
ar
X

iv
:1

30
2.

56
52

v1
 [

m
at

h.
C

T
]

 2
2

Fe
b

20
13

Presheaf models of quantum computation:

an outline

Octavio Malherbe1, Philip Scott2, and Peter Selinger3

1 IMERL-FING, Universidad de la República, Montevideo, Uruguay
malherbe@fing.edu.uy

2 Dept. of Mathematics and Statistics, University of Ottawa, Canada
phil@site.uottawa.ca

3 Dept. of Mathematics and Statistics, Dalhousie University, Halifax, Canada
selinger@mathstat.dal.ca

Abstract. This paper outlines the construction of categorical models
of higher-order quantum computation. We construct a concrete deno-
tational semantics of Selinger and Valiron’s quantum lambda calcu-
lus, which was previously an open problem. We do this by considering
presheaves over appropriate base categories arising from first-order quan-
tum computation. The main technical ingredients are Day’s convolution
theory and Kelly and Freyd’s notion of continuity of functors. We first
give an abstract description of the properties required of the base cat-
egories for the model construction to work. We then exhibit a specific
example of base categories satisfying these properties.

1 Introduction

Quantum computing is based on the laws of quantum physics. While no actual
general-purpose quantum computer has yet been built, research in the last two
decades indicates that quantum computers would be vastly more powerful than
classical computers. For instance, Shor [34] proved in 1994 that the integer fac-
toring problem can be solved in polynomial time on a quantum computer, while
no efficient classical algorithm is known.

Logic has played a key role in the development of classical computation the-
ory, starting with the foundations of the subject in the 1930’s by Church, Gödel,
Turing, and Kleene. For example, the pure untyped lambda calculus, one of the
first models of computation invented by Church, can be simultaneously regarded
as a prototypical functional programming language as well as a formalism for
denoting proofs. This is the so-called proofs-as-programs paradigm. Indeed, since
the 1960’s, various systems of typed and untyped lambda calculi have been de-
veloped, which on the one hand yield proofs in various systems of constructive
and/or higher-order logic, while on the other hand denoting functional programs.
Modern programming languages such as ML, Haskell, and Coq are often viewed
in this light.

Recent research by Selinger, Valiron, and others [30,33] in developing “quan-
tum lambda calculi” has shown that Girard’s linear logic [12] is a logical system

http://arxiv.org/abs/1302.5652v1

2 Malherbe, Scott, and Selinger

that corresponds closely to the demands of quantum computation. Linear logic,
a resource sensitive logic, turns out to formalize one of the central principles of
quantum physics, the so-called no-cloning property, which asserts that a given
unknown quantum state cannot be replicated. This property is reflected on the
logical side by the requirement that a given logical assumption (or “resource”)
can only be used once. However, until now, the correspondence between linear
logic and quantum computation has mainly been explored at the syntactic level.

In this paper we construct mathematical (semantic) models of higher-order
quantum computation. The basic idea is to start from existing low level models,
such as the category of superoperators, and to use a Yoneda type presheaf con-
struction to adapt and extend these models to a higher order quantum setting.
To implement the latter, we use Day’s theory of monoidal structure in presheaf
categories, as well as the Freyd-Kelly theory of continuous functors, to lift the
required quantum structure [6,11]. Finally, to handle the probabilistic aspects of
quantum computation, we employ Moggi’s computational monads [24].

Our model construction depends on a sequence of categories and functors
B → C → D, as well as a collection Γ of cones in D. We use this data to obtain
a pair of adjunctions

[Bop,Set]
L //

[Cop,Set]
F //

Φ∗

⊥oo [Dop,Set]Γ
G

⊥oo

in which the left-hand adjunction gives an appropriate categorical model of the
underlying linear logic, and the right-hand adjunction gives a Moggi monad for
probabilistic effects. We then give sufficient conditions on B → C → D and Γ so
that the resulting structure is a model of the quantum lambda calculus. One can
describe various classes of concrete models by appropriate choices of diagrams
B → C → D and cones Γ .

In this paper, we focus on the categorical aspects of the model construc-
tion. Thus, we will not review the syntax of the quantum lambda calculus itself
(see [30] and [33] for a quick review). Instead, we take as our starting point
Selinger and Valiron’s definition of a categorical model of the quantum lambda

calculus [33]. It was proven in [33] that the quantum lambda calculus forms an
internal language for the class of such models. This is similar to the well-known
interplay between typed lambda calculus and cartesian closed categories [19].
What was left open in [33] was the construction of a concrete such model (other
than the one given by the syntax itself). This is the question whose answer we
sketch here. Further details can be found in the first author’s PhD thesis [22].

2 Categories of completely positive maps and

superoperators

We first recall various categories of finite dimensional Hilbert spaces that we use
in our study. Let V be a finite dimensional Hilbert space, i.e., a finite dimensional
complex inner product space. We write L(V) for the space of linear functions
ρ : V −→ V .

Presheaf models of quantum computation 3

Definition 2.1. Let V,W be finite dimensional Hilbert spaces. A linear function
F : L(V) −→ L(W) is said to be completely positive if it can be written in the

form F (ρ) =
∑m

i=1 FiρF
†
i , where Fi : V −→ W is a linear function and F

†
i

denotes the linear adjoint of Fi for i = 1, . . . ,m.

Definition 2.2. The category CPMs of simple completely positive maps has
finite dimensional Hilbert spaces as objects, and the morphisms F : V −→ W

are completely positive maps F : L(V) −→ L(W).

Definition 2.3. The category CPM of completely positive maps is defined as
CPM = CPM⊕

s , the biproduct completion of CPMs. Specifically, the objects
of CPM are finite sequences (V1, . . . , Vn) of finite-dimensional Hilbert spaces,
and a morphism F : (V1, . . . , Vn) −→ (W1, . . . ,Wm) is a matrix (Fij), where
each Fij : Vj −→ Wi is a completely positive map. Composition is defined by
matrix multiplication.

Remark 2.4. The categoryCPM is the same (up to equivalence) as the category
W of [28] and the category CPM(FdHilb)⊕ of [29].

Note that for any two finite dimensional Hilbert spaces V and W , there is a
canonical isomorphism ϕV,W : L(V ⊗W) −→ L(V)⊗ L(W).

Remark 2.5. The categories CPMs and CPM are symmetric monoidal. For
CPMs, the tensor product is given on objects by the tensor product of Hilbert
spaces V ⊗̄W = V ⊗ W , and on morphisms by the following induced map

f⊗̄g:= L(V ⊗ W)
ϕV,W

−→ L(V) ⊗ L(W)
f⊗g
−→ L(X) ⊗ L(Y)

ϕ
−1

X,Y
−→ L(X ⊗ Y).

The remaining structure (units, associativity, symmetry maps) is inherited from
Hilbert spaces. Similarly, for the symmetric monoidal structure on CPM, define
(Vi)i∈I ⊗ (Wj)j∈J = (Vi ⊗Wj)i∈I,j∈J . This extends to morphisms in an obvious
way. For details, see [28].

Definition 2.6. We say that a linear map F : L(V) → L(W) is trace preserving

when it satisfies trW (F (ρ)) = trV (ρ) for all positive ρ ∈ L(V). F is called trace

non-increasing when it satisfies trW (F (ρ)) 6 trV (ρ) for all positive ρ ∈ L(V).

Definition 2.7. A linear map F : L(V) → L(W) is called a trace preserving

superoperator if it is completely positive and trace preserving, and it is a trace

non-increasing superoperator if it is completely positive and trace non-increasing.

Definition 2.8. A completely positive map F : (V1, . . . , Vn) −→ (W1, . . . ,Wm)
in the category CPM is called a trace preserving superoperator if for all j and
all positive ρ ∈ L(Vj),

∑
i tr(Fij(ρ)) = tr(ρ), and a trace non-increasing super-

operator if for all j and all positive ρ ∈ L(Vj),
∑

i tr(Fij(ρ)) 6 tr(ρ).

We now define four symmetric monoidal categories of superoperators. All of
them are symmetric monoidal subcategories of CPM.

4 Malherbe, Scott, and Selinger

Definition 2.9.

– Qs and Q′
s have the same objects as CPMs, and Q and Q′ have the same

objects as CPM.
– The morphisms of Qs and Q are trace non-increasing superoperators, and

the morphisms of Q′
s and Q′ are trace preserving superoperators.

Remark 2.10. The categories Qs, Q, Q′
s, and Q′ are all symmetric monoidal.

The symmetric monoidal structure is inherited from CPMs and CPM, respec-
tively, and it is easy to check that all the structural maps are trace preserving.

Lemma 2.11. Q and Q′ have finite coproducts.

Proof. The injection/copairing maps are as in CPM and are trace preserving.

3 Presheaf models of a quantum lambda calculus

Selinger defined an elementary quantum flow chart language in [28], and gave a
denotational model in terms of superoperators. This axiomatic framework cap-
tures the behaviour and interconnection between the basic concepts of quantum
computation (for example, the manipulation of quantum bits under the basic op-
erations of measurement and unitary transformation) in a lower-level language.
In particular, the semantics of this framework is very well understood: each
program corresponds to a concrete superoperator.

Higher-order functions are functions that can input or output other functions.
In order to deal with such functions, Selinger and Valiron introduced, in a series
of papers [31,32,33], a typed lambda calculus for quantum computation and
investigated several aspects of its semantics. In this context, they combined two
well-established areas: the intuitionistic fragment of Girard’s linear logic [12] and
Moggi’s computational monads [24].

The type system of Selinger and Valiron’s quantum lambda calculus is based
on intuitionistic linear logic. As is usual in linear logic, the logical rules of weak-
ening and contraction are introduced in a controlled way by an operator “!”
called “of course” or “exponential”. This operator creates a bridge between two
different kinds of computation. More precisely, a value of a general type A can
only be used once, whereas a value of type !A can be copied and used multiple
times. As mentioned in the introduction, the impossibility of copying quantum
information is one of the fundamental differences between quantum information
and classical information, and is known as the no-cloning property. From a logi-
cal perspective, this is related to the failure of the contraction rule; thus it seems
natural to use linear logic in discussing quantum computation. It is also well
known that categorically, the operator “!” satisfies the properties of a comonad

(see [23]).
Since the quantum lambda calculus has higher-order functions, as well as

probabilistic operations (namely measurements), it must be equipped with an
evaluation strategy in order to be consistent. Selinger and Valiron addressed this
by choosing the call-by-value evaluation strategy. This introduces a distinction

Presheaf models of quantum computation 5

between values and computations. At the semantic level, Moggi [24] proposed
using the notion of monad as an appropriate tool for interpreting computational
behaviour. In our case, this will be a strong monad.

So let us now describe Selinger and Valiron’s notion of a categorical model of

the quantum lambda calculus [33].

3.1 Categorical models of the quantum lambda calculus

In what follows, let (C,⊗, I, α, ρ, λ, σ) be a symmetric monoidal category [21].

Definition 3.1. A symmetric monoidal comonad (!, δ, ε,mA,B,mI) is a
comonad (!, δ, ε) where the functor ! is a monoidal functor (!,mA,B,mI), i.e.,
with natural transformations mA,B : !A ⊗ !B −→ !(A ⊗ B) and mI : I −→ !I,
satisfying appropriate coherence axioms [16] such that δ and ε are symmetric
monoidal natural transformations.

Definition 3.2. A linear exponential comonad is a symmetric monoidal
comonad (!, δ, ε,mA,B,mI) such that for every A ∈ C, there exists a commu-
tative comonoid (A, dA, eA) satisfying some technical requirements (see [4,33]).

Definition 3.3. Let (T, η, µ) be a strong monad on C. We say that C has Kleisli

exponentials if there exists a functor [−,−]k : Cop × C → C and a natural iso-
morphism: C(A⊗B, TC) ∼= C(A, [B,C]k).

Definition 3.4 (Selinger and Valiron [33]). A linear category for duplication

consists of a symmetric monoidal category (C,⊗, I) with the following structure:

– an idempotent, strongly monoidal, linear exponential comonad (!, δ, ε, d, e),
– a strong monad (T, µ, η, t) such that C has Kleisli exponentials.

Further, if the unit I is a terminal object we shall speak of an affine linear

category for duplication.

Remark 3.5. Perhaps surprisingly, following the work of Benton, a linear cat-
egory for duplication can be obtained from a structure that is much easier to
describe, namely, a pair of monoidal adjunctions [2,23,17]

(B,×, 1)
(L,l) //

(C,⊗, I)
(F,m) //

(I,i)

⊥oo (D,⊗, I),
(G,n)

⊥oo

where the category B has finite products and C and D are symmetric monoidal
closed. The monoidal adjoint pair of functors on the left represents a linear-
non-linear model of linear logic in the sense of Benton [2], in which we obtain a
monoidal comonad by setting ! = L ◦ I. The monoidal adjoint pair on the right
gives rise to a strong monad T = G ◦ F in the sense of Kock [16,17], which is
also a computational monad in the sense of Moggi [24].

We now state the main definition of a model of the quantum lambda calculus.

6 Malherbe, Scott, and Selinger

Definition 3.6 (Models of the quantum lambda calculus [33]). An ab-

stract model of the quantum lambda calculus is an affine linear category for du-
plication C with finite coproducts, preserved by the comonad !. A concrete model

of the quantum lambda calculus is an abstract model such that there exists a full
and faithful embedding Q →֒ CT , preserving tensor ⊗ and coproduct ⊕ up to
isomorphism, from the category Q of norm non-increasing superoperators (see
Definition 2.9) into the Kleisli category of the monad T .

Remark 3.7. To make the connection to quantum lambda calculus: the category
C, the Kleisli category CT , and the co-Kleisli category C! all have the same objects,
which correspond to types of the quantum lambda calculus. The morphisms f :
A −→ B of C correspond to values of type B (parameterized by variables of type
A). A morphism f : A −→ B in CT , which is really a morphism f : A −→ TB in
C, corresponds to a computation of type B (roughly, a probability distribution
of values). Finally, a morphism f : A −→ B in C!, which is really a morphism
f : !A −→ B in C, corresponds to a classical value of type B, i.e., one that only
depends on classical variables. The idempotence of “!” implies that morphisms
!A −→ B are in one-to-one correspondence with morphisms !A −→ !B, i.e.,
classical values are duplicable. For details, see [33].

3.2 Outline of the procedure for obtaining a concrete model

We construct the model in two stages. The first (more elaborate) stage constructs
abstract models by applying certain general presheaf constructions to diagrams
of functors B → C → D. In Section 3.8 we find the precise conditions required
on diagrams B → C → D to obtain a valid abstract model. In the second stage,
we construct a concrete model of the quantum lambda calculus by identifying
particular base categories so that the remaining conditions of Definition 3.6 are
satisfied. This is the content of Sections 3.9 and 3.10.

We divide the two stages of construction into eight main steps.

1. The basic idea of the construction is to lift a sequence of functors B
Φ
→ C

Ψ
→ D

into a pair of adjunctions between presheaf categories

[Bop,Set]
L //

[Cop,Set]
F1 //

Φ∗

⊥oo [Dop,Set].
Ψ∗

⊥oo

Here, Φ∗ and Ψ∗ are the precomposition functors, and L and F1 are their left
Kan extensions. By Remark 3.5, such a pair of adjunctions potentially yields
a linear category for duplication, and thus, with additional conditions, an ab-
stract model of quantum computation. Our goal is to identify the particular
conditions on B, C, D, Φ, and Ψ that make this construction work.

2. By Day’s convolution construction (see [6]), the requirement that [Cop,Set]
and [Dop,Set] are monoidal closed can be achieved by requiring C and D
to be monoidal. The requirement that the adjunctions L ⊣ Φ∗ and F1 ⊣ Ψ∗

are monoidal is directly related to the fact that the functors Ψ and Φ are

Presheaf models of quantum computation 7

strong monoidal. More precisely, this implies that the left Kan extension is
a strong monoidal functor [10] which in turn determines the enrichment of
the adjunction [14]. We also note that the category B must be cartesian.

3. One important complication with the model, as discussed so far, is the fol-
lowing. The Yoneda embedding Y : D → [Dop,Set] is full and faithful, and
by Day’s result, also preserves the monoidal structure ⊗. Therefore, if one
takes D = Q, all but one of the conditions of a concrete model (from Defi-
nition 3.6) are automatically satisfied. Unfortunately, however, the Yoneda
embedding does not preserve coproducts, and therefore the remaining con-
dition of Definition 3.6 fails. For this reason, we modify the construction
and use a modified presheaf category with a coproduct preserving Yoneda
embedding. More specifically, we choose a set Γ of cones in D, and use
the theory of continuous functors by Lambek [18] and Freyd and Kelly [11]
to construct a reflective subcategory [Qop,Set]Γ of [Qop,Set], such that the
modified Yoneda embedding Q −→ [Qop,Set]Γ is coproduct preserving. Our
adjunctions, and the associated Yoneda embeddings, now look like this:

[Bop,Set]
L⊣Φ∗

// [Cop,Set]
F ⊣G // [Dop,Set]Γ

B

Y

OO

Φ // C

Y

OO

Ψ // D

YΓ

OO

The second pair of adjoint functors F ⊣ G is itself generated by the compo-
sition of two adjunctions:

[Cop,Set]
F1 //

[Dop,Set]
F2 //

Ψ∗

⊥oo [Dop,Set]Γ
G2

⊥oo

Here D = Q and the pair of functors F2 ⊣ G2 arises from the reflection
of [Qop,Set]Γ in [Qop,Set]. The structure of the modified Yoneda embed-
ding Q −→ [Qop,Set]Γ depends crucially on general properties of functor
categories [18,11]. Full details are given in [22].
To ensure that the reflection functor remains strongly monoidal, we will

use Day’s reflection theorem [7], which yields necessary conditions for the
reflection to be strong monoidal, by inducing a monoidal structure from
the category [Qop,Set] into its subcategory [Qop,Set]Γ . In particular, this
induces a constraint on the choice of Γ : all the cones considered in Γ must
be preserved by the opposite functor of the tensor functor in D.

4. Notice that the above adjunctions are examples of what in topos theory are
called essential geometric morphisms, in which both functors are left adjoint
to some other two functors: L ⊣ Φ∗ ⊣ Φ∗. Therefore, this shows that the
comonad “!” obtained will preserve finite coproducts.

5. The condition for the comonad “!” to be idempotent turns out to depend on
the fact that the functor Φ is full and faithful; see Section 3.4.

6. In addition to requiring that “!” preserves coproducts, we also need “!”
to preserve the tensor, i.e., to be strongly monoidal, as required in Defini-
tion 3.6. This property is unusual for models of intuitionistic linear logic and

8 Malherbe, Scott, and Selinger

restricts the possible choices for the category C. In brief, since the left Kan
extension along Φ is a strong monoidal functor, we find a concrete condition
on the category C that is necessary to ensure that the property holds when
we lift the functor Φ to the category of presheaves; see Section 3.5.

7. Our next task is to translate these categorical properties to the Kleisli cat-
egory. We use the comparison Kleisli functor to pass from the framework
we have already established to the Kleisli monoidal adjoint pair of functors.
Also, at the same time, we shall find it convenient to characterize the functor
H : D → [Cop,Set]T as a strong monoidal functor. The above steps yield
an abstract model of quantum computation, parameterized by B → C → D
and Γ .

8. Finally, in Section 3.9, we will identify specific categories B, C, and D that
yield a concrete model of quantum computation. We let D = Q, the category
of superoperators. We let B be the category of finite sets. Alas, identifying a
suitable candidate for C is difficult. For example, two requirements are that
C must be affine monoidal and must satisfy the condition of equation (1) in
Section 3.5 below. We construct such a C = Q′′ related to the category Q of
superoperators with the help of some universal constructions.

The above base category Q′′ plays a central role in our construction. While the
higher-order structural properties of the quantum lambda calculus hold at the
pure functor category level, the interpretation of concrete quantum operations
takes place mostly at this base level.

Let us now discuss some details of the construction.

3.3 Categorical models of linear logic on presheaf categories

The first categorical models of linear logic were given by Seely [27]. The survey
by Melliès is an excellent introduction [23]. Current state-of-the-art definitions
are Bierman’s definition of a linear category [4], simplified yet more by Benton’s
definition of a linear-non-linear category ([2], cf. Remark 3.5 above). Benton
proved the equivalence of these two notions [2,23].

Definition 3.8 (Benton [2]). A linear-non-linear category consists of:

(1) a symmetric monoidal closed category (C,⊗, I,⊸),
(2) a category (B,×, 1) with finite products,

(3) a symmetric monoidal adjunction: (B,×, 1)
(F,m) //

(C,⊗, I)
(G,n)

⊥oo .

Remark 3.9. We use Kelly’s characterization of monoidal adjunctions to simplify
condition (3) in Definition 3.8 above to:

(3’) an adjunction: (B,×, 1)
F //

(C,⊗, I),
G

⊥oo and there exist isomorphisms

mA,B : FA⊗ FB → F (A ×B) and mI : I → F (1), making (F,mA,B,mI) :
(B,×, 1) → (C,⊗, I) a strong symmetric monoidal functor.

Presheaf models of quantum computation 9

Details of this characterization can found in [23].

We can characterize Benton’s linear-non-linear models (Definition 3.8) on
presheaf categories using Day’s monoidal structure [6]. This is an application of
monoidal enrichment of the Kan extension, see [10]. We use the following:

Proposition 3.10 (Day-Street[10]). Suppose we have a strong monoidal

functor Φ : (A,⊗, 1) → (B,⊗, I) between two monoidal categories, i.e., we have

natural isomorphisms Φ(a) ⊗ Φ(b) ∼= Φ(a ⊗ b) and I ∼= Φ(I). Consider the left

Kan extension along Φ in the functor category [Bop,Set], where the copower is

the cartesian product on sets: LanΦ(F) =
∫ a

B(−, Φ(a)) × F (a). Then LanΦ is

strong monoidal.

Remark 3.11. If A is cartesian then the Day tensor (convolution) [Aop,Set] ×

[Aop,Set]
⊗D−→ [Aop,Set] is a pointwise product of functors. Also if the unit of a

monoidal category C is a terminal object then the unit of ⊗D is also terminal.

3.4 Idempotent comonad in the functor category

A comonad (!, ǫ, δ) is said to be idempotent if δ : ! ⇒ !! is an isomorphism.

Let (!, ǫ, δ) be the comonad generated by an adjunction (B,×, 1)
F //

(C,⊗, I).
G

⊥oo

Then δ = FηG with η : I → GF . Thus if η is an isomorphism then δ is also an
isomorphism. In the context of our model construction, how can we guarantee
that η is an isomorphism? Consider the unit ηB : B ⇒ Φ∗(LanΦ(B)) of the
adjunction generated by the Kan extension:

[Bop,Set]
LanΦ //

[Cop,Set].
Φ∗

⊥oo

Proposition 3.12 ([5]). If Φ is full and faithful then ηB : B ⇒ Φ∗(LanΦ(B))
is an isomorphism.

3.5 A strong comonad

In this section we study conditions that force the idempotent comonad above to
be a strong monoidal functor. This property is part of the model we are building
and is one of the main differences with previous models of intuitionistic linear
logic [23].

To achieve this, consider a fully faithful functor Φ : B −→ C, as in Section 3.2.

Let [Cop,Set]
Φ∗

−→ [Bop,Set] be the precomposition functor, i.e., the right adjoint
of the left Kan extension.

Lemma 3.13 ([9]). If there exists a natural isomorphism

C(Φ(b), c)× C(Φ(b), c′) ∼= C(Φ(b), c⊗ c′), (1)

where b ∈ B and c, c′ ∈ C and Φ is a fully faithful functor satisfying Φ(1) = I,

then Φ∗ is a strong monoidal functor.

10 Malherbe, Scott, and Selinger

In Section 3.9 we shall build a category satisfying this specific requirement
among others. More precisely, from our viewpoint, this will depend on the con-
struction of a certain category that we will name Q′′, which is a modification of
the category Q of superoperators. Also, we will consider a fully faithful strong
monoidal functor Φ : (FinSet,×, 1) → (C,⊗C, I) that generates the first adjunc-
tion in Section 3.2, where C = Q′′.

3.6 The functor H : D → ĈT

Let C and D be categories. Consider an adjoint pair of functors

[Cop,Set]
F //

[Dop,Set]Γ ,
G

⊥oo as mentioned in Section 3.2, item 3. Let T = G ◦ F

and Ĉ = [Cop,Set]. In this section we consider the construction of a coproduct
preserving and tensor preserving functor H : D → ĈT with properties similar to
the Yoneda embedding, for a general category D.

Let F1 ⊣ G1 and F2 ⊣ G2 be two monoidal adjoint pairs with associated
natural transformations (F1,m1), (G1, n1) and (F2,m2), (G2, n2). We shall use
the following notation: F = F2 ◦ F1, G = G1 ◦ G2, and T = G ◦ F . We now
describe a typical situation of this kind generated by a functor Ψ : C → D.

Let us consider F1 = LanΨ and G1 = Ψ∗. With some co-completeness con-
dition assumed, we can express F1(A) =

∫ c
D(−, Ψ(c))⊗A(c) and G1 = Ψ∗.

On the other hand we consider F2 = LanY (YΓ) : [D
op,Set] → [Dop,Set]Γ ,

where YΓ : D → [Dop,Set]Γ is the co-restriction of the Yoneda functor given

by YΓ (d) = D(−, d). Thus we have F2(D) =
∫ d
D(d) ⊗ YΓ (d). Assuming that

[Dop,Set]Γ is co-complete and contains the representable presheaves, then the
right adjoint G2 is isomorphic to the inclusion functor.

Definition of H.

We want to study the following situation:

Ĉ

FT

��

F1 //
D̂

G1

⊥oo
F2 //

D̂Γ
G2

⊥oo

C

Ψ ''

Y

AA

ĈT

GT ⊢

OO

C

77♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

D

H

OO✤
✤

✤

YΓ

??

The goal is to determine a full and faithful functor, denoted H in this dia-
gram, that preserves tensor and coproduct.

Presheaf models of quantum computation 11

First, notice that the perimeter of this diagram commutes on objects:

F1(C(−, c)) =
∫ c′

D(−, Ψ(c′)) ⊗ C(c′, c) = D(−, Ψ(c)) and when we evaluate
again, using F2, we obtain:

F2(D(−, Ψ(c))) =

∫ d′

D(d′, Ψ(c))⊗ YΓ (d
′) = YΓ (Ψ(c)) = D(−, Ψ(c)).

Summing up, we have that F (C(−, c)) = D(−, Ψ(c)) up to isomorphism.
Suppose now that Ψ is essentially onto on objects and we have that:

D(−, d) ∼= D(−, Ψ(c))

for some c ∈ C, i.e., we can make a choice, for every d ∈ |D|, of some c ∈ |C| such
that Ψ(c) ∼= d. Let us call this choice a “choice of preimages”. We can therefore
define a map H : |D| → |ĈT | by H(d) = C(−, c) on objects.

Then we can define a functor H : D → ĈT in the following way: let d
f
→ d′

be an arrow in the category D. We apply YΓ obtaining D(−, d)
YΓ (f)
−→ D(−, d′).

This arrow is equal to D(−, Ψ(c))
YΓ (f)
−→ D(−, Ψ(c′)) for some c, c′ ∈ C, and for

the reason stipulated above is equal to F (C(−, c))
YΓ (f)
−→ F (C(−, c′)). Now we use

the fact that the comparison functor C : ĈT → D̂Γ , i.e.,

C : ĈT (C(−, c), C(−, c
′)) → D̂Γ (F (C(−, c)), F (C(−, c

′))),

is full and faithful. Thus there is a unique γ : C(−, c) → C(−, c′) such that
C(γ) = YΓ (f). Then we can define H(f) = γ on morphisms and (as mentioned
above) H(d) = C(−, c) on objects, where c is given by our choice of preimages.

C : ĈT → D̂Γ is a strong monoidal functor

We define C(A)⊗
D̂Γ

C(B)
uAB−→ C(A⊗CT

B) as F (A)⊗
D̂Γ

F (B)
mAB−→ F (A⊗B). It

is easy to check naturality. Also define I
uI=mI−→ C(I) = F (I). Since mAB and mI

are invertible in D̂Γ , we have that uAB and uI are invertible. This implies that
(C,m) is a strong functor. Also, coherence of isomorphisms is easily checked.

H : D → ĈT is a strong monoidal functor

We want to define a natural transformation H(A) ⊗
ĈT
H(B)

ψA,B

−→ H(A ⊗D B)
that makes H into a strong monoidal functor.

We begin by recalling that (C, u) and (YΓ , y) are strong monoidal, i.e., u and
y are isomorphisms. Since C is fully faithful, this allows us to define ψA,B as the
unique map making the following diagram commute:

YΓ (A)⊗ YΓ (B)
yA,B //

uHA,HB

))❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
YΓ (A⊗B) = C ◦H(A⊗B).

C(H(A) ⊗H(B))

C(ψA,B)
44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

12 Malherbe, Scott, and Selinger

We define ψI similarly. Furthermore, ψ is a natural transformation and satisfies
all the axioms of a monoidal structure. We refer to [22] for the details.

H preserves coproducts

Here we focus on the specific problem of the preservation of finite coproducts
by the functor H defined in Section 3.6. First, note that the category [Cop,Set]
has finite coproducts, computed pointwise. Moreover, the Kleisli category ĈT
inherits the coproduct structure from Ĉ since:

Proposition 3.14. If C has finite coproducts, then so does CT .

Therefore, [Cop,Set]T has finite coproducts. Recall that the comparison func-
tor C : [Cop,Set]T → [Dop,Set]Γ is fully faithful. Also, by a well known property
of representable functors (see [18]), we have that H : D → [Cop,Set]T preserves
coproducts iff [Cop,Set]T (H−, A) : Dop → Set preserves products for every
A ∈ [Cop,Set]T . Using these two facts we prove the following:

Proposition 3.15. If the class Γ contains all the finite product cones, then H

preserves finite coproducts.

We refer to [22] for the details. From this, we impose that Γ contains all the
finite product cones. This is another requirement to obtain a model.

3.7 FT ⊣ GT is a monoidal adjunction

We recall how a monoidal adjoint pair (F,m) ⊣ (G,n) induces a monoidal struc-
ture for the adjunction FT ⊣ GT associated with the Kleisli construction.

Lemma 3.16. Let F ⊣ G be a monoidal adjunction, let T = GF , and consider

the Kleisli adjunction C
FT //

CT
GT

⊥oo generated by this adjunction. Then CT is a

monoidal category and FT ⊣ GT is a monoidal adjunction.

Proof. Since F ⊣ G is a monoidal adjunction, it follows that T = GF is a
monoidal monad. The result then follows by general properties of monoidal mon-
ads and monoidal adjunctions.

3.8 Abstract model of the quantum lambda calculus

Summing up the parts from previous sections, we have the following theorem.

Theorem 3.17. Given categories B, C and D, and functors B
Φ

−→ C
Ψ

−→ D,

satisfying

– B has finite products, C and D are symmetric monoidal,

– B, C, and D have coproducts, which are distributive w.r.t. tensor,

– C is affine,

– Φ and Ψ are strong monoidal,

Presheaf models of quantum computation 13

– Φ and Ψ preserve coproducts,
– Φ is full and faithful,
– Ψ is essentially surjective on objects,
– for every b ∈ B, c, c′ ∈ C we have C(Φ(b), c)× C(Φ(b), c′) ∼= C(Φ(b), c⊗ c′).

Let Γ be any class of cones preserved by the opposite tensor functor, including

all the finite product cones. Let LanΦ, Φ
∗, F and G be defined as in Section 3.2

and subsequent sections. Then

[Bop,Set]
LanΦ //

[Cop,Set]
F //

Φ∗

⊥oo [Dop,Set]Γ
G

⊥oo

forms an abstract model of the quantum lambda calculus.

Proof. Relevant propositions from previous sections.

3.9 Towards a concrete model: constructing FinSet
Φ

−→ Q′′ Ψ
−→ Q

The category Q of superoperators was defined in Section 2. Here, we discuss a

category Q′′ related to Q, together with functors FinSet
Φ

−→ Q′′ Ψ
−→ Q. The

goal is to choose Q′′ and the functors Φ and Ψ carefully so as to satisfy the
requirements of Theorem 3.17.

Recall the definition of the free affine monoidal category (Fwm(K),⊗, I):

– Objects are finite sequences of objects of K: {Vi}i∈[n] = {V1, . . . , Vn}.

– Maps (ϕ, {fi}i∈[m]) : {Vi}i∈[n] −→ {Wi}i∈[m] are determined by:

(i) an injective function ϕ : [m] → [n],
(ii) a family of morphisms fi : Vϕ(i) →Wi in the category K.

– Tensor ⊗ is given by concatenation, with unit I given by the empty sequence.

Proposition 3.18. There is a canonical inclusion Inc : K → Fwm(K) sat-

isfying: for any symmetric monoidal category A whose tensor unit is termi-

nal and any functor F : K → A, there is a unique strong monoidal functor

G : Fwm(K) → A, up to isomorphism, such that G ◦ Inc = F .

We apply this universal construction to the situation where K is a discrete
category. For later convenience, we let K be the discrete category with finite
dimensional Hilbert spaces as objects. Then Fwm(K) has sequences of Hilbert
spaces as objects and dualized, compatible, injective functions as arrows.

Now consider the identity-on-objects inclusion functor F : K → Q′
s, whereQ

′
s

is the category of simple trace-preserving superoperators defined in Section 2.
Since Q′

s is affine, by Proposition 3.18 there exists a unique (up to natural
isomorphism) strong monoidal functor F̂ such that:

K

Inc

��

F // Q′
s

Fwm(K)

F̂

;;✇✇✇✇✇✇✇✇✇

14 Malherbe, Scott, and Selinger

Remark 3.19. This reveals the purpose of using equality instead of 6 in the def-
inition of a trace-preserving superoperator (Definition 2.9). When the codomain
is the unit, there is only one map f(ρ) = tr(ρ), and therefore Q′

s is affine.

Now we remind the reader about the general properties of the free finite coprod-
uct completion C+ of a category C. The category C+ has as its objects finite
families of objects of C, say V = {Va}a∈A, with A a finite set. A morphism from
V = {Va}a∈A to W = {Wb}b∈B consists of the following:

– a function ϕ : A→ B,
– a family f = {fa}a∈A of morphisms of C, where fa : Va →Wϕ(a).

The coproduct in C+ is just concatenation of families of objects of C.

Proposition 3.20. Given any category A with finite coproducts and any functor

F : C → A, there is a unique finite coproduct preserving functor G : C+ → A,

up to natural isomorphism, such that G ◦ Inc = F .

C

Inc

��

F // A

C+

G

>>⑥⑥⑥⑥⑥⑥⑥⑥

If C is a symmetric monoidal category then C+ is also symmetric monoidal. In

addition, if we assume that the categories C and A are symmetric monoidal, then

Inc is a symmetric monoidal functor. If F is a symmetric monoidal functor and

tensor distributes over coproducts in A, then G is a symmetric monoidal functor.

Moreover, if F is strong monoidal then so is G.

In the sequel we want to apply Proposition 3.20 to a concrete category, but
first:

Remark 3.21. By definition, Qs is a full subcategory of Q, and the inclusion
functor In : Qs → Q is strong monoidal. Also, since every trace preserving su-
peroperator is trace non-increasing, Q′

s is a subcategory of Qs, and the inclusion
functor E : Q′

s → Qs is strong monoidal as well.

We apply the machinery of Proposition 3.20 to the composite functor

Fwm(K)
F̂
→ Q′

s
E
→ Qs

In
→ Q,

where In and E are as defined in Remark 3.21.

Definition 3.22. Let Q′′ = (Fwm(K))+ and let Ψ be the unique finite coprod-
uct preserving functor making the following diagram commute:

Fwm(K)

Inc

��

F̂ // Q′
s

E // Qs
In // Q.

(Fwm(K))+
Ψ

33❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

(2)

Note that such a functor exists by Proposition 3.20, and it is strong monoidal.

Presheaf models of quantum computation 15

Remark 3.23. Since Ψ{{V ai }i∈[na]}a∈A =
∐
a∈A{(V

a
1 ⊗ . . .⊗V ana

)∗}∗∈1, the func-
tor Ψ is essentially onto objects. Specifically, given any object {Va}a∈A ∈ |Q|,
we can choose a preimage (up to isomorphism) as follows:

Ψ{{V ai }i∈[1]}a∈A =
∐
a∈A

{(V a1)∗}∗∈1
∼= {Va}a∈A. (3)

Lemma 3.24. Let C be an affine category. Then there is a fully faithful strong

monoidal functor Φ : (FinSet,×, 1) → (C+,⊗C+ , I) that preserves coproducts.

Definition 3.25. Recall that Fwm(K) is an affine category and Q′′ =
Fwm(K)+. Let Φ : FinSet → Q′′ be the functor defined by Lemma 3.24.

Remark 3.26. With the above choice of Φ : FinSet → Q′′, equation (1) in
Lemma 3.13 is just the characterization of cartesian products in FinSet using
representable functors.

Theorem 3.27. The choice B = FinSet, C = Q′′, D = Q, with the functors

Φ as in Definition 3.25 and Ψ as in Definition 3.22, and with Γ the class of all

finite product cones in Dop, satisfies all the properties required by Theorem 3.17.

3.10 A concrete model

Theorem 3.28. Let Q, Q′′, Φ, Ψ , and Γ be defined as in Sections 2 and 3.9.

Then

[FinSetop,Set]
LanΦ //

[(Q′′)op,Set]
F //

Φ∗

⊥oo [Qop,Set]Γ
G

⊥oo

forms a concrete model of the quantum lambda calculus.

Proof. This follows from Theorems 3.17 and 3.27.

4 Conclusions and future work

We have constructed mathematical (semantic) models of higher-order quantum
computation, specifically for the quantum lambda calculus of Selinger and Val-
iron. The central idea of our model construction was to apply the presheaf con-
struction to a sequence of three categories and two functors, and to find a set
of sufficient conditions for the resulting structure to be a valid model. The con-
struction depends crucially on properties of presheaf categories, using Day’s
convolution theory and the Kelly-Freyd notion of continuity of functors.

We then identified specific base categories and functors that satisfy these
abstract conditions, based on the category of superoperators. Thus, our choice
of base categories ensures that the resulting model has the “correct” morphisms
at base types, whereas the presheaf construction ensures that it has the “correct”
structure at higher-order types.

16 Malherbe, Scott, and Selinger

Our work has concentrated solely on the existence of such a model. One ques-
tion that we have not yet addressed is specific properties of the interpretation of
quantum lambda calculus in this model. It would be interesting, in future work,
to analyze whether this particular interpretation yields new insights into the
nature of higher-order quantum computation, or to use this model to compute
properties of programs.

Acknowledgements. This research was supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC) and by the Program for the
Development of Basic Sciences, Uruguay (PEDECIBA).

References

1. S. Abramsky, B. Coecke. A categorical semantics of quantum protocols. In Proc.
19th Annual IEEE Symp. on Logic in Computer Science (LICS 2004), IEEE Com-
puter Soc. Press, 2004, 415–425.

2. N. Benton. A mixed linear and non-linear logic: proofs, terms and models (extended
abstract). In L. Pacholski and J. Tiuryn, editors. Computer Science Logic, CSL’
94 Selected Papers, LNCS, Springer, v. 933 (1994), 121–135.

3. G. Bierman. On intuitionistic linear logic. Ph.D. thesis, Computer Science depart-
ment, Cambridge University, 1993.

4. G. Bierman. What is a categorical model of intuitionistic linear logic?, in: Proc.
Typed Lambda Calculi and Applications, TLCA ’95, LNCS, Springer, v. 902 (1995).

5. F. Borceux. Handbook of Categorical Algebra 1. Cambridge University Press, 1994.
6. B. Day. On closed categories of functors. Lecture Notes in Math. 137 (1970),

Springer, 1–38.
7. B. Day. A reflection theorem for closed categories. J. Pure Appl. Algebra 2 (1972),

1–11.
8. B. Day. Note on monoidal localisation. Bull. Austral. Math. Soc. 8 (1973), 1–16.
9. B. Day. Monoidal functor categories and graphic Fourier transforms (2006).

ArXiv:math/0612496.
10. B. Day, R. Street. Kan extensions along promonoidal functors. Theory and Appli-

cations of Categories 1 (4) (1995), 72–78.
11. P. Freyd, G. M. Kelly. Categories of continuous functors I, J. Pure and Appl.

Algebra 2 (1972), 169–191.
12. J. Y. Girard. Linear logic. Theoretical Computer Science, 50(1), 1987, 1–101.
13. G. B. Im, G. M. Kelly. A universal property of the convolution monoidal structure.

J. Pure and Appl. Algebra 43 (1986), 75–88.
14. G. M. Kelly. Doctrinal adjunction, Lecture Notes in Math. 420 (1974), Springer,

257–280.
15. G. M. Kelly. Basic Concepts of Enriched Category Theory, LMS Lecture Notes 64,

Cambridge University Press, 1982.
16. A. Kock. Monads on symmetric monoidal closed categories. Arch. Math. 21 (1970),

1–10.
17. A. Kock. Strong functors and monoidal monads. Archiv der Mathematik 23, 1972.
18. J. Lambek. Completions of Categories, Lecture Notes in Math. 24, Springer, 1966.
19. J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic. Cam-

bridge University Press, 1986.

Presheaf models of quantum computation 17

20. M. L. Laplaza. Coherence for distributivity. Springer Lecture Notes in Math. 281,
1972, 29–65.

21. S. Mac Lane. Categories for the Working Mathematician, 2nd ed., Springer, 1998.
22. O. Malherbe. Categorical models of computation: partially traced categories and

presheaf models of quantum computation. Ph.D. thesis, University of Ottawa, 2010.
Available from arXiv:1301.5087.

23. P.-A. Melliès. Categorical models of linear logic revisited. Preprint, 2002. Appeared
as: Categorical semantics of linear logic, in Interactive models of computation and
program behaviour, P.-L. Curien, H. Herbelin, J.-L. Krivine, P.-A. Melliès, eds.,
Panoramas et Synthèses 27, Société Mathématique de France, 2009.

24. E. Moggi. Computational lambda-calculus and monads. Technical Report ECS-
LFCS-88-66, Lab. for Foundations of Computer Science, U. Edinburgh, 1988.

25. E. Moggi. Notions of computation and monads. Information and Computation
93(1), 1991, 55–92.

26. A. Nielsen, I. L. Chuang. Quantum Computation and Quantum Information. Cam-
bridge University Press, 2000.

27. R. Seely. Linear logic, *-autonomous categories and cofree coalgebras. In J. W.
Gray and A. Scedrov, eds., Categories in Computer Science and Logic, Volume 92
of Contemporary Mathematics, Amer. Math. Soc. 1989, 371–382.

28. P. Selinger. Towards a quantum programming language, Math. Structures in Comp.
Sci. 14(4), 2004, 527–586.

29. P. Selinger. Dagger compact closed categories and completely positive maps. In
P. Selinger, ed., Proceedings of the Third International Workshop on Quantum
Programming Languages, (QPL 2005), Chicago. ENTCS 170 (2007), 139–163.

30. P. Selinger, B. Valiron. A lambda calculus for quantum computation with classical
control. Mathematical Structures in Computer Science 16 (2006), 527–552.

31. P. Selinger, B. Valiron. On a fully abstract model for a quantum functional lan-
guage. Proceedings of the Fourth International Workshop on Quantum Program-
ming Languages, Springer ENTCS 210 (2008), 123–137.

32. P. Selinger, B. Valiron. A linear-non-linear model for a computational call-by-value
lambda calculus. In Proc. of the Eleventh International Conference on Founda-
tions of Software Science and Computation Structures (FOSSACS 2008), Budapest,
Springer LNCS 4962 (2008), 81–96.

33. P. Selinger, B. Valiron. Quantum lambda calculus. In: Semantic Techniques in
Quantum Computation, Cambridge University Press, S. Gay and I. Mackie, eds.,
2009, 135–172.

34. P. W. Shor, Algorithms for quantum computation: discrete logarithms and factor-
ing, Proc. 35nd Annual Symposium on Foundations of Computer Science, S. Gold-
wasser, ed., IEEE Computer Society Press (1994), 124–134.

35. B. Valiron. Semantics for a higher order functional programming language for quan-
tum computation. Ph.D. thesis, University of Ottawa, 2008.

