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Abstract

We investigate a categorical framework for the semantics of asynchronous commu-
nication in networks of parallel processes. Abstracting from a category of asyn-
chronous labeled transition systems, we formulate the notion of a categorical model
of asynchrony as a uniformly traced monoidal category with diagonals, such that
every morphism is total and the focus is equivalent to a category of complete par-
tial orders. We present a simple, non-deterministic, cpo-based model that satisfies
these requirements, and we discuss how to refine this model by an observational
congruence. We also present a general construction of passing from deterministic to
non-deterministic models, and more generally, from non-linear to linear structure
on a category.

Introduction

In this paper, we investigate the categorical semantics of asynchronous commu-
nication in networks of parallel processes. Informally, communication is said
to be synchronous if messages are sent and received simultaneously, requiring a
‘handshake’ between sender and receiver. It is asynchronous if messages travel
through a communication medium with possible delay, such that the sender
does not have to wait for the receiver to be available. Asynchronous commu-
nication is a common assumption in the design of distributed and concurrent
systems, and particularly in the design of large-scale networks. It is embodied
in such process calculi as the asynchronous π-calculus [5], the programming
language PICT [12], the join calculus [6], and the actors model [3].

There is no shortage of semantic models for networks of communicating
processes. But it seems fair to say that there is a lack of unifying principles
behind the multitude of models that have been suggested. The goal of the
present paper is to use category theory to isolate some general, and hopefully
useful, properties of models of asynchronous communication. These properties
might be taken as a basis for classifying and relating some of the existing
models. The axioms that we suggest are neither claimed to be complete, nor
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in their ultimate form. Rather, they are intended as a working model for what
constitutes a category of asynchronous processes, a notion to be refined and
hopefully improved in the future.

To motivate our categorical treatment, we begin by reviewing a particular,
concrete model of asynchronous communication which was presented in [14].
In this model, which is based on labeled transition systems, asynchronous
channels are modeled explicitly as non-blocking, unbounded capacity buffers.
A process is called asynchronous if its input and output behave as though
they are passing through such a buffer. These asynchronous processes form
the morphisms of a traced monoidal category Buf. We take this category as
a prototype, and by abstracting from its properties, we arrive at our notion of
a categorical model of asynchrony as a traced monoidal category with certain
additional structure.

One feature of our semantics is that it accounts for non-deterministic as
well as for deterministic processes. The classical interpretation of determinis-
tic asynchronous processes is due to Kahn, who has shown that such processes
can be adequately modeled as Scott-continuous maps between certain com-
plete partial orders [11]. There is no such canonical semantics in the non-
deterministic case. Nevertheless, Kahn’s ideas play a central role here, be-
cause in any model of non-determinism, the deterministic processes form an
important subcategory, which we call the focus of the category. We adopt a
version of Kahn’s principle by requiring that the focus of a categorical model
of asynchrony is equivalent to a category of complete partial orders.

1 A category of asynchronous processes

In this section, we describe a category of asynchronous labeled transition sys-
tems. This category, which was first introduced in [14], will serve us to moti-
vate the more abstract categorical definitions of the later sections.

1.1 Labeled transition systems and bisimulation

Throughout, we will write RS for the composition of binary relations, i.e.,
xRSz if for some y, xRy and ySz.

Definition 1.1 A labeled transition system is a tuple S = 〈S, A,−→, s0〉,
where S is a set of states, A is a set of actions, −→⊆ S×A×S is a transition
relation, and s0 ∈ S is the initial state.

We also write |S| = S for the set of states. The set of actions A is also called
the type of the labeled transition system S, and we write S : A. For the
transition relation, we write s

α
−→ t instead of 〈s, α, t〉 ∈ −→, and the intended

interpretation is that the system can get from state s to state t by performing
an action α.
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Sometimes we will consider the set A to contain a special action τ ∈
A, called the silent or unobservable action. Let

τ
−→∗ denote the reflexive,

transitive closure of
τ
−→. Then we write s

α
⇒ t for s

τ
−→∗ α

−→
τ
−→∗ t, if α 6= τ , and

s
τ
⇒ t for s

τ
−→∗ t.

Definition 1.2 Let S and T be labeled transition systems of type A. A
relation R ⊆ |S| × |T| is called a strong bisimulation between S and T if
for all α ∈ A, one has R

α
−→⊆

α
−→R and R−1 α

−→⊆
α
−→R−1. In diagrams:

s R t
α
��
t′

⇒ ∃s′.
s R

α
��

t
α
��

s′ R t′
and

s R
α

��

t

s′
⇒ ∃t′.

s R
α

��

t
α
��

s′ R t′.

A relation R ⊆ |S| × |T| is a weak bisimulation between S and T if for all
α ∈ A, one has R

α
−→⊆

α
⇒R and R−1 α

−→⊆
α
⇒R−1. In diagrams:

s R t
α
��
t′

⇒ ∃s′.
s R

α
��

t
α
��

s′ R t′
and

s R
α

��

t

s′
⇒ ∃t′.

s R
α

��

t
α
��

s′ R t′

It is well-known that there exists a maximal strong bisimulation between S
and T, which we denote by ∼S,T, and a maximal weak bisimulation, which
we denote by ≈S,T. We often omit the subscripts. Recall that ∼S,S and ≈S,S

are equivalence relations on |S|. We say that two states s ∈ |S| and t ∈ |T|
are strongly (weakly) bisimilar if s ∼ t (s ≈ t). Finally, labeled transition
systems S and T are said to be strongly (weakly) bisimilar if their initial states
are strongly (weakly) bisimilar. Strong and weak bisimulation each form an
equivalence relation on the class of all labeled transition systems.

Remark 1.3 Note that R ⊆ |S| × |T| is a weak bisimulation if and only if
for all α ∈ A, R

α
⇒ ⊆

α
⇒R and R−1 α

⇒ ⊆
α
⇒R−1.

1.2 Input, output, and sequential composition

We want to use labeled transition system to model processes which interact
with some environment through input and output. To this end, we put some
additional structure on the set of actions A. Fix two distinct constants in
and out. If X and Y are any sets, we define a set of actions X → Y as the
following disjoint union of sets:

X → Y := {in} × X + {out} × Y + {τ}.

A labeled transition system of type X → Y is also called an agent of this
type. Thus, an agent may have three kinds of transitions: input transi-
tions, written s

in x
−−→ s′; output transitions, written s

out y
−−→ s′, and silent

transitions s
τ
−→ s′. An agent which contains no silent transitions is called

τ -free.
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Example 1.4 Let X = {a}. We define a one-place buffer I : X → X. The
states are |I| = {⊥, a}, the initial state is ⊥, and the transitions are ⊥

ina
−−→ a

and a
out a
−−→ ⊥. The one-place buffer can be represented by the following state

graph, where the initial state is circled:

I = /.-,()*+⊥ in a ((
a.

out a

hh

Example 1.5 For any X, we can define an unbounded buffer BX : X → X.
The set of states is X∗∗, the free commutative monoid generated by X. The
elements of X∗∗ are finite multisets in X, which we denote by u, v, w. The
initial state is the empty word ε, and the transitions are

u
inx
−−→ ux ux

out x
−−→ u.

Note that this buffer does not preserve the order of input and output.

As suggested by the arrow notation for types, agents can be composed. If
S : X → Y and T : Y → Z, then the sequential composition S;T : X → Z is
defined by the following data: It has states |S| × |T| and initial state 〈s0, t0〉.
The transitions are given by the following rules:

s
α
−→S s′ α not output

〈s, t〉
α
−→S;T 〈s′, t〉

,
t

α
−→T t′ α not input

〈s, t〉
α
−→S;T 〈s, t′〉

,

s
out y
−−→S s′ t

in y
−−→T t′

〈s, t〉
τ
−→S;T 〈s′, t′〉

.

Lemma 1.6 (i) Sequential composition is associative up to isomorphism.

(ii) S ∼ S′ and T ∼ T′ ⇒ S;T ∼ S′;T′.

(iii) S ≈ S′ and T ≈ T′ ⇒ S;T ≈ S′;T′.

Example 1.4, continued. If I is the one-place buffer from before, then
I; I is a two-place buffer:

I; I =

WVUTPQRS〈⊥,⊥〉

in a

��

〈⊥, a〉out aoo

in a

��
〈a,⊥〉

τ

::uuuuuuuuuu

〈a, a〉
out a

oo

≈ ��������• in a
'' •

out a

gg
in a

'' •
out a

gg

Example 1.5, continued. The unbounded buffer BX is idempotent up to
weak bisimulation, i.e., BX ;BX ≈ BX .

We remark that agents, as described in this section, do not form a category
under sequential composition. The problem is that there are no identity mor-
phisms. However, we will obtain a category of asynchronous agents in the
next section.
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1.3 Asynchronous agents

So how are we going to model asynchrony? The idea is to use unbounded
buffers to model the asynchronous behavior of a process. From the viewpoint
of an outside observer, it makes no difference whether we think of asynchrony
as a property of the medium through which we communicate with a process,
or whether we think of it as a property of the process itself. In the latter case,
we simply think of the medium as a part of the process that we are trying to
model.

Definition 1.7 An agent S : X → Y is out-buffered if S ≈ S;BY . It is
in-buffered if S ≈ BX ;S. We will call an agent asynchronous if it is in-
and out-buffered.

Note that, because of the idempotency of the buffer, an agent S is asynchro-
nous iff S ≈ BX ;S;BY . Also, asynchronous agents are closed under composi-
tion. Moreover, the buffers BX : X → X act as identity morphisms for this
composition, up to weak bisimulation. Thus, the weak bisimulation classes of
asynchronous agents form the morphisms of a category Buf.

Definition 1.8 The category Buf has as its objects sets, and as its mor-
phisms weak bisimulation classes of asynchronous agents S : X → Y .

1.4 Axioms for asynchrony

The in- and out-buffered agents have an interesting direct characterization in
terms of properties of labeled transition systems. Up to weak bisimulation, the
out-buffered, respectively, in-buffered agents are precisely those that satisfy
the axioms in Table 1, respectively, Table 2. In stating these axioms, we
use the convention that variables are implicitly existentially quantified if they
occur only on the right-hand-side of an implication, and all other variables are
implicitly universally quantified.

Theorem 1.9 (Characterization of in- and out-buffered agents [14])

(i) An agent S is out-buffered if and only if S ≈ T for some T satisfying the
axioms in Table 1.

(ii) An agent S is in-buffered if and only if S ≈ T for some T satisfying the
axioms in Table 2.

Remark 1.10 A standard technique for giving denotational semantics to
agents up to weak bisimulation is to work with saturated agents. An agent
is saturated if for any transition s

α
⇒ t, there already exists a transition

s
α
−→ t. Obviously, for saturated agents weak and strong bisimulation coincide.

However, saturation is not a useful technique in our framework of asynchrony.
It is not difficult to see that any saturated agent that satisfies the properties
in Tables 1 and 2 must be weakly bisimilar to a τ -free agent.
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Table 1
First-order axioms for out-buffered agents

s
out y // s′

α

��
t

⇒

s
out y //

α

��

s′

α

��
s′′

out y // t

output-commutativity (ob1)

s
out y //

α

��

s′

s′′

⇒

s
out y //

α

��

s′

α

��
s′′

out y // t

where α 6= out y

output-confluence (ob2)

s
out y //

out y

��

s′

s′′

⇒ s′ = s′′

output-determinacy (ob3)

Table 2
First-order axioms for in-buffered agents

s α // s′

in x

��
t

⇒

s α //

in x

��

s′

in x

��
s′′

α // t

input-commutativity (ib1)

s in x //

α

��

s′

s′′

⇒

s in x //

α

��

s′

α

��
s′′

in x // t

input-confluence (ib2)

s inx //

in x

��

s′

s′′

⇒ s′ = s′′

input-determinacy (ib3)

s ⇒ s
inx
−−→ t

input-receptivity (ib4)

1.5 Parallel composition and feedback

What other operations, besides sequential composition, do we have on agents?
To begin with, there is an obvious notion of parallel composition (without
interaction). Let X + X ′ denote the disjoint union of sets X and X ′. Then
given two agents S : X → Y and T : X ′ → Y ′, we can define an agent
S+T : X+X ′ → Y +Y ′ as follows: The states are given by |S+T| = |S|×|T|,
with initial state 〈s0, t0〉. The transitions are given by the following rules:

s
α
−→S s′

〈s, t〉
α
−→S+T 〈s′, t〉

,
t

α
−→T t′

〈s, t〉
α
−→S+T 〈s, t′〉

.
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This operation defines a symmetric monoidal structure on the category Buf.

There is also a natural operation of feedback for agents, i.e., of feeding the
output of an agent back into it as input. This operation allows us to construct
networks with loops.

An agent S : X + Z → Y + Z can be pictured as a box with input and
output wires as in the following diagram:

X

Z

S Y

Z

We want to define another agent TrZ S : X → Y by connecting the output
wire of type Z of S to the corresponding input wire like this:

X S

��� Z

Y

Formally, the agent TrZ S is defined as follows: its states and initial state are
the same as those of S. The transitions are given by the two rules:

s
α
−→S s′ α 6= in z, out z

s
α
−→TrZ S s′

,
s

out z
−−→S s′ s′

in z
−−→S s′′

s
τ
−→TrZ S s′′

.

Asynchronous agents are closed under this feedback operation. In fact, as we
will see in the next section, the feedback operation defines a traced monoidal
structure on the category Buf.

Sequential composition, parallel composition, and feedback are the basic
operations required for building arbitrary compositional networks. Of course,
there are other useful operations on agents that one might wish to consider.
However, many of them can be expressed in terms of primitive agents and the
above basic operations.

2 Traced monoidal categories

Traced monoidal categories, introduced by Joyal, Street, and Verity [10], are
an extension of symmetric monoidal categories with a notion of loops. Traces
arise in many different areas of mathematics, where they go by names such
as contraction, Markov trace, or braid closure. In computer science, traced
monoidal categories have been applied to model feedback in process algebra [1]
and cyclic data flow graphs [7,9]. As usual, we denote by C(A, B) the hom-set
(or more generally the hom-class) of morphisms from A to B in a category
C. In a symmetric monoidal category, we denote the symmetry morphism by
cXY : X ⊗ Y → Y ⊗ X. The unit of the tensor is denoted by I.

Definition 2.1 (Joyal, Street, Verity [10]) A traced monoidal category
〈C,⊗, Tr〉 is a symmetric monoidal category 〈C,⊗〉, together with a family of
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operations

TrX : C(A ⊗ X, B ⊗ X) → C(A, B),

satisfying the following four axioms:

(i) Naturality. TrX(g ⊗ idX ; f ; h ⊗ idX) = g; TrX f ; h.

(ii) Strength. TrX(g ⊗ f) = g ⊗ TrX f .

(iii) Symmetry sliding. TrY (TrX(f ; idB ⊗ cXY )) = TrX(TrY (idA ⊗ cXY ; f)).

(iv) Yanking. TrX(cXX) = idX .

Note: in the original paper on traced monoidal categories, Joyal, Street, and
Verity list additional axioms, such as Vanishing and Superposing. These ad-
ditional axioms have been found to be redundant; see e.g. [9].

The axioms for a traced monoidal category, in the above equational form,
are not very palatable. The meaning of the axioms is more easily understood
in the following graphical notation. We write a morphism f : A1⊗ . . .⊗An →
B1 ⊗ . . . ⊗ Bm as a box with wires as follows:

A1

. . .

A2

An

f

B1

. . .

B2

Bm

The intuition behind this notation is to think of f as a process with input
channels A1, . . . , An and output channels B1, . . . , Bm. We usually omit the
labels on wires, and sometimes we combine several parallel wires into one.
The operations of composition, tensor, and trace, along with the identity and
symmetry morphisms, are written as follows:

Composition: f ; g = f g Identity: id =

Tensor: f ⊗ g =
f

g
Symmetry: c =

Trace: Tr f = f

���
In this notation, the four axioms of traced monoidal categories are shown in
Table 3. Sometimes, as in the axiom of strength, we use a dashed box to
emphasize a particular subgraph. These dashed boxes are not really part of
the graphical language; they just serve as an illustration.

The fundamental property of traced monoidal categories is that the ax-
ioms of traced monoidal categories are sound and complete for graph isomor-
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Table 3
The axioms of traced monoidal categories

Naturality:

g
f

h

���
=

g f

���
h

Strength:

g

f

�


�
�

=

g

f

���

Symmetry sliding:

f

�
�

�
�

��� =
f

�
�

�
�

���
Yanking:

����
=

phism in this graphical language. In other words, to demonstrate that some
equation holds in all traced monoidal categories, it suffices to manipulate the
corresponding graphs. For example, to show that for all f : A ⊗ B → C and
g : C → D ⊗ B, the equation TrB(f ; g) = TrC(idA ⊗ g; cAD ⊗ idB; idD ⊗ f)
holds, it suffices to see that the following two graphs are isomorphic:

f g

��� = g

�
�@
@

f

�


�
� .

2.1 Some examples of traced monoidal categories

1. The category Buf from Section 1 is traced monoidal.

2. Consider the category Rel of sets and relations, with the tensor X + Y

that is given on objects by disjoint union of sets. This tensor is actually a
categorical product on the category Rel. We can define a trace as follows: for

9
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R : X + Z → Y + Z, define Tr R : X → Y via

x(Tr R)y :⇐⇒ xRz1Rz2R . . .RznRy

for some z1, . . . , zn ∈ Z, where n > 0. Then 〈Rel, +, Tr〉 is a traced monoidal
category.

3. Consider again the category Rel, but this time consider the tensor X × Y

that is given on objects by the cartesian product of sets, and on morphisms
by 〈x, y〉(R × Q)〈x′, y′〉 iff xRy and x′Qy′. Note that this is not a categorical
product in Rel. For R : X × Z → Y × Z, define Tr′ R : X → Y via

x(Tr′ R)y :⇐⇒ ∃z ∈ Z.〈x, z〉R〈y, z〉.

With this data, 〈Rel,×, Tr′〉 is traced monoidal.

4. Consider the category Cpo of pointed complete partial orders with Scott-
continuous maps. For the symmetric monoidal structure, take the usual cate-
gorical product on Cpo. We can define a trace on this category via a fixpoint
construction: if f : A × X → B × X, then define Tr f : A → B via

(Tr f)(a) := π1(f〈a, µx.π2(f〈a, x〉)〉),

where µx.φ(x) denotes the least fixpoint of the function λx.φ(x). More con-
cretely, (Tr f)(a) is the limit of the sequence b1, b2, b3, . . . , where

f〈a,⊥〉 = 〈b1, z1〉, f〈a, z1〉 = 〈b2, z2〉, f〈a, z2〉 = 〈b3, z3〉, etc.

Other examples of traced monoidal categories arise in many areas of math-
ematics and computer science, for instance from finite dimensional vector
spaces, dataflow networks, predicate transformers, the theory of knots and
tangles, game semantics, deterministic Kahn processes, and in many other
areas.

3 A classification of traced monoidal categories

The language of traced monoidal categories provides a set of combinators
for arranging nodes with fixed input and output arities into cyclic directed
graphs. Nothing in the language of traced monoidal categories suggests how
these graphs are to be interpreted. As a result, some traced monoidal cate-
gories seem to capture operational intuitions about dataflow in networks of
communicating processes, while others do not. For this reason, it seems useful
to further classify traced monoidal categories, that is, to identify additional
properties that allow us to distinguish some of their major features.

Ultimately, it would be desirable to identify enough abstract properties
to be able to prove categorical representation theorems for some classes of
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traced monoidal categories. Such theorems would state, for instance, that any
small traced monoidal category with certain properties can be embedded in a
given universal one. At present, no such general representation theorems are
known for traced monoidal categories. One would expect that the situation is
somewhat analogous to that of axiomatic domain theory.

In this section, we will examine two criteria for classifying traced monoidal
categories: whether or not the category admits non-determinism, and whether
or not the trace is “loop-like”.

3.1 First classification: deterministic vs. non-deterministic models

Definition 3.1 A monoidal category with diagonals is a symmetric
monoidal category together with two families of morphisms, indexed by ob-
jects, but not necessarily natural:

∆A : A → A ⊗ A,

3A : A → I,

such that 〈A, ∆A, 3A〉 is a symmetric comonoid for each A, and such that
these morphisms are compatible with the symmetric monoidal structure in
the following sense:

3I = idI : I → I,

I ⊗ I

∼=

��
A ⊗ B

3A⊗B ))SSSSSSSS

3A⊗3B
55kkkkkk

I,

A ⊗ A ⊗ B ⊗ B

A⊗c⊗B

��
A ⊗ B

∆A⊗B
,,XXXXXXXX

∆A⊗∆B 22ffffffff

A ⊗ B ⊗ A ⊗ B.

The morphisms ∆A and 3A are called, respectively, the diagonal and the
weak terminal morphism (which serves as the nullary diagonal) at A. In
the graphical notation, we write these two morphisms respectively as

s and s .

Definition 3.2 In a monoidal category with diagonals, we call a morphism
f : A → B copyable or deterministic if

A
∆ //

f

��

A ⊗ A

f⊗f

��
B

∆ // B ⊗ B,

or graphically, f
@@
��s =

@@
��s

f

f
.

We call a morphism f : A → B discardable or total if

A
3

&&MMMMMM

f

��

I,

B
3

88qqqqqq

or graphically, f s = s .
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The generic terms copyable and discardable are taken from Thielecke [15]. The
terms deterministic and total are more specific to our particular setting: the
intuition behind these terms in the context of communicating processes is as
follows. We think of the diagonal morphism as duplicating messages on a
channel. Thus, a copyable morphism corresponds to a process with the prop-
erty that if two independent copies of this process are presented with the same
input history, then they produce the same output history. From an extensional
point of view, this is the case just in case the process is deterministic. Here,
we are assuming that processes interact only via their channels and have no
other side-effects.

Further, we think of the weak terminal morphism as a process which ac-
cepts, but ignores, all input. Thus, a discardable morphism corresponds to a
process which is defined for all possible inputs, i.e., which can never refuse an
input. For this reason, we call such a morphism total.

The copyable morphisms of a category C form a symmetric monoidal sub-
category. The same is true for the discardable morphisms. We define the
focus of C to be the intersection of these two subcategories, and we denote it
by C]. Notice that a morphism f : A → B is in the focus iff it is a comonoid
morphism. The following observation is category-theoretical folklore:

Lemma 3.3 The focus is the largest subcategory on which the tensor product,
together with ∆ and 3, restricts to a cartesian product. 2

In particular, it follows that C = C] iff the monoidal structure on C, with
its diagonals, is given by a cartesian product. In this case, we also say C is
cartesian.

Examples Each of the four traced monoidal categories from Section 2.1 has
an obvious diagonal structure. However, only two of these categories have
non-deterministic morphisms:

〈Rel, +〉: Since the tensor is a categorical product in this category, all mor-
phisms are deterministic and total. The focus is the whole category.

〈Rel,×〉: The total morphisms are the total relations. The deterministic mor-
phisms are the partial functions. Thus the focus is the category S

of sets and functions.

Cpo: Since the tensor is a categorical product in this category, all mor-
phisms are deterministic and total. The focus is the whole category.

Buf: The deterministic and total morphisms in Buf are characterized in
the following theorem.

Recall that an agent is called τ -free if it contains no silent transitions.

Theorem 3.4 (a) In Buf, all morphisms are total.

(b) In Buf, a morphisms is deterministic if and only if it is weakly bisimilar
to a τ -free agent. 2
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Part (a) is an easy consequence of the input-receptivity property from Table 2.
To motivate part (b), notice that asynchronous agents, in light of the proper-
ties from Tables 1 and 2, satisfy so many confluence properties that τ -actions
remain as the only possible source of non-deterministic choices.

Because of their special shape, the τ -free asynchronous agents possess a
simple extensional description. As the next theorem shows, they can be rep-
resented as continuous maps between certain domains. Thus, one finds that
in the deterministic case, our asynchronous agents have no genuine branching-
time behavior.

Let ω be the vertical domain of natural numbers. For any set X, ωX

denotes the X-fold power of ω, with the pointwise order. An element of ωX

can be thought of as a multiset in X of countable multiplicity, i.e., where each
element occurs at most countably many times.

Theorem 3.5 Bisimulation equivalence classes of τ -free asynchronous agents
S : X → Y are in one-to-one correspondence with Scott-continuous functions
f : ωX → ωY . In particular, Buf ] is equivalent to a full subcategory of Cpo.2

Remark 3.6 The idea of using Scott-continuous maps to model cyclic net-
works of deterministic, asynchronous processes first appears in an influential
paper by Kahn [11]. The previous theorem shows that the focus of the category
Buf is equivalent to a special case of deterministic Kahn networks, namely
the case where each port carries only data of unit type, or equivalently, where
all messages commute.

The framework from Section 1 can be naturally extended to include first-in-
first-out channels. In this case, one obtains a larger category of asynchronous
agents, whose focus is precisely the category of deterministic Kahn processes.
An adaption of Theorem 1.9 to the case of first-in-first-out channels was given
in [14].

3.2 Second classification: “loop-like” vs. “existential” trace

Consider once again the examples of traced monoidal categories from Sec-
tion 2.1. The trace operators in Buf, 〈Rel, +〉, and Cpo carry an intuition
of “looping” or “iteration”: the definition of trace in each of these categories
reflects the idea of tokens passing around a loop. On the other hand, the trace
operator in 〈Rel,×〉, which is defined by an existential quantifier, carries no
such operational intuition. We argue that the intuitive idea of iteration is
captured more abstractly by Hasegawa’s uniformity property of traces.

Definition 3.7 For any object A in a traced monoidal category with diago-
nals, we define a weak initial morphism 2A : I → A by 2A = TrA(∆A).
In the graphical notation, we write

s := s ���
 .
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A morphism f : A → B is called strict if 2A; f = 2B, or graphically,

s f = s .

Note: In Cpo, our notion of strictness coincides with the usual one: the strict
maps are precisely the ⊥-preserving maps.

For a given traced monoidal category C, fix a monoidal subcategory of uni-
form morphisms. This subcategory should include at least all isomorphisms,
the diagonals, and the weak initial and terminal morphisms. Uniformity of
the trace operator is defined with respect to this notion of uniform morphism:

Definition 3.8 (Hasegawa [7]) Given a traced monoidal category with di-
agonals, we say that the trace is uniform if for all morphisms f : A ⊗ X →
B ⊗ X, g : A ⊗ Y → B ⊗ Y , and for all uniform morphisms h : X → Y ,

f
h

=
h g implies f

��� = g

��� .

Hasegawa, and independently Hyland, have shown that on a cartesian cat-
egory, giving a traced structure is equivalent to giving a fixpoint structure.
Moreover, under this correspondence, uniform traces correspond to uniform
fixpoint operators. This is remarkable, because in the usual formulation of
uniformity for fixpoint operators, the uniform morphism h appears both in
the hypothesis and in the conclusion, whereas in the traced formulation, it
appears only in the hypothesis.

Uniformity of traces thus gives rise to a proof principle which is reminis-
cent of induction: To prove TrX f = TrY g, one chooses a suitable uniform
morphism h, which plays the role of an induction hypothesis. The induction
step consists of proving f ; (id ⊗ h) = (id ⊗ h); g. Note that the induction hy-
pothesis does not appear in the conclusion TrX f = TrY g. In some situations,
one can also think of h as a kind of loop invariant.

It is because of this inductive flavor of the uniformity principle that we
associate it with the intuitive notion of “loop-like” traces. The examples
confirm this point of view:

Examples

〈Rel, +〉: The trace is uniform. One can take the class of uniform morphisms
to be the entire category.

〈Rel,×〉: The trace is not uniform. As a matter of fact, the uniformity prin-
ciple holds precisely if h is an isomorphism.

Cpo: The trace is uniform. We can take the uniform morphisms to be
the strict maps. Uniformity follows by Hasegawa’s result from the
fact that Cpo has uniform fixpoint operators.

Buf: The trace is uniform. We can take the uniform morphisms to be
the strict, deterministic agents which preserve finiteness. The lat-
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ter requirement means that h produces only finite output on finite
input. It is an open problem whether this last hypothesis can be
dropped.

We finish this section on uniform traces by giving an example of how the
uniformity property can be applied to mimic an induction proof in a traced
monoidal category.

Theorem 3.9 In a uniformly traced monoidal category, the deterministic
morphisms are closed under trace.

Proof. Suppose that f : A⊗ X → B ⊗X is deterministic. We want to show
that TrX f is deterministic as well. Thus, we want to show that

f

���
@@
��s =

@
@@

�
��s

f

���
f

���
.

By using the properties of diagonals and graph isomorphism, the claim is
equivalent to

s
f s

s
�

�

�

�
�


�
�

=

s �
��@
@@

f

f

�
��@
@@

�

�

�

�
�


�
�

.

Intuitively, if the two copies of f in the right-hand graph receive identical
input, then the two feedback wires will carry identical output, which in turns
causes the two copies of f to see identical input, and so on. This kind of situ-
ation calls for an inductive argument, which we formalize by using uniformity.
As the loop invariant, we choose

h = �
�ss .

Notice that h is uniform. We have

s
f s

s
�
�ss

=

s
f s

s
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=

s

@
@@

�
��s@@@

�
��s

f

f

�
��@
@@

=
�
�ss

s �
��@
@@

f

f

�
��@
@@

,

where the middle step uses the assumption that f is deterministic. Now the
claim follows by uniformity. 2

Corollary 3.10 Let C be a traced monoidal category with diagonals. If all
morphisms in C are total, then C] is traced monoidal. 2

4 Categorical models of asynchrony

4.1 What is a categorical model of asynchrony?

We have found the category Buf of asynchronous agents to have the following
structure:

• it is traced monoidal with diagonals,

• all morphisms are total,

• trace is uniform, and

• the focus is equivalent to a category of cpo’s.

Notice that some of these properties relate specifically to asynchronous, as
opposed to synchronous, communication. The diagonal structure causes an
explicit asymmetry between input and output, as is typical for asynchronous
systems. By contrast, properties of synchronous communication are generally
self-dual. The fact that all morphisms are total corresponds to the receptivity
property of asynchronous processes. The last property is a version of Kahn’s
principle, which roughly states that deterministic asynchronous processes can
be modeled by Scott-continuous maps.

The above properties seem to be a reasonably general setup for categories
of asynchronous processes. Thus, we define a categorical model of asyn-
chrony to be a category with the above structure. The question immediately
arises whether there are other interesting examples of such categories, and
whether there are general constructions available on them. We will see next
that the answer to both questions is positive.

4.2 From deterministic to non-deterministic models

We have seen in Section 3.1 how to pass from a non-deterministic to a deter-
ministic model by taking the focus. Is there a construction in the opposite
direction, passing from a deterministic model to a non-deterministic one? In
fact, there are many such constructions, and the following is one of them.
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Definition 4.1 Let C = 〈C,⊗, Tr〉 be a traced monoidal category with di-
agonals. We define a category Cnd as follows: The objects of Cnd are those
of C. A morphism F : X → Y in Cnd is a non-empty set of morphisms
f : X → Y in C. The operations on Cnd, which we write in boldface, are
defined pointwise:

F ;;;;;;;;;;;;;;;;; G := {f ; g | f ∈ F, g ∈ G},

F ⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗ G := {f ⊗ g | f ∈ F, g ∈ G},

TrF := {Tr f | f ∈ F},

and similarly for constants, such as idX = {idX}, ∆X = {∆X}, etc.

Surprisingly, this simple-minded construction actually preserves the structure
of C.

Lemma 4.2 If C is traced monoidal with diagonals, then so is Cnd.

Proof. The lemma is a consequence of a general meta-theorem, which we
present in Section 5. In the present context, the meta-theorem states that the
(−)nd-construction preserves all structure that is given by affine equations.
An equation is said to be linear if each variable occurs precisely once on
each side, and affine if each variable occurs at most once on each side of the
equation. Notice that all the defining equations of traced monoidal categories
with diagonals, from Definitions 2.1 and 3.1, are linear. As a matter of fact,
Definition 3.1 contains only closed (i.e., variable-free) equations, which are
trivially linear. Thus, the (−)nd-construction preserves this structure. 2

Lemma 4.3 The focus of Cnd consists precisely of the singletons {f}, where
f is focal in C. Thus, (Cnd)] ∼= C]. 2

Let us now concentrate on the case where C is a cartesian category, that is,
all morphisms in C are deterministic and total.

Lemma 4.4 Let C be cartesian. Then

(i) (Cnd)] ∼= C.

(ii) All morphisms in Cnd are total.

(iii) If C is uniformly traced, then so is Cnd. We can take the uniform mor-
phisms in Cnd to be the singletons of uniform morphisms in C. 2

4.3 Application: A simple cpo-based model

Recall that the category Cpo is a traced cartesian category with diagonals. We
apply the (−)nd-construction from the last section. By Lemmas 4.2 and 4.4,
the category Cpond is traced monoidal with diagonals, all morphisms are total,
trace is uniform, and the focus is isomorphic to Cpo. Thus, Cpond satisfies
all our requirements from Section 4.1 to be a model of non-deterministic,

17



Selinger

asynchronous communication. We remark on two particular features of this
model:

No branching-time behavior. A morphism in Cpond is just a set
of continuous maps. Thus, a non-deterministic process in this model has
no branching-time behavior: At each run, a process makes a single non-
deterministic choice and then behaves like a deterministic process. In the
asynchronous world, the absence of true branching-time behavior is not an
unreasonable assumption: since the environment in an asynchronous setting
can neither influence the outcome of non-deterministic choices, nor detect the
time at which such a choice is made, one may as well assume that all such
choices are made ahead of time.

Intentionality. The model Cpond is not very extensional, in the sense
that it distinguishes many processes which are intuitively indistinguishable.
For example, let B = {T, F,⊥} be the domain of flat booleans, and let id,
not, true, and false be the four obvious strict total maps B → B. Then the
two morphisms

{id, not}, {true, false} : B → B

are different in Cpond, but intuitively they represent the same behavior: each
of the processes produces one of the answers T or F non-deterministically,
regardless of the input. The only way these processes differ is in how their
non-deterministic choices are correlated across different, mutually exclusive
branches of control.

Depending on what one is trying to achieve with a model, intentionality
need not be a problem. Notice, for instance, that the model Buf is also highly
intentional. However, in some cases, one might want to obtain a model which
is less intentional. This can be done, for instance, by putting an observational
equivalence on processes, as we will illustrate in the next section.

4.4 A cpo-based model with observational congruence

The preceding discussion motivates us to refine the model Cnd by equipping
it with a suitable equivalence relation on morphisms. On the one hand, this
equivalence should capture our intuition about what it means for two processes
to be observationally equivalent. On the other hand, it should be compatible
with the operations of a traced monoidal category, in other words, it should
be a congruence. This ensures that equivalent processes can be substituted for
each other in any context without changing the global behavior, a property of
the semantics which is also known as compositionality.

But what is a good notion of observation? This question does not have
a single answer, since there are many different intuitions about observations,
and many possible formalizations of them. One choice to be made is whether
one wants to observe only positive information, such as output, or also some
negative information, such as the absence of output, termination, etc.
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Here, we give an example of an observational congruence for a model based
on continuous domains, in which we observe only positive information. Let
D be a category of continuous domains [2], closed under finite products. The
reader who prefers it may assume that D is a category of algebraic domains.

Definition 4.5 Let A, B be objects of D. An observation of type A → B

is a pair 〈u, v〉 of continuous functions u : ω → A and v : B → ω. We say
that a morphism f : A → B satisfies the observation 〈u, v〉 if idω 6 u; f ; v.
We write obs f for the set of all observations satisfied by f . If F : A → B is
a morphism in Dnd, then we write obs F =

⋃
{obs f | f ∈ F}. Finally, we say

that F, G : A → B are observationally equivalent, in symbols F =obs G,
if obs F = obs G.

We can picture an observation 〈u, v〉 as a “diagram with a hole”:

A // B
v

!!B
BB

BB
BB

B

ω

u
>>~~~~~~~ id // ω.

A morphism f : A → B satisfies the observation if it fits the hole. Thus,
an observation of this kind allows us to test a morphism f on an infinite
increasing sequence of inputs, and observe whether the output at each stage
lies in a given open set. Two sets of morphisms are equivalent if their elements
collectively have the same observations. Since the sequence of inputs in each
individual run is increasing, no backtracking is possible.

Theorem 4.6 Observational equivalence is respected by composition, tensor,
and trace. Thus, it is a congruence on the traced monoidal category Dnd. 2

In the proof that trace preserves observational equivalence, the domain ω plays
an important role. If we had replaced ω in the definition of observations by,
say, 1, then the theorem would not be true. Because Tr f is defined as a limit,
an observation at a single point at Tr f translates into an increasing sequence
of observations at f .

Remark 4.7 The semantics given in this section is a domain-theoretic gen-
eralization of trace semantics. If one restricts attention to domains of the
form ωX, then two processes of type ωX → ωY are observationally equivalent
iff they are trace equivalent, i.e., if they generate the same set of combined
input-output sequences.

5 The T -construction

In Section 4.2, we have seen that the class of traced monoidal categories with
diagonals is closed under a certain set-theoretic operation on hom-sets, namely
taking non-empty power sets, and extending the operations pointwise. In this
section, we will outline the general principles behind this construction.
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Definition 5.1 A linear functor is a functor T : S → S from the cat-
egory of sets to itself, together with a morphism ε : 1 → T1 and a natural
transformation ρA,B : TA × TB → T (A × B), satisfying

Left unit: Right unit:

1 × TA
∼= //

ε×TA

��

TA

∼=
��

T1 × TA
ρ1,A // T (1 × A)

TA × 1
∼= //

TA×ε

��

TA

∼=
��

TA × T1
ρA,1 // T (A × 1)

Associativity: Symmetry:

TA × TB × TC
TA×ρB,C //

ρA,B×TC

��

TA × T (B × C)

ρA,B×C

��
T (A × B) × TC

ρA×B,C // T (A × B × C)

TA × TB
∼= //

ρA,B

��

TB × TA

ρB,A

��
T (A × B)

∼= // T (B × A)

Of course, one of the unit laws is redundant in the presence of symmetry. We
say that a linear functor T is affine if T1 ∼= 1, and relevant if

TA
∆TA //

T∆A %%KKKKKKKKKK TA × TA

ρA,A

��
T (A × A).

Example 5.2 (i) The covariant power set functor P is linear.

(ii) The covariant non-empty power set functor P+, which sends A to the
set of non-empty subsets of A, is affine.

(iii) The lifting functor P
−, which sends A to the set of subsets of A of at

most one element, is relevant.

(iv) The functor λ, which sends a set X to a vector space with basis X, is
linear.

(v) The functor λ+, which sends X to the subset of λX of convex linear
combinations of basis elements, is affine.

(vi) A linear functor can be obtained from any commutative strong monad
〈T, µ, η〉 on S , where ε = η1 and

ρA,B = TA × TB → T (TA × B) → TT (A × B)
µ
−→ T (A × B).

Here, the commutativity of the strength of the monad is equivalent to
the symmetry of the linear functor.

Given a linear functor T , we define an operation on categories, called the
T -construction, as follows: If C is any category, then the objects of CT

are given by |CT | = |C|, and the morphisms by CT (X, Y ) = T (C(X, Y )).
Operations are defined pointwise, using ε and ρ. For instance, composition is
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a binary operation on C:

;X,Y,Z : C(X, Y ) × C(Y, Z) → C(X, Z).

This gives rise to a composition operation on CT via

;;;;;;;;;;;;;;;;;X,Y,Z = T (C(X, Y )) × T (C(Y, Z))
ρ
−→T (C(X, Y ) × C(Y, Z))

T (;)
−−→ T (C(X, Z)).

The identity morphisms of C are given as constants

idX : 1 → C(X, X),

from which we define the identity morphisms of CT via

idX = 1
ε
−→T1

T (id)
−−−→ T (C(X, X)).

Any other algebraic operations which are part of the structure of C may be
transferred to CT in the same way.

Remark 5.3 The T -construction is a special case of a more general construc-
tion in the theory of enriched categories. A linear functor is a lax functor for
the symmetric monoidal structure given by products on S . The category CT

is called the direct image of C by T in Bénabou [4, pp. 53f].

Definition 5.4 An equation is called linear (respectively affine, respec-
tively relevant) if each variable occurs exactly once (respectively at most
once, respectively at least once) on each the left-hand side and the right-hand
side of the equation.

Theorem 5.5 (Meta-Theorem) (i) If T is a linear functor, then any lin-
ear equation that holds in C also holds in CT .

(ii) If T is affine, then any affine equation that holds in C also holds in CT .

(iii) If T is relevant, then any relevant equation that holds in C also holds in
CT .

Some consequences:

• The defining equations of a category, namely the associativity and identity
laws, are linear. Thus, if T is linear, then CT is a category.

• The defining equations of traced monoidal categories with diagonals are
linear. Thus, this structure is preserved by the linear T -construction.

• Monoidal closed structure is given by linear equations, and is thus preserved
by the linear T -construction.

• The structure of a terminal object is given by an affine equation. Thus, if
T is affine, then any terminal object in C is also terminal in CT .

Moreover, if one applies the T -construction to a category with non-linear
structure, then at least the linear part of that structure is preserved. For
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instance, if C has finite products, then CT has a symmetric monoidal structure
with diagonals.

Remark 5.6 The (−)nd-construction from Section 4.2 is of course the T -
construction with T = P+, the non-empty power set functor. We can call
the kind of non-determinism that is introduced by this construction set-based
non-determinism. By choosing a different affine functor T , we can model other
kinds of non-determinism. For instance, if we let T = λ+, the convex linear
combinations functor from Example 5.2(v), then we get a model of probabilis-
tic non-determinism. Here, a probabilistically non-deterministic process is
modeled as a convex linear combination of deterministic processes. Note that
the resulting category still satisfies the axioms of Section 4.1, so our notion of
categorical models of asynchrony is general enough to allow for different kinds
of non-determinism.

A sometimes useful generalization of the T -construction is obtained by drop-
ping the symmetry requirement in the definition of a linear functor. This
allows us to consider structures that are defined by equations with a fixed
order among the variables. We say that a linear equation is rigid or non-
commutative if the variables occur in the same left-to-right order on both
sides of the equation. Of course, this presupposes a choice of concrete syntax
for the basic operations. A rigid functor is defined like a linear functor,
except that symmetry is not required. Such functors arise, for example, from
non-commutative strong monads such as the continuations monad.

The T -construction for rigid functors is well-defined, and it preserves rigid
equations. An example of a structure that is given by rigid equations is
the structure of a premonoidal category, which was introduced by Power and
Robinson [13]. Premonoidal structure is precisely the part of monoidal struc-
ture which is given by rigid equations; thus, if T is a rigid functor and C is a
monoidal category, then CT is premonoidal.
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