X∗ as an identity in the graphical language
for an arbitrary object term X . As the case X = A⊗B shows, the map hX should instead
be represented as a half-twist:

A A* (1.4)

The morphism (1.3) then becomes:

A
B A

BA
B

B
A =

Also note that, if hA : A → A∗ is represented in the graphical language as a half-twist,
then the morphism

θA∗ := A∗ hA∗

−−→ A∗∗ h∗
A

−−→ A∗ (1.5)

is represented as a full twist on A∗:

This indicates that an autonomous category with self-duality should at minimum be tortile
(and possibly compact closed if the braiding is a symmetry). Or in other words, the minimal
autonomous structure on which it makes sense to require a self-duality is that of a tortile
category.
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2 Background

We recall some well-known definitions from the theory of monoidal categories [4].

Definition (Braided monoidal category). A braiding on a monoidal category is a natural
family of isomorphisms cA,B : A ⊗ B → B ⊗ A, satisfying the two “hexagon axioms”:

(idB ⊗ cA,C) ◦ αB,A,C ◦ (cA,B ⊗ idC) = αB,C,A ◦ (cA,B⊗C) ◦ αA,B,C ,

(idB ⊗ c−1
C,A) ◦ αB,A,C ◦ (c−1

B,A ⊗ idC) = αB,C,A ◦ (c−1
B⊗C,A) ◦ αA,B,C .

A monoidal category that is equipped with a braiding is called a braided monoidal category.

Definition (Balanced monoidal category). Recall that a twist on a braided monoidal cat-
egory is a natural family of isomorphisms θA : A → A, satisfying θI = idI and such the
following commutes for all A, B:

A ⊗ B

θA⊗B

cA,B

B ⊗ A

θB⊗θA

A ⊗ B B ⊗ A.cB,A

(2.1)

A balanced monoidal category is a braided monoidal category with twist.

Definition (Right autonomous category). Recall that a right dual for an object A in a
monoidal category is given by (B, η, ε), where B is an object, and η : I → B ⊗ A and
ε : A ⊗ B → I are morphisms, such that the following two adjunction triangles commute:

A
idA⊗η

idA

A ⊗ B ⊗ A

ε⊗idA

A,

B
η⊗idB

idB

B ⊗ A ⊗ B

idB⊗ε

B.

(2.2)

The maps η and ε determine each other uniquely, and moreover, the triple (B, η, ε), if
it exists, is uniquely determined by A up to isomorphism. A monoidal category is right
autonomous if every object A has a right dual, which we then denote (A∗, ηA, εA).

In the graphical language [6, 3, 2], these structures are represented as follows:

Braiding cA,B = , Twist θA = ,

Dual ηA =
A*

A
, εA =

A*

A

.

In each case (braided, balanced, or right autonomous) there is a coherence theorem stating
that an equation follows from the respective axioms if and only if it holds in the graphical
language.

When combining a balanced structure with an autonomous structure, an additional ax-
iom is required that relates them. In the presence of this axiom, coherence holds for the
combined graphical language.
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Definition (Tortile category). A tortile category is a balanced monoidal category which
is also right autonomous and satisfies

θA∗ = (θA)∗.

A compact closed category [5] is a special case of a tortile category satisfying θA = idA

for all A (and therefore cA,B = c−1
B,A). Equivalently, a compact closed category [5] is a

right autonomous symmetric monoidal category.

3 Self-duality structure on tortile categories

We will state the coherence axioms for the self-duality isomorphisms hA : A → A∗ in
two different ways. The first formulation, given in this section, assumes that the underlying
category is tortile (or compact closed, which is a special case). The coherence axioms then
relate the self-duality structure to the tortile structure, along the lines of (1.3) and (1.5) in
the introduction. In the next section, we will give an equivalent set of axioms assuming
only right autonomous structure.

Definition. Let C be a tortile category. A self-duality structure on C is given by a family
of morphisms hA : A → A∗, one for each object A, satisfying the following five axioms
(for all A and B):

(T1) hA is an isomorphism.

(T2) h∗
A ◦ hA∗ = θA∗ : A∗

→ A∗. Equivalently: hA∗ ◦ h∗
A = θA∗∗ : A∗∗

→ A∗∗.

*Ah

hA

A* A**

A*A

A*
= .

(T3) hA⊗B = A ⊗ B
hA⊗hB
−−−−−→ A∗

⊗ B∗
cA∗,B∗

−−−−→ B∗
⊗ A∗

∼=
−→ (A ⊗ B)∗, where the last

isomorphism is the canonical one from the autonomous structure.

A Bh
A

B A*

B*
=

Bh

hA

B

A

A*

B*

(T4) hI : I
∼=
−→ I∗ is the canonical isomorphism from the autonomous structure.

(T5) hA = A
iA
−→ A∗∗ h∗

A
−−→ A∗, where iA : A

∼=
−→ A∗∗ is the canonical isomorphism

arising from the pivotal structure, i.e.,

iA = A
θA
−−→ A

id⊗ηA∗

−−−−→ A ⊗ A∗∗
⊗ A∗

c−1

A∗∗,A
⊗id

−−−−−−→ A∗∗
⊗ A ⊗ A∗ id⊗εA

−−−−→ A∗∗.

In the graphical language of braided autonomous categories, this axiom is equivalent
to:

=
* *A A

A Ahh

A

AA

A
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Remark 3.1. The above axioms are sound for the graphical language, where h is repre-
sented by a half-twist as in (1.4).

Theorem 3.2. Let φ : A → B be any of the canonical isomorphism arising from the tortile
structure. By this, we mean isomorphisms that are represented by identities in the usual
graphical language, i.e., α, λ, ρ, (A⊗B)∗ ∼= B∗

⊗A∗, I ∼= I∗, or iA : A → A∗∗, but not
for example θ or c. Then the following commutes:

A
φ

hA

B

hB

A∗ B∗.
φ∗

Conjecture 3.3 (Coherence). An equation follows from the axioms of tortile categories
with self-duality structure if and only if it holds in the graphical language, where hA is
represented as a half-twist as in (1.4).

The axioms have some interesting structure, captured in the following discussion.

Theorem 3.4. Assuming axioms (T1)–(T4). If axiom (T5) holds for some objects A and B,
then axiom (T5) also holds for A∗, A ⊗ B, and I . Therefore, it suffices to check (T5) for a
set of generators of the objects of C.

Remark 3.5. In case the objects of C are generated freely, axioms (T2)–(T4) can be used
as definitions of hA∗ , hA⊗B , and hI , respectively. It therefore suffices, in this case, to
define the isomorphisms hA : A → A∗ for object generators, in some arbitrary way subject
only to axiom (T5). The definition then extends to all objects via (T2)–(T4), and gives a
self-duality structure on C by Theorem 3.4.

Theorem 3.6. Axiom (T1) is a consequence of (T2) and (T5). The remaining axioms are
independent.

Proof. Consider some non-trivial tortile category where the objects are (without loss of
generality) generated freely from a set of generators and the operations A∗, A ⊗ B, and
I . In light of Remark 3.5, it is clearly possible to define hA on the generators in some
arbitrary way so that axiom (T5) is violated, then extend it to all objects using axioms
(T2)–(T4). In this case, axioms (T1)–(T4) are valid and (T5) is not. On the other hand,
define hA on generators to satisfy (T5), and then extend the definition inductively to all
objects, but modifying the definition of exactly one of hA∗ , hA⊗B , or hI by multiplying
by an additional scalar (for example, using hA∗ = φ · (h∗

A)−1
◦ θA∗ , where φ is a non-

trivial scalar). It is easy to see that the extra scalar does not invalidate (T5). So in this case,
exactly one of the axioms (T2)–(T4) fails, while the remaining axioms are valid. Finally,
to see that (T2) and (T5) imply (T1), note that h∗

A is a split epi by (T2), hence hA is a split
mono. Since iA is an isomorphism, it follows from (T5) that h∗

A is mono, hence iso, hence
hA is iso as well. 2

Remark 3.7. Notice that axiom (T5) in particular implies that

A
hA
−−→ A∗ (h∗)−1

−−−−→ A∗∗ (3.1)
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is a monoidal natural transformation (because it is equal to iA, which is a monoidal natural
transformation in any tortile category). As a matter of fact, if one assumes that (3.1) is a
natural transformation, then the fact that it is monoidal already follows from axioms (T1)–
(T4). However, this is not quite strong enough to imply that (3.1) is equal to iA, i.e., axiom
(T5).

Example 3.8 (Natural examples). The compact closed category of finite dimensional real
inner product spaces possesses a self-duality, where hA : A → A∗ is given as the adjoint
of the inner product A ⊗ A → I . The compact closed category of finite sets and relations
possesses a self-duality, where A = A∗ and hA : A → A∗ is given by the identity relation.

Example 3.9 (Unnatural example). The compact closed category of finite dimensional
complex inner product spaces (i.e., finite dimensional Hilbert spaces) can be equipped with
a self-duality, but not in a canonical way. First, rename the objects (up to equivalence
of categories) so that they are freely generated. Then choose the structure according to
Remark 3.5.

Example 3.10. From any tortile category C, we can construct another category D with
self-duality. Let the objects of D be pairs (A, h), where A is an object of C and h :
A → A∗ is an isomorphism of C satisfying axiom (T5). A morphism from (A, h) to
(B, h′) is just a morphism from A to B in C. Define (A, h) ⊗ (B, h′) = (A ⊗ B, h′′),
(A, h)∗ = (A∗, h′′′), and (I, h′′′′) in the unique way so that the axioms are satisfied, with
the tortile structure inherited from C. Note that the construction is non-canonical, in the
sense that each object A of C generates potentially many non-isomorphic objects (A, h1),
(A, h2), . . . , of D.

4 Self-duality structure on right autonomous categories

We remarked in the introduction that a self-duality structure on a right autonomous category
already yields isomorphisms cA,B : A ⊗ B → B ⊗ A and θA∗ : A∗

→ A∗ as in (1.3)
and (1.5), which can be used as the basis for a tortile structure. Of course, one still has
to require special axioms to ensure that the resulting structure is indeed tortile, and that
the self-duality and tortile structures are compatible in the sense of Section 3. The result
is an alternate axiomatization of self-duality structure, using only the language of right
autonomous categories.

Definition. Let C be a right autonomous category. A self-duality structure on C is given
by a family of morphisms hA : A → A∗, one for each object A, satisfying the following
eight axioms (for all A, B, C, f , and g). For convenience, we express some axioms
in the graphical language of right autonomous categories (which is legitimate due to the
coherence theorem for right autonomous categories). We also write

f] = A∗ h−1

A
−−→ A

f
−→ B

hB
−−→ B∗.

(A1) hA is an isomorphism.

(A2) hI : I
∼=
−→ I∗ is the canonical isomorphism from the autonomous structure.
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(A3) (f∗)] = (f])
∗.

(A4) The following commutes, where the vertical isomorphisms are the canonical ones
from the autonomous structure:

(A ⊗ B)∗
(f⊗g)]

∼=

(A′
⊗ B′)∗

∼=

B∗
⊗ A∗

g]⊗f]

B′∗
⊗ A′∗.

(A5) α∗ = (α])
−1, where α : (A⊗B)⊗C → A⊗(B⊗C) is the associativity isomorphism

from the monoidal structure. Equivalently, hA⊗(B⊗C) is equal to h(A⊗B)⊗C modulo
associativity.

(A6)

C

B

A

**

**

**
*A

B*

*C
A

C

B
*A

B*

*C

C

B

A

**

**

**

A

C

B h

h

h

=
A

B

C*

*

*

h
A* C

B* C*

h

h
h

A (B C)
BA .

(A7)

h h h h
****A= A A* A** A***h

A A***

***A A*

A A****

.

We remark the following. First, (−)] is a covariant functor whose object part is (−)∗.
Second, hA : A → A∗ is a natural transformation with respect to ], by definition: hB ◦f =
f] ◦ hA. We also have hA∗ = (hA)]. Axiom (A4) is equivalent to the following, which is
a componentwise naturality for hA⊗B :

h
f

=
#

#gf
hg .

(4.1)

Note that this naturality implies

h

h

h

h

h

h

h

h
h =

h
,

and therefore with (A6),

h

h

h

h

h

h=
, (4.2)

We define

cA,B = h
h

h

−1

−1
θA = A

hA
−−→ A∗ hA∗

−−→ A∗∗ h∗
A

−−→ A∗ h−1

A
−−→ A.
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Then cA,B satisfies the two hexagon axioms by (A6), (A5), and (4.2), giving a braided
structure. Similarly, one must verify that θA defines a balanced structure and that the
remaining axioms are satisfied.

Theorem 4.1. A self-duality structure on a right autonomous category yields a tortile
structure satisfying the axioms of Section 3. Conversely, any self-duality structure on a
tortile category satisfies the axioms of Section 4. The two constructions are mutually in-
verse, establishing a one-to-one correspondence between tortile categories with a self-
duality structure (in the sense of Section 3) and autonomous categories with a self-duality
structure (in the sense of Section 4).

Remark 4.2. The property (4.2) is a version of the Yang-Baxter equation for braids. The
axiom (A7) is a version of yanking.

Remark 4.3. Axiom (A5) states that the associativity map satisfies the condition of The-
orem 3.2. The corresponding properties for the other maps of Theorem 3.2 follows from
the remaining axioms. Most of them follow from axiom (A7) and coherence for braided
autonomous categories.

Remark 4.4. A useful consequence of (A7) and (A4) is f ∗∗ = f]]. Equivalently, A
hA
−−→

A∗ hA∗

−−→ A∗∗ is a natural transformation.

Remark 4.5 (Induced dagger structure). As the presence of the functor (−)] suggests, a
self-duality structure on a right autonomous (or tortile, or compact closed) category induces
a dagger structure: namely, for f : A → B, define f ] : B → A to be the unique morphism
for (f ])] = f∗. Then the properties of Theorem 3.2 mean precisely that the canonical
isomorphisms mentioned there are unitary with respect to the induced dagger structure.

However, the induced dagger structure is not usually the one that is useful in the ex-
ample categories. In particular, for f : I → I , we always have f ] = f , whereas for the
“natural” dagger (say arising from linear adjoints in finite dimensional Hilbert spaces) we
have that f † is the complex conjugate of f . Therefore, in finite dimensional Hilbert spaces,
equipped by brute force with a self-duality structure as in Examples 3.9 or 3.10, the induced
dagger structure is never the canonical one.

Moreover, if C is tortile with self-duality, then the induced dagger structure (−)] is not
a dagger tortile structure. Namely, we have (cA,B)] = cB,A and (θA)] = θA, whereas a
dagger tortile category should satisfy (cA,B)† = c−1

A,B and (θA)† = θ−1
A . In other words,

cA,B and θA fail to be unitary with respect to the induced dagger structure. For these
reasons, we refrain from using the usual notation (−)† for these unnatural dagger structures.

On the other hand, in “natural” examples of self-duality, such as real inner product
spaces, the induced dagger does coincide with the usual dagger.

5 Strict self-duality

Recall that every self-duality structure hA : A → A∗ on a right autonomous category
induces a strict autonomous structure

η̂A : I → A ⊗ A, ε̂A : A ⊗ A → I,
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namely via η̂A = (h−1
A ⊗ idA) ◦ ηA and ε̂A = εA ◦ (idA ⊗ hA) (as displayed graphically in

(1.2). It is therefore an obvious idea to axiomatize the self-duality directly in terms of such
η̂A and ε̂A, rather than passing via a pre-existing autonomous structure and isomorphisms
hA. This question will be addressed in the full version of this article.

6 Conclusions

We have proposed a set of coherence conditions for autonomous categories in which A ∼=
A∗. We have given two equivalent formulations of the coherence conditions. All the listed
conditions are sound for an obvious graphical language, and are satisfied in relevant ex-
amples. We conjecture that the conditions are also complete. One area where self-duality
arises is in the study of categories with chosen Frobenius algebra structures on each object.
It remains to be seen how the coherence conditions discussed here can be generalized to
Frobenius algebras.
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