
1

Quantum Lambda Calculus

Peter Selinger

Dalhousie University, Canada

Benôıt Valiron

INRIA and École Polytechnique, LIX, Palaiseau, France.

Abstract

We discuss the design of a typed lambda calculus for quantum compu-

tation. After a brief discussion of the role of higher-order functions in

quantum information theory, we define the quantum lambda calculus

and its operational semantics. Safety invariants, such as the no-cloning

property, are enforced by a static type system that is based on intu-

itionistic linear logic. We also describe a type inference algorithm, and

a categorical semantics.

1.1 Introduction

The lambda calculus, developed in the 1930’s by Church and Curry, is a

formalism for expressing higher-order functions. In a nutshell, a higher-

order function is a function that inputs or outputs a “black box”, which

is itself a (possibly higher-order) function. Higher-order functions are a

computationally powerful tool. Indeed, the pure untyped lambda cal-

culus has the same computational power as Turing machines (Turing,

1937). At the same time, higher-order functions are a useful abstraction

for programmers. They form the basis of functional programming lan-

guages such as LISP (McCarthy, 1960), Scheme (Sussman and Steele Jr,

1975), ML (Milner, 1978) and Haskell (Hudak et al., 2007).

In this chapter, we discuss how to combine higher-order functions with

quantum computation. We believe that this is an interesting question for

a number of reasons. First, the combination of higher-order functions

with quantum phenomena raises the prospect of entangled functions.

Certain well-known quantum phenomena can be naturally described in

1

2 P. Selinger and B. Valiron

terms of entangled functions, and we will give some examples of this in

Section 1.2.

Another interesting aspect of higher-order quantum computation is

the interplay between classical objects and quantum objects in a higher-

order context. A priori, quantum computation operates on two distinct

kinds of data: classical data, which can be read, written, duplicated,

and discarded as usual, and quantum data, which has state preparation,

unitary maps, and measurements as primitive operations. The higher-

order computational paradigm introduces a third kind of data, namely

functions, and one may ask whether functions behave like classical data,

quantum data, or something intermediate.

The answer is that there will actually be two kinds of functions: those

that behave like “quantum” objects, and those that behave like “classi-

cal” objects. Functions of the first kind carry the potential to be entan-

gled, and can only be used once. They are effectively a “quantum state

with an interface”. Functions of the second kind carry no possibility of

being entangled, and can be duplicated and reused at will. Interestingly,

this classification of functions in not directly related to the types of their

inputs and outputs: as we will see, there exist quantum-like functions

that act on classical data, as well as classical-like functions that act on

quantum data. In Section 1.3.2, we will discuss a type system by which

one can mechanically determine, for every expression of the quantum

lambda calculus, which of these categories it falls into.

When designing a quantum lambda calculus, one naturally has to

make a number of choices. We do not attempt to present all possible

design choices that could have been made; instead, we present one set

of coherent choices that we think is particularly useful, with occasional

comments on possible alternatives. Various aspects of our quantum

lambda calculus and its semantics were developed in (Valiron, 2004a,b;

Selinger and Valiron, 2005, 2006, 2008b,a; Valiron, 2008). We briefly

discuss some of the main design choices, as well as related work, in

Section 1.3.8.

The remainder of this paper is organized as follows. In Section 1.2,

we give some examples of the use of higher-order functions in quan-

tum computation. In Section 1.3, we introduce the quantum lambda

calculus, its syntax, type system, and operational semantics. A type

inference algorithm is described in Section 1.4. We discuss an exten-

sion of the language with infinite data types in Section 1.5. Finally, in

Section 1.6 we discuss the category-theoretic semantics of the quantum

lambda calculus.

Quantum Lambda Calculus 3

|0〉 H H |f(0)⊕ f(1)〉

Uf

|1〉 H

|x〉 |x〉

|y〉 |y⊕f(x)〉

Fig. 1.1. The Deutsch-Jozsa algorithm.

Errata. This version of the paper differs from the published version. A

typo in Definition 1.6.21 has been corrected.

1.2 Higher-order quantum computation examples

At the heart of the higher-order computation paradigm is the idea that

“functions are data”. As such, functions can appear in any context in

which data is normally used. In particular, they can appear as inputs

to other functions, appear as outputs of other functions, or be stored in

data structures (such as a pair of functions, or a list of functions). An

important restriction of higher-order computation is that all functions

must be accessed via their interface. In other words, a program may

interact with a function-as-data by applying it to an argument, but not,

for instance, by examining its code.

We give some examples illustrating how some common phenomena

in quantum computation can be interpreted in terms of higher-order

functions. In these examples, we will informally use some concepts (such

as types) that will be more rigorously defined in later sections.

1.2.1 The Deutsch-Jozsa algorithm

Maybe the easiest example to interpret in the context of higher-order is

the Deutsch-Jozsa algorithm (Deutsch and Jozsa, 1992). In its simplest

form, this algorithm decides whether a boolean function f : bit → bit is

balanced or constant. It does so by interacting with an encoding of f ,

and uses this encoding only once (contrary to the classical case, where

two calls to f are needed).

The function f must be provided in the form of a unitary 2-qubit cir-

cuit Uf , where Uf (|x〉⊗|y〉) = |x〉⊗|y⊕f(x)〉. The algorithm constructs

and runs the circuit shown in Figure 1.1. It measures the indicated qubit

and returns f(0)+f(1). As the Deutsch-Jozsa algorithm inputs a binary

gate, which is a function of type qbit ⊗ qbit → qbit ⊗ qbit , and outputs

4 P. Selinger and B. Valiron

qubit 1: |φ〉 • H

(1) (2) M
x,y

qubit 2: |0〉 H • ⊕

qubit 3: |0〉 ⊕ED location B

location A

@A
Uxy

(3)

|φ〉

_ _�

�

�

�

�

�

�

�

�

�
_ _

Fig. 1.2. Quantum teleportation protocol.

a classical bit, its type is:

(qbit ⊗ qbit → qbit ⊗ qbit) → bit .

We note that the preparation of the encoding Uf from the original

boolean function f is itself a higher-order function of type

(bit → bit) → (qbit ⊗ qbit → qbit ⊗ qbit).

However, this latter function must still call f twice (or else, it must

examine the implementation of f , which is not allowed in the higher-

order paradigm).

1.2.2 The teleportation procedure

The teleportation algorithm (Bennett et al., 1993) is a procedure for

sending a quantum bit in an unknown state |φ〉 from a location A to a

location B using two classical bits. The procedure can be reversed to

send two classical bits using a quantum bit. In this case it is called the

dense coding algorithm (Bennett and Wiesner, 1992). The teleportation

procedure is summarized in Figure 1.2. The parts (1), (2) and (3) can

be described functionally as follows:

(1) takes no input and outputs an EPR pair of entangled quantum bits.

Its type is therefore ⊤ → qbit ⊗ qbit .

(2) performs a Bell measurement on two quantum bits and outputs two

classical bits x, y. Its type is thus qbit ⊗ qbit → bit ⊗ bit .

Quantum Lambda Calculus 5

(3) performs a correction. It takes one quantum bit, two classical bits, and

outputs a quantum bit. It has a type of the form qbit⊗bit⊗bit → qbit .

If one curries† parts (2) and (3), one gets two respective functions

qbit → (qbit → bit ⊗ bit), qbit → (bit ⊗ bit → qbit).

Tensoring them and composing with (1) yields a map

⊤ → qbit ⊗ qbit → (qbit → bit ⊗ bit)⊗ (bit ⊗ bit → qbit).

That is, the teleportation algorithm produces a pair of entangled func-

tions

f : qbit → bit ⊗ bit , g : bit ⊗ bit → qbit ,

such that g(f(|φ〉)) = |φ〉 for all qubits |φ〉, and f(g(x, y)) = (x, y) for

all booleans x and y. These two functions are each other’s inverse, but

because they contain an embedded qubit each, they can only be used

once. They can be said to form a “single-use isomorphism” between the

(otherwise non-isomorphic) types qbit and bit ⊗ bit .

Note that the two functions f and g are entangled, since they still

share the created EPR pair. One can also identify the “location” of

each function: f is located at B while g is located at A. The tensor “⊗”

acts as “space-like” separation.

1.2.3 Bell’s experiment

Recall Bell’s experiment (Bell, 1964). Two quantum bits A and B are

created in the maximally entangled state |φAB〉 = 1√
2
(|0〉⊗|1〉−|1〉⊗|0〉).

These qubits are sent to Alice and Bob, respectively. Suppose that

Alice and Bob can independently choose one of the following three bases

{a, b, c} for measuring their qubit:

|0a〉 = |0〉, |0b〉 =
1

2
|0〉+

√
3

2
|1〉, |0c〉 =

1

2
|0〉 −

√
3

2
|1〉,

|1a〉 = |1〉 |1b〉 =
√
3

2
|0〉 − 1

2
|1〉, |1c〉 =

√
3

2
|0〉+ 1

2
|1〉.

The question is to compute the probability of obtaining the same output

when measuringA and B with respect to each of the nine possible choices

of a pair of bases.

† Consider a function of two arguments h : A×B → C. Currying h means building
a function h′ : A → (B → C) as follows: h′ is the function that outputs the
function x 7→ h(a, x) when given the input a.

6 P. Selinger and B. Valiron

One can interpret this experiment in the context of higher-order quan-

tum computation. First, the state preparation can be viewed as a map

EPR : ⊤ → qbit ⊗ qbit . Then each of Alice and Bob takes one qubit,

chooses a basis, and measures: the measurement they perform is then a

function f : qbit ⊗ trit → bit , where trit = {0, 1, 2} is a classical three-

element type. One can curry this function to f ′ : qbit → (trit → bit).

The Bell experiment can be viewed as the composition

⊤ EPR−−−→ qbit ⊗ qbit
f ′⊗f ′

−−−−→ (trit → bit)⊗ (trit → bit),

which produces a term of type (trit → bit) ⊗ (trit → bit), i.e., a pair

〈f, g〉 of entangled functions. Although this final type is purely classical,

the Bell inequalities prove that there is no classical probabilistic pair of

functions exhibiting the same behavior, namely, such that f(x) = g(y)

with probability 1 if x = y, but with probability 1/4 if x 6= y.

1.3 Design of a typed quantum lambda calculus

In this section, we describe the design of a lambda calculus for quantum

computation in which one can, in particular, interpret the algorithms

described in Section 1.2.

1.3.1 Terms

We begin by defining a generic lambda calculus to support the following

programming constructs: higher-order functions, tuples, disjoint unions,

and recursive function definitions.

Definition 1.3.1 We define a set of lambda terms by the following

abstract syntax:

M,N,P ::= c | x | λx.M |MN |
〈M,N〉 | ∗ | let 〈x, y〉 =M in N |
inj l(M) | inj r(M) | match P with (x 7→M | y 7→ N) |
let rec f x =M in N.

Here, c ranges over a given set of term constants (to be instantiated

below), the symbol x ranges over a fixed given infinite set of term vari-

ables.

The intended meaning of the different terms is as follows. The term

λx.M denotes the function x 7→ M . For example, λx.x is the identity

Quantum Lambda Calculus 7

function. The term MN stands for the application of the function M

to the argument N . The term 〈M,N〉 represents a pair, and ∗ is the

unique 0-tuple. The term let 〈x, y〉 =M in N is the program which first

evaluates M to compute a pair 〈V,W 〉, then assigns V to x and W to y

before executing N . The terms inj l(M) and inj r(M) denote the left and

right inclusion function of data into a disjoint union, whereas the term

match P with (x 7→M | y 7→ N) evaluates P to an element of a disjoint

union, and then proceeds by case distinction depending on whether P is

of the form inj l(x) or inj r(y). Finally, the term let rec f x =M in N

defines a recursive function f(x) =M before evaluating N .

The notions of free and bound variables, of substitution and of α-

equivalence are defined in a standard way (see e.g. Barendregt, 1984).

We identify terms up to renaming of bound variables, so for instance,

λx.x and λy.y are regarded as equal.

Convention 1.3.2 The set of terms defined in Definition 1.3.1 is some-

what spartan. Following common practice, we will use the following

shorthand notations to make terms more readable:

λx1 . . . xn.M = λx1.λx2. . . . λxn.M

M1M2 . . .Mn = (. . . ((M1M2)M3) . . .Mn)

〈M1, . . . ,Mn〉 = 〈M1, 〈M2, . . .〉〉
λ〈x, y〉.M = λz.(let 〈x, y〉 = z in M)

λ∗.M = λz.M (where z is fresh),

let x =M in N = (λx.N)M

let ∗ =M in N = (λz.N)M (where z is fresh)

let f y1 . . . yn =M in N = let f = (λy1 . . . yn.M) in N

let rec f x y1 . . . yn =M in N = let rec f x = (λy1. . .yn.M) in N

0 = inj r(∗)
1 = inj l(∗)

if P then M else N = match P with (x 7→M | y 7→ N)

(where x, y are fresh)

We now specify a set of term constants specific to quantum computa-

tion. The constants are:

• new is a function for state preparation. It inputs a classical bit (i.e.,

0 or 1 as defined in Convention 1.3.2), and outputs a quantum bit

prepared in state |0〉 or |1〉, respectively.

8 P. Selinger and B. Valiron

• meas is a function for measurement. It inputs a quantum bit, measures

it in the standard basis {|0〉, |1〉}, and outputs the result as a classical

bit.

• a set of constants U , ranging over some fixed universal set of unitary

gates of varying arities.

The set of constants can be expanded when it is convenient to do so,

for example to include new language features. We will make use of this

prerogative in Section 1.5.1.

Example 1.3.3 In this language, one can write lambda terms that

compute quantum algorithms. For example, a fair coin can be imple-

mented as c = λ∗.meas(H(new 0)), where H is the Hadamard gate.

More examples will be given in Section 1.3.4.

1.3.2 Types

Clearly, not every term defined in Section 1.3.1 makes sense in every

possible context. For example, the term MN only makes sense if M is

a function; the term let 〈x, y〉 =M in N only makes sense when M is a

pair; the term match P with (x 7→M | y 7→ N) only makes sense when

P is a member of a disjoint union; and the term meas M only makes

sense if M is a quantum bit.

Moreover, a term such as λx.〈x, x〉 only makes sense when x is a

duplicable value, such as a classical bit, and not, for example, a quantum

bit (which cannot be duplicated by the no-cloning theorem).

As is common in programming languages, we define a type system

to rule out terms that “don’t make sense”. An important feature of a

static type system is that well-typedness can be checked when a term

is written, and not when it is executed. Another useful feature of some

type systems is that types can be inferred automatically, rather than

having to be explicitly specified by the programmer. As we will see, the

type system we are about to introduce has all of the above properties.

Informally, and as a first approximation, it is useful to think of a type

as a set of values. For example, qbit is the set of all one-qubit states,

whereas bit is the set of classical booleans. A⊗B is the set of (possibly

entangled) pairs of an element of type A and and element of type B. ⊤
is a singleton type, and A ⊕ B is the disjoint union of A and B. Since

we are interested in higher-order computation, the functions from A to

B also form a type, which we write as A⊸ B. Finally, we write !A for

Quantum Lambda Calculus 9

the subset of values of type A that have the additional property of being

re-usable (i.e., duplicable, cloneable).

The type systems is based on intuitionistic linear logic (Girard, 1987),

and is formally defined as follows.

Definition 1.3.4 The set of types for the quantum lambda calculus is

given by the following abstract syntax.

Type A,B ::= qbit | !A | (A⊸B) | ⊤ | (A⊗B) | (A⊕B).

We call the operator “!” the exponential.

Convention 1.3.5 We write !nA for !!! . . .!!A, with n repetitions of !.

We also use the notation A⊗n for the n-fold tensor product

A⊗ . . .⊗A = (. . . (A⊗A) . . .⊗A).

Similarly, we write A⊕n for the n-fold sum:

A⊕ . . .⊕A = (. . . (A⊕A) . . .⊕A).

Finally, we use the shorthand notation bit = ⊤⊕⊤.

When it is convenient, the set of types can be extended to support

new language features. For example, in Section 1.5.1, we will define a

type list(A) of list of elements of type A.

1.3.3 Typing rules

We have stated informally that !A is the set of values of type A that have

the additional property of being re-usable. Consequently, any term that

has type !A should automatically also have type A. We say that !A is a

subtype of A. The concept of a subtype also extends to composite types,

for instance, any function of type A⊸B that can accept an argument

of type A can also accept a re-usable argument of type A. Therefore,

A⊸B is a subtype of !A⊸B. This motivates the following definition:

Definition 1.3.6 We define the subtyping relation <: to be the small-

est relation on types satisfying the rules in Table 1.1, using the overall

condition on n and m that (m = 0) ∨ (n > 1).

Note that the rules in Table 1.1 should be read as follows: if the

premises (above the horizontal line) are all true, then the conclusion

(below the horizontal line) is true.

10 P. Selinger and B. Valiron

!nqbit <: !mqbit
(qbit),

!n⊤<: !m⊤
(⊤),

A1 <:B1 A2 <:B2

!n(A1 ⊗ A2)<: !m(B1 ⊗B2)
(⊗),

A <:A′ B <: B′

!n(A′
⊸B)<: !m(A⊸B′)

(⊸),

A1 <:B1 A2 <:B2

!n(A1 ⊕ A2)<: !m(B1 ⊕B2)
(⊕).

Table 1.1. Subtyping relation

Lemma 1.3.7 The subtyping relation <: is reflexive and transitive.

Lemma 1.3.8 If A<: !B, then A = !A′ for some type A′. Dually, if A

is not of the form !A′ and if A<:B, then B is not of the form !B′.

The purpose of the type system is to assign a (not necessarily unique)

type to each well-formed term, with the goal that a well-typed term can

never perform an illegal operation. We write M : A to indicate that the

term M is well-typed of type A. In general, it is not sufficient to reason

about judgements of the form M : A, because the well-typedness of a

termM also depends on the types of all of the free variables that appear

in M . We therefore introduce the notion of a typing context.

Definition 1.3.9 A typing context is a finite set {x1 : A1, . . . , xn : An}
of pairs of a variable and a type, such that no variable occurs more

than once. We often write ∆ for a typing context, and we write |∆| =
{x1, . . . , xn} and ∆(xi) = Ai. We also write !∆ for a context of the form

{x1 : !A1, . . . , xn : !An}. If |∆| and |∆′| are disjoint, we write ∆,∆′ for
the union of two typing contexts. Moreover, we extend the subtyping

relation to contexts as follows. We write ∆<:∆′ if and only if |∆| = |∆′|
and for all x ∈ |∆|, ∆(x) <: ∆′(x).

Definition 1.3.10 A typing judgement is an expression of the form

∆ ⊲M : B, where ∆ is a typing context, M is a term, and B is a type.

A typing derivation is called valid if it can be inferred from the rules in

Table 1.2.

In the table, the symbol c ranges over the set of term constants

{meas, new , U}. To each constant c we associate a type Ac, as follows:

Anew = bit⊸ qbit , AU = qbit⊗n
⊸ qbit⊗n, Ameas = qbit⊸ !bit .

Quantum Lambda Calculus 11

A<:B
∆, x : A ⊲ x : B

(ax1)
!Ac <:B

∆ ⊲ c : B
(ax2)

∆ ⊲M : !nA

∆ ⊲ inj l(M) : !n(A⊕B)
(⊕.I1)

∆ ⊲ N : !nB

∆ ⊲ inj r(N) : !n(A⊕B)
(⊕.I2)

!∆,Γ1 ⊲ P : !n(A⊕B)
!∆,Γ2, x : !nA ⊲M : C
!∆,Γ2, y : !nB ⊲ N : C

Γ1,Γ2, !∆ ⊲ match P with (x 7→ M | y 7→ N) : C
(⊕.E)

Γ1, !∆ ⊲M : A⊸ B Γ2, !∆ ⊲ N : A

Γ1,Γ2, !∆ ⊲MN : B
(app)

x : A,∆ ⊲M : B

∆ ⊲ λx.M : A⊸ B
(λ1)

If FV (M) ∩ |Γ| = ∅:
Γ, !∆, x : A ⊲M : B

Γ, !∆ ⊲ λx.M : !n+1(A⊸B)
(λ2)

!∆,Γ1 ⊲M1 : !nA1 !∆,Γ2 ⊲M2 : !nA2

!∆,Γ1,Γ2 ⊲ 〈M1,M2〉 : !
n(A1 ⊗ A2)

(⊗.I)
∆ ⊲ ∗ : !n⊤

(⊤)

!∆,Γ1 ⊲M : !n(A1 ⊗ A2) !∆,Γ2, x1:!
nA1, x2:!

nA2 ⊲ N : A

!∆,Γ1,Γ2 ⊲ let 〈x1, x2〉 = M in N : A
(⊗.E)

!∆, f : !(A⊸B), x : A ⊲M : B !∆,Γ, f : !(A⊸ B) ⊲ N : C

!∆,Γ ⊲ let rec f x = M in N : C
(rec)

Table 1.2. Typing rules

Lemma 1.3.11 The following are derived rules:

⊲ 0 : !nbit ,
(bit .I1)

⊲ 1 : !nbit ,
(bit .I2)

!∆,Γ1 ⊲ P : bit !∆,Γ2 ⊲M,N : A

!∆,Γ1,Γ2 ⊲ if P then M else N : A.
(bit .E)

Proof The proof is straightforward using the typing rules and Conven-

tions 1.3.2 and 1.3.5.

Remark 1.3.12 The type !Ac is understood as being the “most generic”

one for c, as enforced by the typing rule (ax 2). For example, we defined

Anew to be bit ⊸ qbit . Since by the rule (ax 2), new can take any type

B such that !Ac <: B, the term new can be typed with any type in the

12 P. Selinger and B. Valiron

following poset:

!(!bit⊸ qbit)
<:[[[[

!(bit⊸ qbit)
<:[[[[[
<:cc cc

!bit⊸ qbit .
bit⊸ qbit

<:ccc cc

This implies, as expected, that no created quantum bit can have the

type !qbit .

Remark 1.3.13 Note that the type system enforces the requirement

that variables holding quantum data cannot be freely duplicated; thus

λx.〈x, x〉 is not a valid term of type qbit ⊸ qbit ⊗ qbit . On the other

hand, we allow variables to be discarded freely.

Note also that due to rule (λ2) the term λx.M is duplicable only if

all the free variables of M (other that x) are duplicable. This answers

the question, raised in the introduction, what it means for a higher-

order function to be “classical”. A function is classical (and therefore

re-usable) if and only if it does not contain any embedded non-duplicable

data. This definition is of course recursive, in a way that is made precise

by the typing rules.

1.3.4 Examples

Example 1.3.14 The term c = λ∗.meas(H(new 0)) of Example 1.3.3

can be typed as ⊲ c : ⊤⊸ bit .

Example 1.3.15 Consider the term

M = let rec f x = (if (c ∗) then H (f x) else x) in f p,

where c is the fair coin of Example 1.3.14. Intuitively, this term applies

the Hadamard gate a random number of times to a qubit p. We claim

that p : qbit ⊲ M : qbit is a valid typing judgement. Indeed, assuming

that ⊲ c : ⊤⊸ bit is a valid typing judgement, one can write the

following typing derivation:

1 (ax 1) f : !(qbit⊸qbit), x : qbit ⊲ x : qbit

2 (⊸) !(qbit⊸qbit)<: qbit⊸ qbit

3 (2, ax1) f : !(qbit⊸qbit) ⊲ f : qbit⊸ qbit

4 (3, 1, app) f : !(qbit⊸qbit), x : qbit ⊲ (f x) : qbit

5 (2, ax 2) ⊲ H : qbit⊸ qbit

Quantum Lambda Calculus 13

6 (5, 4, app) f : !(qbit⊸qbit), x : qbit ⊲ H (f x) : qbit

7 (Ex.1.3.14) ⊲ c : ⊤⊸ bit

8 (⊤.I) ⊲ ∗ : ⊤
9 (7, 8, app) ⊲ c ∗ : bit

10 (9, 6, 1, if) f : !(qbit⊸qbit), x : qbit ⊲

if (c ∗) then H (f x) else x : qbit

11 (ax 1) p : qbit ⊲ p : qbit

12 (3, 11, app) p : qbit , f : !(qbit⊸ qbit) ⊲ f p : qbit

13 (10, 12, rec) p : qbit ⊲ let rec f x =

if (c ∗) then H (f x) else x)

in f p : qbit

Here, we have used the notation (x,y,z,R) for “The rule R is used with

hypothesis lines x, y and z”. The rule (⊸) refers to Table 1.1.

Example 1.3.16 Consider the Deutsch-Jozsa algorithm introduced in

Section 1.2.1. We claimed that one can interpret it as a term of type

(qbit ⊗ qbit⊸ qbit ⊗ qbit) → bit .

Here is an implementation in the quantum lambda calculus, using the

notations of Convention 1.3.2:

let Deutsch Uf =

let tens f g = λ〈x, y〉.〈fx, gy〉 in
let 〈x, y〉 = (tens H (λx.x))(Uf 〈H(new 0), H(new 1)〉) in

meas x,

One can check that

⊲ Deutsch : !((qbit ⊗ qbit⊸ qbit ⊗ qbit)⊸ bit)

is a well-typed typing judgement. Note that Deutsch is duplicable, and

that Uf does not need to be duplicable, since it is used only once.

Example 1.3.17 The teleportation algorithm can similarly be defined.

Part (1) is the function EPR : !(⊤⊸ (qbit ⊗ qbit)), defined as

EPR = λx.CNOT 〈H(new 0), new 0〉.

14 P. Selinger and B. Valiron

Part (2) is the function BellMeasure : !(qbit⊸ (qbit⊸ bit ⊗ bit)), de-

fined as

BellMeasure =

λq2.λq1.(let 〈x, y〉 = CNOT 〈q1, q2〉 in 〈meas(Hx),meas y〉.

Part (3) is the function U : !(qbit⊸ (bit ⊗ bit⊸ qbit)) defined as

U = λq.λ〈x, y〉.if x then (if y then U11q else U10q)

else (if y then U01q else U00q).

The teleportation procedure as described in Section 1.2.2 can be written

with the following code:

telep = let 〈x, y〉 = EPR ∗ in

let f = BellMeasure x in

let g = U y

in 〈f, g〉.

It can then be shown that

⊲ telep : (qbit⊸ bit ⊗ bit)⊗ (bit ⊗ bit⊸ qbit)

is a valid typing judgement (for details, see Selinger and Valiron, 2006).

1.3.5 The evaluation of terms: operational semantics

So far, we have concentrated on the static properties of lambda terms,

and have only informally described their intended behavior. In this

section, we will present the formal computation rules by which terms

are evaluated.

Our informal description of the behavior of lambda terms has left

many details undefined. For example, when evaluating a pair of terms

〈M,N〉, we have not specified whether M or N will be evaluated first.

Similarly, in terms such as let x = M in N , we have not specified

whetherM should be evaluated immediately, or whether it should be re-

evaluated each time the term N needs to access the value of the variable

x. Such seemingly arbitrary choices actually can affect the outcome of

the computation, as the following example shows.

Example 1.3.18 Consider the boolean addition function, defined as

plus = λxy.if x then (if y then 0 else 1) else (if y then 1 else 0).

Quantum Lambda Calculus 15

Now consider the term

let x = c ∗ in plusxx,

where c is the fair coin from Example 1.3.3. If we evaluate c ∗ each time

the variable x is needed, we obtain plus(c ∗)(c ∗), which will be 0 or 1

with equal probability. On the other hand, if we evaluate c ∗ ahead of

time, we obtain either plus 0 0 or plus 1 1, and in either case the final

answer is 0. The former evaluation method is called the call-by-name

method, and the latter is called the call-by-value method.

One of the reasons we give a formal definition of the behavior of

lambda terms is to resolve such imprecisions. Thus, we will have to

make a specific choice in each instance where an ambiguity might arise.

For example, we will be choosing the call-by-value reduction strategy.

Another reason for making a formal definition is that this will allow us

to prove meta-theorems about the behavior of quantum lambda terms.

For example, we will prove in Section 1.3.7 that a well-typed lambda

term never executes an illegal operation such as attempting to clone a

quantum bit.

Definition 1.3.19 A quantum closure (or state) is a tuple [Q,L,M],

where

• Q is a normalized vector of ⊗n
i=1C

2, for some integer n > 0. The

vector Q is called the quantum array;

• L is a list of n distinct term variables, written as |x1, . . . , xn〉.
• M is a lambda term whose free variables all appear in L.

We write |L| = {x1, . . . , xn}, and we also write L(xi) = i for the position

of a variable xi in the list.

The purpose of a quantum closure is to provide a mechanism to talk

about terms with embedded quantum data. The idea is that the variable

xi is bound in the term M to qubit number L(xi) of the state Q. So for

example, the quantum closure

[
1√
2
(|00〉+ |11〉), |pq〉, λx.xpq]

denotes a term λx.xpq with two embedded qubits p, q in the entangled

state |pq〉 = 1√
2
(|00〉+ |11〉).

The notion of α-equivalence extends naturally to quantum closures,

for instance, the states [Q, |x〉, λy.x] and [Q, |z〉, λy.z] are equivalent. We

identify quantum closures up to renaming of bound variables.

16 P. Selinger and B. Valiron

[Q,L, let x = V in M]→1 [Q,L,M [V/x]]

[Q,L, let 〈x, y〉 = 〈V,W 〉 in N]→1 [Q,L,N [V/x,W/y]]

[Q,L,match inj l(V) with (x 7→ M | y 7→ N)]→1 [Q,L,M [V/x]]

[Q,L,match inj r(W) with (x 7→ M | y 7→ N)]→1 [Q,L,N [W/y]]

[Q,L, let rec f x = M in N]

→1[Q,L,N [λx.(let rec f x = M in M) / f]]

Table 1.3. Reductions rules: classical control

[Q, |x1 . . . xn〉, U〈xj1 , . . . , xjn〉]→1 [Q
′, |x1 . . . xn〉, 〈xj1 , . . . , xjn〉]

[α|Q0〉+ β|Q1〉, |x1 . . . xn〉,meas xi]→|α|2 [|Q0〉, |x1 . . . xn〉, 0]

[α|Q0〉+ β|Q1〉, |x1 . . . xn〉,meas xi]→|β|2 [|Q1〉, |x1 . . . xn〉, 1]

[Q, |x1 . . . xn〉,new 0]→1 [Q⊗ |0〉, |x1 . . . xn+1〉, xn+1]

[Q, |x1 . . . xn〉,new 1]→1 [Q⊗ |1〉, |x1 . . . xn+1〉, xn+1]

Table 1.4. Reductions rules: quantum data

The evaluation of quantum lambda terms will be defined as a prob-

abilistic rewrite procedure on quantum closures, using a call-by-value

reduction strategy.

Definition 1.3.20 A value is a term defined with the following gram-

mar.

Value V,W ::= c | x | λx.M | inj r V | inj l V | ∗ | 〈V,W 〉

The quantum closure [Q,L, V] is called a value state if V is a value.

Definition 1.3.21 The reduction rules are shown in Tables 1.3–1.5. We

write [Q,L,M] →p [Q′, L′,M ′] for a single-step reduction of quantum

closures that takes place with probability p. In the rules for let, let

rec, and match, M [V/x] denotes the term M where the free variable x

has been replaced by V (renaming bound variables as necessary). In

the rule for reducing the term U〈xj1 , . . . , xjn〉, U is an n-ary built-in

unitary gate, j1, . . . , jn are pairwise distinct, and Q′ is the quantum

state obtained from Q by applying this gate to qubits j1, . . . , jn. In the

Quantum Lambda Calculus 17

[Q,L,N]→p [Q′, L′, N ′]

[Q,L,MN]→p [Q′, L,MN ′]

[Q,L,M]→p [Q′, L′,M ′]

[Q,L,MV]→p [Q′, L′,M ′V]

[Q,L,M2]→p [Q′, L′,M ′
2]

[Q,L, 〈M1,M2〉]→p [Q′, L′, 〈M1,M
′
2〉]

[Q,L,M1]→p [Q′, L′,M ′
1]

[Q,L, 〈M1, V2〉]→p [Q′, L′, 〈M ′
1, V2〉]

[Q,L,M]→p [Q′, L′,M ′]

[Q,L, inj l(M)]→p [Q′, L′, inj l(M
′)]

[Q,L,M]→p [Q′, L′,M ′]

[Q,L, inj r(M)]→p [Q′, L′, inj r(M
′)]

[Q,L, P]→p [Q′, L′, P ′]

[Q,L,match P with . . .]→p [Q′, L′,match P ′ with . . .]

[Q,L,M]→p [Q′, L′,M ′]

[Q,L, let 〈x, y〉 = M in N]→p [Q′, L′, let 〈x, y〉 = M ′ in N]

Table 1.5. Reductions rules: congruence rules

rule for measurement, |Q0〉 and |Q1〉 are normalized states of the form

|Q0〉 =
∑

j

αj |φ0j 〉 ⊗ |0〉 ⊗ |ψ0
j 〉, |Q1〉 =

∑

j

βj |φ1j〉 ⊗ |1〉 ⊗ |ψ1
j 〉,

where φ0j and φ1j are i-qubit states (so that the measured qubit is the

one pointed to by xi). In the rule for new , Q is an n-qubit state, so that

Q⊗ |i〉 is an (n+ 1)-qubit state.

We write → for the reduction →1, and →∗ for the reflexive, transitive

closure of →.

Note that the only probabilistic reduction step is the one correspond-

ing to measurement.

Example 1.3.22 Consider the term

M = let rec f x = (if (c ∗) then H (f x) else x) in f p

18 P. Selinger and B. Valiron

from Example 1.3.15. Let us write

P = if (c ∗) then H (f x) else x

R = let rec f x = P in P .

We have

M → [|0〉, |p〉, (f p)[λx.R / f]]

→ [|0〉, |p〉, (λx.R)p]
→ [|0〉, |p〉, let rec f x = P in (if (c ∗) then H (f p) else p)]

→ [|0〉, |p〉, (if (c ∗) then H (f p) else p)[λx.R / f]]

→ [|0〉, |p〉, if (c ∗) then H ((λx.R) p) else p]

= [|0〉, |p〉, if (meas(H(new 0))) then H ((λx.R) p) else p]

→ [|00〉, |pq〉, if (meas(H q)) then H ((λx.R) p) else p]

→ [
1√
2
(|00〉+ |01〉), |pq〉, if (meas q) then H ((λx.R) p) else p]

→
{

[|00〉, |pq〉, if 0 then H ((λx.R) p) else p]

[|01〉, |pq〉, if 1 then H ((λx.R) p) else p]

→
{

[|00〉, |pq〉, p]
[|01〉, |pq〉, H ((λx.R) p)]

→

[|00〉, |pq〉, p]
[|01〉, |pq〉, H (letrec f x = P in

if (c ∗) then H ((λx.R) p) else p)]

→∗

[|00〉, |pq〉, p]
[1√

2
(|010〉+ |011〉), |pqr〉,

H if (meas r) then H ((λx.R) p) else p]

→

[|00〉, |pq〉, p]
{

[|010〉, |pqr〉, H if 0 then H ((λx.R) p) else p]

[|011〉, |pqr〉, H if 1 then H ((λx.R) p) else p]

→

[|00〉, |pq〉, p]
{

[|010〉, |pqr〉, H p]

[|011〉, |pqr〉, H (H ((λx.R) p))]

→∗

[|00〉, |pq〉, p]

[1√
2
(|010〉+ |110〉), |pqr〉, p]

{

[|0110〉, |pqrs〉, H (H p)]

[|0111〉, |pqrs〉, H (H (H ((λx.R) p)))]

Quantum Lambda Calculus 19

→∗

[|00〉, |pq〉, p]

[1√
2
(|010〉+ |110〉), |pqr〉, p]

[|0110〉, |pqrs〉, p]
{

[1√
2
(|01110〉+ |11110〉), |pqrst〉, p]

· · ·

where each split occurs with probability 1
2 , and where the result is read

as the term part of the value state. On average, the term M reduces to

|0〉 with probability

1

2

∞
∑

n=0

1

22n
=

1

2

(

1

1− 1
4

)

=
2

3

and to 1√
2
(|0〉 + |1〉) with probability 1

3 . Note that since there is no

garbage collection, the quantum array is filled up with unused quan-

tum bits. It is possible to define an operational semantics that removes

unused quantum bits (see e.g. Selinger and Valiron, 2008b).

Remark 1.3.23 (Error states) The purpose of the reduction rules is

to evaluate a quantum closure until a value state is reached. However,

this does not always succeed: there are states (so-called error states)

that are not values, but from which no reduction is possible. Such

states correspond to run-time errors of the programming language (and

in actual implementations, these would either lead to run-time error

messages, or to undefined behavior). Examples of error states are the

quantum closures [Q,L, let 〈x, y〉 = inj l(M) in N], [Q,L,meas(λx.x)],

and [Q, |xyz〉, U〈x, x〉].
In Sections 1.3.2 and 1.3.3, we introduced a type system precisely for

the purpose of ruling out such error states. And indeed, we will show in

Section 1.3.7 that well-typed closure can never lead to an error state.

1.3.6 Properties of the type system

Before we can prove type soundness of the reduction rules, we need to

record some basic properties of the type system.

Lemma 1.3.24

(1) If x 6∈ FV (M) and ∆, x : A ⊲M : B, then ∆ ⊲M : B.

(2) If ∆ ⊲M : A, then Γ,∆ ⊲M : A.

(3) If Γ<: ∆ and ∆ ⊲M : A and A<: B, then Γ ⊲M : B.

20 P. Selinger and B. Valiron

Proof By structural induction on the type derivation of M .

The next lemma is crucial in the proof of the substitution lemma. Note

that it is only true for a value V , and in general fails for an arbitrary

term M .

Lemma 1.3.25 If V is a value and ∆ ⊲ V : !A, then for all x ∈ FV (V),

there exists some type B such that ∆(x) = !B. Conversely, if FV (V) =

|∆| and if !∆,Γ ⊲ V : A is valid, so is !∆,Γ ⊲ V : !A.

Proof By structural induction on V .

Lemma 1.3.26 (Substitution) If V is a value such that Γ1, !∆, x :

A ⊲M : B and Γ2, !∆ ⊲ V : A, then Γ1,Γ2, !∆ ⊲M [V/x] : B.

Proof By structural induction on the derivation of the typing judgement

Γ1, !∆, x : A ⊲ M : B, using Lemma 1.3.24. In the case (λ2), one uses

Lemma 1.3.25.

Remark 1.3.27 Those readers familiar with intuitionistic linear logic

(Girard, 1987; Troelstra, 1992) may note that all the rules of affine intu-

itionistic logic are derived rules of our type system, except for the general

promotion rule

!∆ ⊲M : A
!∆ ⊲M : !A.

The absence of this rule is necessary: indeed, although the typing judge-

ment ⊲ new 0 : qbit is valid, the judgement ⊲ new 0 : !qbit should not

be allowed. However, as stated in Lemma 1.3.25, the promotion rule is

true if M is a value. This point will be further developed in Section 1.6

when we study the categorical semantics.

1.3.7 Safety properties

In this section, we wish to show that a well-typed program cannot reach

an error state. We first define what it means for a quantum closure to

be well-typed:

Definition 1.3.28 Consider the quantum closure [Q,L,M] where L =

|x1 . . . xk〉. We say that [Q,L,M] is well-typed (or valid) of type C,

Quantum Lambda Calculus 21

written [Q,L,M] : C, if x1 : qbit , . . . , xk : qbit ⊲M : C is a valid typing

judgement. A well-typed quantum closure is also called a program.

The first step in proving type safety is to show that well-typedness is

preserved by the reduction rules. This property is known as the subject

reduction property. In order to get the strongest possible result, we

will prove that type safety holds even in the presence of decoherence

and imprecision of the physical operations. To that end, we define a

notion of reachability of quantum closures that includes reduction steps

of probability 0, as well as arbitrary perturbations of the quantum state.

Definition 1.3.29 The reachability relation is the smallest transitive

reflexive relation on quantum closures such that [Q,L,M] [Q′, L′,M ′]
holds whenever [Q,L,M]→p [Q

′, L′,M ′] with some probability p (even

for p = 0), and such that [Q,L,M] [Q′, L,M] whenever Q′ is a

normalized vector of dimension equal to that of Q.

Theorem 1.3.30 (Subject reduction) Suppose [Q,L,M] : A and

[Q,L,M] [Q′, L′,M ′]. Then [Q′, L′,M ′] : A.

Proof Since well-typedness is defined without reference to Q, it suffices

to show that if [Q,L,M] : A and if [Q,L,M] →p [Q′, L′,M ′], then
[Q′, L′,M ′] : A. This is proved by induction on the derivation of the

reduction, using Lemma 1.3.26 in the “let”, “let rec” and “match” cases.

We detail one of the less immediate cases, the case let rec. Suppose

that
.... π1

!∆, f : !(A⊸B), x : A ⊲M : B

.... π2
!∆,Γ, f : !(A⊸B) ⊲ N : C

!∆,Γ ⊲ let rec f x =M in N : C

is a valid derivation. Then so is
.... π1

!∆, f : !(A⊸B), x : A ⊲M : B

.... π1
!∆, f : !(A⊸B), x : A ⊲M : B

!∆, x : A ⊲ let rec f x =M in M : B

!∆ ⊲ λx.(let rec f x =M in M) : !(A⊸B).

By Lemma 1.3.26, one concludes

!∆,Γ ⊲ N [λx.(let rec f x =M in M) / f] : C.

22 P. Selinger and B. Valiron

Lemma 1.3.31 A well-typed value is either a constant, a variable, or

one of the following case occurs: if it is of type !n(A⊕B), it is of the

form inj l(V) or inj r(V) with V a value; if it is of type !n(A⊗B), it is of

the form 〈V,W 〉 with V and W values; if it is of type !n⊤, it is precisely

the term ∗; if it is of type !n(A⊸B), it is a lambda-abstraction.

Proof By structural induction on the derivation of the typing judgement.

Theorem 1.3.32 (Progress) Let [Q,L,M] be a program of type B.

Then either [Q,L,M] is a value state, or there is a program [Q′, L′,M ′]
such that [Q,L,M]→p [Q

′, L′,M ′]. Moreover, the total probability of

all possible single-step reductions from [Q,L,M] is 1.

Proof By structural induction on the derivation of the reduction of

[Q,L,M], using Lemma 1.3.31.

Corollary 1.3.33 (Type safety) A well-typed program does not reach

an error state. In particular, any probabilistic computation path of a

well-typed program is either infinite, or reaches a value state in a finite

number of steps.

Remark 1.3.34 The evaluation rules of the quantum lambda calculus

were defined on untyped quantum closures. This is in line with our

remark, in Section 1.3.2, that well-typedness is a property to be checked

when a term is written, and not when it is executed. In other words,

once it is established that a term is well-typed, it can be safely executed,

without further well-typedness checks at runtime, and the type safety

property guarantees that there will be no errors. In particular, the type

system introduces no computational overhead in the evaluation of terms.

1.3.8 Design choices and some related work

We briefly discuss some of the design decisions underlying our quantum

lambda calculus.

Classical control. Our quantum lambda calculus has classical control,

by which we mean that it essentially fits into the QRAM paradigm of

quantum computing (Knill, 1996). This means that, while programs

operate on quantum data, the programs themselves are classical. For

Quantum Lambda Calculus 23

example, we do not allow superpositions of two arbitrary lambda terms.

Van Tonder (2004) gives convincing evidence that this choice is essen-

tially necessary.

Call-by-value reduction. We have equipped the quantum lambda cal-

culus with a call-by-value reduction strategy, which means that the argu-

ments to any function call are completely evaluated before the function is

called. This is in contrast to call-by-name or lazy languages, which eval-

uate the arguments only if they are actually needed. Example 1.3.18

shows that it is necessary to choose a reduction strategy; the actual

choice is largely a matter of taste.

Uniformity of data. Our language treats classical and quantum data

uniformly. This means that we do not have, for example, distinct sets

of classical variables and quantum variables. For example, we use the

same syntax for a function, regardless of whether the function accepts

a classical argument, a quantum argument, or indeed, a more complex

object (such as a pair of a classical bit and a quantum bit). We use a

type system to ensure well-formedness of programs.

Implicit linearity tracking. Perhaps the most important choice that

we have made, which distinguishes the quantum lambda calculus from

other linear lambda calculi in the literature, is that there is no explicit

syntax for linearity in the untyped language. This was motivated by the

desire to design a language for practical use, which would be as natural

as possible to the programmer.

The literature contains a number of lambda calculi for intuitionistic

linear logic. For example, the linear lambda calculi of (Abramsky, 1993)

and (Benton et al., 1993b; Benton, 1995; Benton and Wadler, 1996) have

typing rules such as

∆ ⊲M : !A
∆ ⊲ derelict(M) : A

Γ ⊲M : !A ∆, x : !A, y : !A ⊲ N : B

Γ,∆ ⊲ copy M as x, y in N : B

Γ ⊲M : !A ∆ ⊲ N : B
Γ,∆ ⊲ discard M in N : B

This means, if one has a variable x of duplicable type !A, and one wants

to use this variable twice, then one must write

copy x as x1, x2 in f(derelict(x1), derelict(x2)),

24 P. Selinger and B. Valiron

whereas in the quantum lambda calculus, we would simply write

f(x, x).

Our syntax is less faithful to the inference rules of intuitionistic linear

logic. For example, the term f(g(x, x)) in the quantum lambda calcu-

lus could ambiguously refer to either of the following two terms in the

language of Benton et al.:

copy x as x1, x2 in f(g(derelict(x1), derelict(x2))), or

f(copy x as x1, x2 in g(derelict(x1), derelict(x2))).

Our point of view is that this apparent ambiguity does not matter from

a practical point of view, because the two terms will compute precisely

the same thing. Therefore, the programmer should not have to worry

about such details as the precise time of the duplication of a particular

value.

While this makes programming in the quantum lambda calculus sim-

pler, it leads to a more complicated meta-theory. Some of the technical

complications are: we need to introduce a subtyping relation, which

complicates the proofs of type soundness. Also, because of the above

ambiguities, typing derivations are not unique in the quantum lambda

calculus, which means that we have to work harder to prove that the

meaning of terms is independent of the typing derivation used (see The-

orem 1.6.30 below).

Ultimately, we feel that this is a worthwhile trade-off, as the more

complicated meta-theory can be settled once and for all. Moreover, it

is reassuring to know that type checking, including checking of linearity

constraints, can be completely automated by a type inference algorithm

(see Section 1.4), so that the slightly more complicated type system does

not result in a burden to the programmer.

Type isomorphisms. In our formulation of the quantum lambda cal-

culus, we have a type isomorphism !!A ∼= !A, which is not valid e.g.

in Benton’s system. This is a necessary consequence of our choice of

implicit linearity tracking, as a value of type !A can be used with type

!!A and vice versa. For similar reasons, we have a type isomorphism

!(A⊗B) ∼= !A ⊗ !B, which is not valid in general linear logic. This is

because in the quantum lambda calculus, a pair 〈x, y〉 of type A⊗B is

duplicable if and only if x and y are duplicable.

Quantum Lambda Calculus 25

Copying vs. cloning. Altenkirch and Grattage (2005) have described

a quantum programming language where implicit copying of quantum

data is allowed, but is interpreted as creating an entangled pair, rather

than as cloning. This, however, requires an explicit operation for dis-

carding unused data, similar to Benton et al.’s “discard” operation.

1.4 Type inference algorithm

When writing programs in the quantum lambda calculus, it is an im-

portant task, as we have seen in the previous section, to check that

the program is well-typed. One way to ensure this would be to require

the programmer to supply all type information. This means, the pro-

grammer would have to explicitly state the type of every variable and

subexpression used in the program. In practice, this is quite cumber-

some, as the types can be long and error-prone to write, and make the

program hard to read.

Fortunately, the process can be automated. A type inference algorithm

is an algorithm that inputs an untyped quantum closure, and either

outputs a possible type for it, or else announces that no such type exists.

When a type inference algorithm exists, the programmer is free to write

terms in an untyped way and can rely on the type inference algorithm

to point out any potential safety problems.

In “classical” lambda calculus, there exists a well-known type inference

algorithm (for a reference, see e.g. Pierce, 2002), which is based on the

fact that every term admits a principal type. A type is principal among

the possible types of a term if any other possible type can be obtained

from it by instantiation of type variables. For example, in simply typed

lambda calculus, the term M = λfx.fx admits a principal type of the

form (X ⇒ Y)⇒ (X ⇒ Y). Here, X and Y are type variables, and any

valid type of M , such as (A ⇒ (B ⇒ A)) ⇒ (A ⇒ (B ⇒ A)), can be

obtained by substituting particular types for X and Y .

The quantum lambda calculus of this chapter does not satisfy the

principal type property. The main complication is the subtyping relation

<:, which allows a term to possess multiple types that are not instances

of each other. Indeed, consider again the term M = λfx.fx. Naively, a

principal type would be (1) the most general with respect to instantiation

of type variables, and (2) the smallest with respect to the subtyping

relation. Here are some possible types for M , ordered by the subtyping

relation (from left to right) as shown in Table 1.6. Note that the types

!((X⊸ Y)⊸ !(X⊸ Y)) and (X⊸Y)⊸!(X⊸ Y) are not valid for the

26 P. Selinger and B. Valiron

!((X⊸Y)⊸(X⊸Y)) //

**TTTTT
(X⊸Y)⊸(X⊸Y)

))SSSSS

!(!(X⊸Y)⊸(X⊸Y)) // !(X⊸Y)⊸(X⊸Y).

!(!(X⊸Y)⊸!(X⊸Y)) //

44jjjjj
!(X⊸Y)⊸!(X⊸Y)

55kkkkk

Table 1.6. Partial ordering of some possible types of λfx.fx

term M . Therefore, there is no smallest element in the set of possible

types for M .

Despite the absence of principal types, it is nevertheless possible to

find a type inference algorithm for the quantum lambda calculus. The

idea is to proceed in two steps: first, find the principal type derivation for

M in a simply-typed version of the language (i.e., without the operator !,

and without any restriction on duplication). Second, try to “annotate”

this type derivation by putting “!” in the smallest possible number of

locations to satisfy the constraints of the linear type system. It was

shown in (Valiron, 2004a) that this algorithm succeeds if and only if the

termM is typable in the quantum lambda calculus. We refer the reader

to (Valiron, 2004a; Selinger and Valiron, 2006) for the full discussion.

1.5 Extending the language with an infinite data type

For a computational formalism to be fully expressive, it must be able to

operate on data of unlimited size. For example, in the quantum circuit

model, an algorithm is not given by a single quantum circuit, but rather,

by a uniform family of circuits, one for each possible size of input.

In the form given in Section 1.3, the quantum lambda calculus is

only able to operate on finite dimensional data, and therefore, it is not

universal for quantum, or even classical, computation. This situation

can be easily remedied by adding an unbounded data type, such as a

type of lists. We describe such an extension in Section 1.5.1, and then

illustrate its use in Section 1.5.2 with the Quantum Fourier Transform

on an unbounded number of qubits.

1.5.1 The type list(A)

The notion of a list can be easily defined recursively: a list of objects of

type A is either the empty list, or else it is a pair consisting of a head

Quantum Lambda Calculus 27

of type A and a tail that is another list of objects of type A. Therefore,

if list(A) is the type of lists of elements of type A, then the following

recursive equation is satisfied:

list(A) = ⊤⊕ (A⊗ list(A)).

To add such list types to the quantum lambda calculus, we extend:

• the type formation rules: whenever A is a type, then list(A) is a type;

• the term formation rules: we add three term constructors cons(M,N),

nil and unfold(M);

• the typing rules: we add three new rules

!∆,Γ1 ⊲M : !nA

!∆,Γ2 ⊲ N : !nlist(A)

!∆,Γ1,Γ2 ⊲ cons(M,N) : !nlist(A),
(list .I1)

!∆,Γ1,Γ2 ⊲ nil : !nlist(A),
(list .I2)

∆ ⊲M : !nlist(A)

∆ ⊲ unfoldA(M) : !n((!⊤)⊕ (A⊗ list(A)));
(list .E)

• the reduction rules:

[Q,L, unfold nil]→1 [Q,L, inj l(∗)],
[Q,L, unfold(cons(V,W))]→1 [Q,L, inj r 〈V,W 〉],

and the congruence rules:

[Q,L,N]→1 [Q,L,N
′]

[Q,L, cons(M,N)]→1 [Q,L, cons(M,N ′)]

[Q,L,M]→1 [Q,L,M
′]

[Q,L, cons(M,V)]→1 [Q,L, cons(M
′, V)]

[Q,L,M]→1 [Q,L,M
′]

[Q,L, unfold(M)]→1 [Q,L, unfold(M
′)]

Note that a list is duplicable only if all of its elements are duplicable.

In particular, a list of quantum bits is duplicable only if it is empty.

Remark 1.5.1 The extended language still satisfies the safety proper-

ties described in Theorems 1.3.30 and 1.3.32. Moreover, since the prin-

cipal type property still applies for intuitionistic types in this context,

the type inference algorithm can be extended to this situation.

28 P. Selinger and B. Valiron

1.5.2 Implementing the Quantum Fourier Transform

From the list type, we can define a data type of natural numbers Nat =

list(⊤). Then we define the closed terms succ : Nat⊸Nat and two : Nat

as follows:

let succ n = cons(∗, n), let two = succ (succ nil).

Assume that rn : Nat⊸ (qbit ⊗ qbit⊸ qbit ⊗ qbit) is a term such that

rn n computes the gate

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e2πi/2
n

.

Then one can define the term rotate : qbit⊸qlist⊸Nat⊸(qbit⊗qlist):

let rec rotate h t n = match unfold(t) with

x 7→ nil

b 7→ let 〈x, y〉 = b in

let 〈x, h〉 = (rn n) 〈x, h〉 in
let 〈h, y〉 = rotate h y (succ n) in

〈h, cons(x, y)〉,

and the term QFT : qlist⊸ qlist :

let rec QFT l = match unfold(l) with

x 7→ nil

b 7→ let 〈h, t〉 = b in

let 〈h, t〉 = rotate h t two in

let t = QFT t in

cons(h, t).

The QFT term implements the quantum Fourier algorithm but does

not reverse the order of the qubits in the output list. Reversing the

order of the elements in a list can be efficiently implemented as a map

rev : list(A)⊸ list(A), defined using an auxiliary map aux : list(A) ⊗
list(A)⊸ list(A):

let rec aux l1 l2 = match unfold(l1) with

x 7→ l2
b 7→ let 〈x, y〉 = b in aux y cons(x, l2),

let rev l = aux l nil .

Quantum Lambda Calculus 29

Note that these functions are linear: the function rev can therefore be

used to reverse the order of a list of quantum bits to implement the end

of the QFT algorithm.

Remark 1.5.2 Unlike the examples of Section 1.2, the implementation

of the quantum Fourier transform does not use higher-order structures.

1.6 Categorical semantics

In this section, we present some more advanced material on categorical

models for the quantum lambda calculus. The mathematical area of

category theory (Mac Lane, 1971) is well-suited for the study of pro-

gramming languages, as it reveals the structure of programming lan-

guage features, such as higher-order functions, computational effects, or

linearity, at a more abstract level.

For example, there is a well-known connection between higher order

functions and the theory of cartesian-closed categories (Lambek and

Scott, 1986). Moggi (1991) has given a general theory of computational

effects (such as probabilistic programs) in terms of the categorical con-

cept of a strong monad. Finally, Seely (1989), Bierman (1993), and

Benton et al. (1993b,a) have given categorical models of linear logic. In

this section, we show how to combine these models to obtain a categor-

ical description of the higher-order probabilistic linear features of the

quantum lambda calculus.

Categorical semantics is fundamentally a theory of equations between

programs. In investigating the equational theory of the quantum lambda

calculus, we find that the equations can be divided into two classes:

structural equations, such as (λx.M)V =M [V/x], which derive from the

higher-order type and term constructors, and ground equations, such as

meas(H(H(new 0))) = 0, which encode special properties of the chosen

set of elementary operators.

The ground operations for quantum computation are already well un-

derstood: they are given by state preparation, unitary operations, and

measurements, and they satisfy precisely the equations that hold in the

usual formalism of finite-dimensional Hilbert spaces, density matrices,

and superoperators (see e.g. Selinger, 2004).

In constructing a concrete model for a programming language, one

usually first focuses on the structural equations, i.e., without fixing a

particular set of ground operations. This allows one to identify a whole

class of categories that possess the required higher-order structure. In a

30 P. Selinger and B. Valiron

second step, one may then look for a particular member of this class of

categories that also supports the required ground operations.

We will focus exclusively on the first step, i.e., we will work relative

to an unspecified, but fixed set of ground types (denoted α), ground

operations (denoted c), and ground equations. The construction of a

concrete model of higher-order quantum computation, i.e., a specific

model that supports both the ground operations and the higher-order

structure, is an open problem.

To keep the presentation reasonably simple, we restrict ourselves to

the subset of the quantum lambda calculus without union types or re-

cursive function definitions. We call this the “core fragment” of the

quantum lambda calculus. The results presented here can be easily ex-

tended to the full language.

1.6.1 Equational description of the core fragment

Definition 1.6.1 The core fragment of the linear lambda calculus is

defined as follows:

Type A,B ::= α | !A | A⊸B | ⊤ | A⊗B

Value V ::= x | c | ∗ | λx.M | 〈V, V ′〉,

Term M,N ::= V | 〈M,N〉 | (MN) | let 〈x, y〉 =M in N.

Definition 1.6.2 We define an equivalence relation on typing judge-

ments as being the smallest equivalence relation ≈ax satisfying the ax-

ioms in Table 1.7, and satisfying the usual congruence relations, stating

that if M is a term of the form C[N], i.e. with a subterm N , such that

N≈axN
′, thenM is equivalent to C[N ′]. We use the notations . , .. and

... as place holders for x and 〈x, y〉 (not respectively). We also assume

that V is a value.

Note that the relation ≈ax is on typing judgements, and not on un-

typed terms. We write ∆ ⊲ M ≈ax M
′ : A if we want to make the

typing context explicit, but we also often write M ≈ax M
′ when the

typing information is implicit.

Quantum Lambda Calculus 31

(βλ) let x = V in M ≈ax M [V/x],

(β⊗) let 〈x, y〉 = 〈V,W 〉 in M ≈ax M [V/x,W/y],

(β∗) let ∗ = ∗ in M ≈ax M,

(ηλ) λx.V x ≈ax V,

(β2
λ) let x = N in x ≈ax N,

(η⊗) let 〈x, y〉 = N in 〈x, y〉 ≈ax N,

(η∗) let ∗ = N in ∗ ≈ax N,

(letapp) let x = M in let y = N in xy ≈ax MN,

(letλ) let x = V in λy.M ≈ax λy.let x = V in M,

(let⊗) let x = M in let y = N in 〈x, y〉 ≈ax 〈M,N〉,

(let1) let . = (let .. = M in N) in P

≈ax let .. = M in let . = N in P ,

(let2) let . = V in let .. = W in M

≈ax let .. = W in let . = V in M,

Table 1.7. Axiomatic equivalence

1.6.2 The term model

Having an equivalence relation on typing judgements, it is possible to de-

fine categories from axiomatic equivalence classes of typing judgements,

as in (Lambek and Scott, 1986).

Definition 1.6.3 We define the notion of extended value as follows:

ExtValue E,E′ ::= V | 〈E,E′〉 | let x = E in E′ | let 〈x, y〉 = E in E′,

where V is a value. To distinguish between the two sorts of values we

also call the values of Definition 1.6.1 core values.

The relationship between extended values and core values is explained

by the following lemma.

Lemma 1.6.4 Suppose that no constant term c has a type of the form

!n(A⊗B). Then for every extended value E such that ⊲ E : A, there

exists a core value V with ⊲ E ≈ax V : A.

Proof The proof is done by induction on the size of E.

Remark 1.6.5 The restriction on constants in Lemma 1.6.4 is not a

serious one: if a constant c of type !n(A⊗B) were ever needed, one

could instead use two constants c1 : !n(A) and c2 : !n(B).

32 P. Selinger and B. Valiron

Definition 1.6.6 We define three categories:

The category D of computations. Objects are types and arrows of

the form A → B are valid typing judgements x : A ⊲ M : B.

The composition of x : A ⊲M : B and y : B ⊲ N : C is x : A ⊲

let y =M in N : C and the identity on A is x : A ⊲ x : A.

The category C of values. Objects are types and arrows A→ B are

valid typing judgements of the form x : A ⊲ E : B, where E is

an extended value. Composition and identity are defined in the

same way as for D.

The category B of classical values. Objects are types and arrows

A→ B are valid typing judgements of the form x : !A ⊲ E : !B,

where E is an extended value. Composition and identity are

defined in the same way as for D.

The category D represents the class of quantum computations, i.e.,

terms that must still be evaluated and can result in a probability dis-

tribution of values. The category C stands for the category of quantum

values. The category B is more specific: it is composed of the duplica-

ble values with only duplicable free variables. We therefore call it the

category of classical values.

Lemma 1.6.7 The structures defined in Definition 1.6.6 are categories.

The remainder of this section is devoted to a study of the abstract

properties of the categories B, C, and D.

1.6.3 Structure of the tensor operator “ ⊗”

The first structural element coming from the type system is the tensor

⊗. As suggested by the notation, the tensor possesses the structure of

a symmetric monoidal category.

Definition 1.6.8 A monoidal category E is a tuple (E ,⊗,⊤, α, λ, ρ)
where E is a category, ⊗ : E × E → E is a functor, ⊤ is an object of E
and α, λ, ρ are three natural isomorphisms

αA,B,C : A⊗ (B ⊗ C) → (A⊗B)⊗ C,

λA : ⊤⊗A→ A, ρA : A⊗⊤ → A

Quantum Lambda Calculus 33

such that the diagrams

(1.1) (A⊗B)⊗ (C ⊗D)
α

++WWWWWW

A⊗ (B ⊗ (C ⊗D))

α 33gggggg

id⊗α A
AA

AA
A

((A⊗B)⊗ C)⊗D

A⊗ ((B ⊗ C)⊗D) α
// (A⊗ (B ⊗ C))⊗D,

α⊗id

==||||||

(1.2) A⊗ (⊤⊗ C)
α //

id⊗λ
((QQQ

Q
(A⊗⊤)⊗ C

ρ⊗id
vvmmmm

A⊗ C,

⊤⊗ ⊤
λρ ��

⊤

(1.3)

commute. A monoidal category is said to be symmetric when it is

equipped with a natural isomorphism σA,B : A ⊗ B → B ⊗ A such

that the diagrams

(1.4) A⊗B

σA,B --
B ⊗A,

σB,A

ll B ⊗⊤
σB,⊤ //

ρB

55⊤⊗B
λB // B, (1.5)

(1.6) A⊗ (B ⊗ C)
α //

id⊗σ ��

(A⊗B)⊗ C
σ // C ⊗ (A⊗B)

α��
A⊗ (C ⊗B)

α // (A⊗ C)⊗B
σ⊗id // (C ⊗A)⊗B

commute.

Lemma 1.6.9 Equipped with the morphisms

αA,B,C = x : A⊗ (B ⊗ C) ⊲ let 〈y, z〉 = x in

let 〈t, u〉 = z in 〈〈y, t〉, u〉 : (A⊗B)⊗ C,

λA = x : ⊤⊗A ⊲let 〈y, z〉 = x in let ∗ = y in z : A,

ρA = x : A⊗⊤ ⊲let 〈y, z〉 = x in let ∗ = z in y : A,

σA,B = x : A⊗B ⊲let 〈y, z〉 = x in 〈z, y〉 : B ⊗A,

and with the map of arrows (x : A ⊲ V : B) ⊗ (y : C ⊲ W : D) = z :

A ⊗ B ⊲ let 〈x, y〉 = z in 〈V,W 〉 : C ⊗D, the category C is symmetric

monoidal.

Like the category C, the category B is also a category of values. One

expects it to be symmetric monoidal too. This turns out to be the case,

but in fact, the category B has more structure: it is cartesian.

34 P. Selinger and B. Valiron

Definition 1.6.10 Given a category E and two objects A and B, the

cartesian product of A and B is, if it exists, the data consisting of an

object A×B and two maps π1
A,B : A×B → A and π2

A,B : A×B → B,

such that for any pair of maps f : C → A and g : C → B, there

exists a unique map 〈f, g〉 : C → A × B satisfying 〈f, g〉;π1
A,B = f and

〈f, g〉;π2
A,B = g. Note that uniqueness is equivalent to the equation

〈h;π1
A,B, h;π

2
A,B〉 = h for all h : C → A×B.

We say that the category E has binary products if there is a cartesian

product for all A and B. We say that it is cartesian if it also has a

terminal object T .

Lemma 1.6.11 The category (B,⊗,⊤) is cartesian.

Proof Consider A and B any types. One constructs π1
A,B and π2

A,B

respectively as follows:

x : !(A⊗B) ⊲ let 〈y, z〉 = x in y : !A,

x : !(A⊗B) ⊲ let 〈y, z〉 = x in z : !B.

In this case, given two maps f and g respectively of the form x : !C ⊲

U : !A and x : !C ⊲ V : !B, one constructs the map 〈f, g〉 : C → A⊗ B

simply as x : !C ⊲ 〈U, V 〉 : !A⊗B.

Remark 1.6.12 Note that, although the maps π1
A,B and π2

A,B can be

similarly defined in C and although ⊤ is terminal in C, the map 〈f, g〉
cannot in general be defined due to linearity: for instance, there is no

diagonal map for the type qbit .

1.6.4 Structure of the function operator “⊸”

Before explaining the nature of the function operator “⊸”, we must

briefly comment on the distinction between computations and values,

which is reflected in the definitions of the categories C and D. This

distinction holds in any call-by-value programming language, including

the quantum lambda calculus.

A computation is an arbitrary term M , i.e., something that must be

evaluated to obtain a result. On the other hand, a value V represents

the result of a computation. Because of the probabilistic nature of the

quantum lambda calculus, a computation M in general does not yield

a value, but a probability distribution of values. In the presence of

recursive function definitions, a computation M may also diverge with

Quantum Lambda Calculus 35

non-zero probability. It is therefore natural to think of a value V : A

as an “element” of type A, and to think of a computation M : A as a

sub-probability distribution of such elements. We informally write T (A)

for the set of sub-probability distributions on a set of values A.

In the context of higher-order computation, computations of type A

can be identified with values of type ⊤⊸A. Indeed, given any compu-

tation M : A, we can form the value λ∗.M : ⊤⊸ A (called a “thunk”);

and conversely, given any value V : ⊤⊸A, we can form a computation

V ∗ : A. The two constructions are mutually inverse modulo the axioms

in Table 1.7. We can therefore identify T (A) with ⊤⊸ A.

Moggi (1991) has established a general framework for dealing with val-

ues and computations in the context of side-effects (such as probability

and non-termination), in terms of the concept of strong monad.

Definition 1.6.13 A monad over a category E is a tuple (T, η, µ),

where T : E → E is a functor, η : id →̇ T and µ : T 2 →̇ T are natural

transformations and the diagrams (1.7) and (1.8) in Table 1.8 commute.

The natural transformation µ is called the multiplication of the monad

and η the unit of the monad.

A monad over a monoidal category (E ,⊗,⊤) is strong if moreover there

exists a natural transformation tA,B : A ⊗ TB → T (A⊗ B), called the

tensorial strength, such that the diagrams (1.9), (1.10), (1.11) commute.

The category C described in Definition 1.6.6 does admit a strong

monad:

Lemma 1.6.14 In C, define the following maps:

ηA = x : A ⊲ λ∗.x : ⊤⊸A,

µA = x : ⊤⊸(⊤⊸A) ⊲ λ∗.(x∗)∗ : ⊤⊸A,

tA,B = z : A⊗ (⊤⊸B) ⊲ let 〈x, y〉 = z in λ∗.〈x, y∗〉 : ⊤⊸(A⊗B),

and define a functor T as follows: for every object A, TA = ⊤⊸A and

for every morphism f : A → B of the form x : A ⊲ V : B, the image

Tf : TA→ TB is

y : ⊤⊸A ⊲ λ∗.let x = (y∗) in V : ⊤⊸B.

Then (T, η, µ, t) is a strong monad on C.

Definition 1.6.15 Given a monad (T, η, µ) over E , the Kleisli category

ET is defined as follows:

36 P. Selinger and B. Valiron

(1.7) T 3A
TµA //

µTA

��

T 2A

µA

��
T 2A

µA // TA,

TA
ηTA //

idTA ""E
EE

EEEE
E T 2A

µA

��

TA.
TηAoo

idTA||xx
xx

xx
xx

x

TA

(1.8)

⊤⊗ TA
λ //

t

%%JJ
JJJ

JJ
JJJ

(1.9)

TA (A⊗B)⊗ TC

t

��

A⊗ (B ⊗ TC)

id⊗t

��

αoo

A⊗B

id⊗η

��

η

%%JJ
JJJ

JJJ
JJ

T (⊤⊗ A),

Tλ

OO

T ((A⊗B)⊗ C)

(1.10)

A⊗ T (B ⊗ C)

t

��
A⊗ TB

t // T (A⊗B) T (A⊗ (B ⊗ C)),

T (α)

hhPPPPPPPPPPPP

A⊗ T 2B

id⊗µ

OO

t // T (A⊗ TB)
Tt // T 2(A⊗B)

µ

ffNNNNNNNNNNN

(1.11)

Table 1.8. Equations for a strong monad

• the objects of ET are the objects of E ,
• the set ET (A,B) of morphisms from A to B in ET is E(A, TB),

• the identity on A is ηA : A→ TA,

• The composition of f ∈ ET (A,B) and g ∈ ET (B,C) in ET is

f ;Tg;µC : A→ TC.

Remark 1.6.16 The category D of computations is the Kleisli category

CT over the category of values C, where (T, µ, η) is the monad described

in Lemma 1.6.14.

The operator⊸ has more structure than “just” providing a monad.

Definition 1.6.17 A symmetric monoidal category (E ,⊗,⊤) together

with a strong monad (T, η, µ) is said to have T -exponentials (Moggi,

1991), or Kleisli exponentials, if it is equipped with a bifunctor ⊸ :

Eop × E → E , and a natural isomorphism

Φ : E(A,B⊸C)
∼=−−−−−→ E(A⊗B, TC).

Lemma 1.6.18 Consider the functor ⊸ : Cop × C → C, defined on

Quantum Lambda Calculus 37

arrows by

A⊸ (x : B ⊲ V : C) = y : A⊸B ⊲ λz.let x = yz in V : A⊸ C,

(x : A ⊲ V : B)⊸C = y : B⊸C ⊲ λx.yV : A⊸C,

and the map ΦA,B,C : C(A,B⊸ C) → C(A ⊗ B,⊤⊸C), sending the

morphism x : A ⊲ V : B⊸ C to

t : A⊗B ⊲ λ∗.let 〈x, y〉 = t in V y : ⊤⊸ C.

Together with these structures, C has T -exponentials, where (T, µ, η) is

the monad described in Lemma 1.6.14.

1.6.5 Structure of the exponential operator “ !”

The type operator “!” is first dealt with using a subtyping relation.

Using this relation, one can construct a comonad for the category C.

Definition 1.6.19 A comonad in a category E is a tuple (L, ǫ, δ),

where L : E → E is a functor and ǫ : L →̇ I and δ : L →̇ L2 are natural

transformations such that the following diagrams commute:

(1.12) LA
δA //

δA

��

L2A

LδA
��

L2A
δLA

// L3A,

LA

δA

��

idLA

""F
FF

FF
FF

FF
idLA

||yyy
yyyy

y

LA L2AǫLA

oo
LǫA

// LA.

(1.13)

A comonad is said to be idempotent if the comultiplication δ is an iso-

morphism.

Lemma 1.6.20 Consider the map ! sending A to !A and sending x :

A ⊲ V : B to x : !A ⊲ V : !B (which is well-typed by Lemmas 1.3.24

and 1.3.25). Also consider the arrows

ǫA = x : !A ⊲ x : A, δA = x : !A ⊲ x : !2A.

Then (!, ǫ, δ) is an idempotent comonad in C.

The goal of the type operator “!” is to indicate when and how an object

is duplicable. Besides being an idempotent comonad, it has additional

properties, which we will detail below. As we have already remarked,

the operator “!” is taken from intuitionistic linear logic (Girard, 1987).

It is therefore not surprising that its categorical semantics closely follows

38 P. Selinger and B. Valiron

the model of intuitionistic linear logic proposed by Bierman (1993), and

later simplified by Benton et al. (1993b,a). Good additional references

are Melliès (2003) and Maneggia (2004). We will follow the terminology

of Schalk (2004) and use the concept of linear exponential comonad.

Definition 1.6.21 (Benton et al., 1993a; Bierman, 1993) Let (E ,⊗,⊤)

be a (symmetric) monoidal category. A (symmetric) monoidal comonad

on E is a comonad (L, δ, ǫ):

• equipped with two natural transformations dA,B : LA ⊗ LB →
L(A ⊗ B) and d⊤ : ⊤ → L⊤ making (L, d) a lax (symmetric)

monoidal functor,

• such that δ and ǫ are monoidal natural transformations, i.e. such
that the following diagrams commute:

(1.14) LA⊗ LB
dA,B //

ǫA⊗ǫB ��?
??

??
??

?
L(A⊗B),

ǫA⊗B
~~~~

~~
~~

~

A⊗B

⊤
d⊤ //

id⊤

��4
44

44
4 L⊤,

ǫ⊤
����

��
��

�

⊤

(1.15)

LA⊗LB
dA,B //

δA⊗δA

��
(1.16)

L(A⊗B),

δA⊗B

��
L2A⊗L2B

dLA,LB

// L(LA⊗LB)
LdA,B

// L2(A⊗B)

⊤
d⊤ //

d⊤

��

L⊤.

(1.17) δ⊤

��
L⊤

Ld⊤

// L2⊤

Definition 1.6.22 Let (E ,⊗,⊤, α, λ, ρ, σ) be a symmetric monoidal

category. Let (L, δ, ǫ, dL, dL) be a monoidal comonad. We say that L is

a linear exponential comonad provided that

(i) each object in E of the form LA is equipped with a commutative

comonoid (LA,△A, ♦A), where △A : LA → LA⊗ LA and ♦A :

LA→ ⊤;

(ii) △A and ♦A are monoidal natural transformations, i.e. the fol-



Quantum Lambda Calculus 39

lowing diagrams

LA⊗ LB

dL
A,B

��

△A⊗△B // (LA⊗ LA)⊗ (LB ⊗ LB)

sw

��
(LA⊗ LB)⊗ (LA⊗ LB)

dL
A,B⊗dL

A,B

��
L(A⊗B)

△(A⊗B)

// L(A⊗B)⊗ L(A⊗B)

(1.18)

(1.19) ⊤
λ−1
⊤ //

dL
⊤

��

⊤⊗⊤
dL
⊤⊗dL

⊤

��
L⊤ △⊤

// L⊤⊗ L⊤

LA⊗ LB
♦A⊗♦B//

dL
A,B

��

⊤⊗⊤
λ⊤

��
L(A⊗B)

♦A⊗B

// ⊤

(1.20)

⊤ id //

dL
⊤

))TTTTTTTT ⊤;

L⊤ ♦⊤

55jjjjjjjj

(1.21)

commute.

(iii) The maps

△A : (LA, δA) → (LA⊗ LA, (δA ⊗ δA); dA),

♦A : (LA, δA) → (⊤, dL⊤)

are L-coalgebra morphisms, i.e.

(1.22)

LA
△A //

δA

��

LA⊗ LA
δA⊗δA��

L2A⊗ L2A
dL
LA,LA��

L2A
L△A

// L(LA⊗ LA),

LA
♦A //

δA

��

⊤

dL
⊤

��
L2A

L♦A

// L⊤;

(1.23)

(iv) Every map δA is a comonoid morphism

(LA,♦A,△A) → (L2A,♦LA,△LA),

i.e. satisfying the diagrams

(1.24)
LA

δA //

△A ��

L2A,
△LA ��

LA⊗ LA
δA⊗δA

// L2A⊗ L2A

LA
δA //

♦A
!!C

CC
C L2A.

♦LA
{{www

w

⊤
(1.25)



40 P. Selinger and B. Valiron

Lemma 1.6.23 If we define the maps

d!A,B = z : !A⊗ !B ⊲ let 〈x, y〉 = z in 〈x, y〉 : !(A⊗B),

d!⊤ = z : ⊤ ⊲ ∗ : !⊤,
△A = x : !A ⊲ 〈x, x〉 : !A⊗ !A,

♦A = x : !A ⊲ ∗ : ⊤,

the comonad (!, δ, ǫ) is an idempotent linear exponential comonad on the

category C.

Lemma 1.6.24 The category B is the co-Kleisli category of the comonad

described in Lemma 1.6.23.

Remark 1.6.25 Note that the map d!A,B and d!⊤ in Lemma 1.6.23 are

isomorphisms of C. In other words, we require the monoidal comonad to

be strongly monoidal. This is because, unlike the work of Bierman (1993)

and Benton et al. (1993b), the types !(A⊗B) and !A⊗!B are isomorphic

in the quantum lambda calculus (as explained in Section 1.3.8).

1.6.6 A linear category for duplication

Putting together the features developed on the last three sections, we

can abstract from the properties of the term categories B, C, and D, and

define a sound model for the core fragment of the linear lambda calculus

of Section 1.6.1.

Definition 1.6.26 A linear category for duplication is a category E
with the following structure:

• a symmetric monoidal structure (⊗,⊤, α, λ, ρ, σ);
• an idempotent, strongly monoidal, linear exponential comonad

(L, δ, ǫ, dL, dL, ♦,△);

• a strong monad (T, µ, η, t);

• a Kleisli exponential ⊸, that is, a natural map of arrows

Φ : E(A⊗B, TC) → E(A,B⊸C)

and a bifunctor⊸ : Eop × E → E .
A linear category for duplication E is said to be weak if ⊤ is a terminal

object.



Quantum Lambda Calculus 41

Theorem 1.6.27 The category C (from Definition 1.6.6) is a weak linear

category for duplication.

Proof The proof uses Lemmas 1.6.9, 1.6.14, 1.6.18 and 1.6.23.

Remark 1.6.28 A linear category for duplication gives rise to a double

adjunction

EL

UL

&&⊥ E

FL

gg

UT

''
⊥ ET .

FT

ff

Here the left adjunction arises from the co-Kleisli category EL of the

comonad L. It is a linear-non-linear model in the sense of Benton (1995).

The right adjunction arises from the Kleisli category ET of the compu-

tational monad T .

1.6.7 Interpretation of the core fragment

The core fragment of linear lambda calculus, as given in Section 1.6.1,

can be interpreted in any weak linear category for duplication E .
Suppose that for each type constant α, we are given an object Θ(α)

of E . Then we can recursively assign to each type A an object [[A]]

via [[α]] = Θ(α), [[!A]] = L[[A]], [[A⊸B]] = [[A]]⊸ [[B]], [[⊤]] = ⊤, and

[[A⊗B]] = [[A]] ⊗ [[B]]. Moreover, for any valid subtyping A <: B, there

exists a canonical arrow IA,B : [[A]] → [[B]] in E , definable from the

structure of the comonad L. If ∆ = {x1 : A1, . . . , xn : An} is a typing

context, we write [[∆]] = [[A1]]⊗ . . .⊗ [[An]].

Further, suppose that for each constant c : Ac, we are given an inter-

pretation as an arrow Θ(c) : ⊤ → [[Ac]] in E . Then to each valid typing

derivation, we can recursively assign an arrow of E as follows:

• If π is a typing derivation of a value judgement x1 : A1, . . . xn : An ⊲

V : B, then [[π]]v is an arrow [[A1]]⊗ . . .⊗ [[An]] → [[B]];

• if π is a typing derivation of a general judgement x1 : A1, . . . xn : An ⊲

M : A, then [[π]]c is an arrow [[A1]]⊗ . . .⊗ [[An]] → T ([[B]]).

The actual definition is by recursion on typing derivations, and consists

of a large number of straightforward cases. We only give one of the cases

as an example, and refer to (Selinger and Valiron, 2008a; Valiron, 2008)



42 P. Selinger and B. Valiron

for complete details. Consider a typing derivation ending in the rule

Γ1, !∆ ⊲M : A⊸B Γ2, !∆ ⊲ N : A

Γ1,Γ2, !∆ ⊲MN : B .

If the two premises are interpreted, respectively, as morphisms

f : [[!∆]]⊗ [[Γ1]] → T ([[A]]⊸ [[B]])

g : [[!∆]]⊗ [[Γ2]] → T ([[A]]),

then the interpretation the conclusion is defined as

[[!∆]]⊗ [[Γ1]]⊗ [[Γ2]]
∆̃−→ [[!∆]]⊗ [[!∆]]⊗ [[Γ1]]⊗ [[Γ2]]

id⊗σ⊗id−−−−−−→ [[!∆]]⊗ [[Γ1]]⊗ [[!∆]]⊗ [[Γ2]]

f⊗g−−−→ T ([[A]]⊸[[B]])⊗ T ([[A]])

Ψ1−−→ T (([[A]]⊸[[B]])⊗ [[A]])

T (ε)−−−→ T (T ([[B]]))
µ−→ T ([[B]]),

where ∆̃ : [[∆]] → [[∆]] ⊗ [[∆]] is the canonical map definable from ∆A :

LA→ LA⊗ LA of the linear exponential comonad, and ε : (A⊸B)⊗
A→ TB is the canonical map arising from the Kleisli exponential.

Remark 1.6.29 Note that the interpretation is defined on typing

derivations, and not on typing judgements. And indeed, a valid typ-

ing judgement can in general possess many different typing derivations.

For example, consider the following two typing judgements, where V

and W are values:

x : A ⊲ V : !B, y : B ⊲W : C.

Then the typing judgement x : A ⊲ let y = V in W : C has two distinct

valid typing derivations:

x : A ⊲ V : !B y : !B ⊲W : C

x : A ⊲ let y = V in W : C,

x : A ⊲ V : B y : B ⊲W : C

x : A ⊲ let y = V in W : C.

Therefore, a major complication in the proof of soundness of the in-

terpretation is that we must first show that the interpretation is well-

defined on typing judgements, and independent of the particular typing

derivation used to derive it. This is the subject of the following theorem.



Quantum Lambda Calculus 43

Theorem 1.6.30 Given a valid typing judgement with two typing deri-

vations π and π′, for any interpretation Θ we have the equality [[π]]
c
Θ =

[[π′]]cΘ (and [[π]]
v
Θ = [[π′]]vΘ if the typing judgement is a value).

The proof of this theorem is technically complicated, and occupies al-

most three chapters of Valiron’s Ph.D. thesis (see Valiron, 2008, Corol-

lary 11.2.6).

Theorem 1.6.31 (Soundness) If ∆ ⊲ M ≈ax M
′ : A then we have

[[∆ ⊲M : A]]
c
Θ = [[∆ ⊲M ′ : A]]cΘ (and [[∆ ⊲M : A]]

v
Θ = [[∆ ⊲M ′ : A]]vΘ

if M and M ′ are values) for every interpretation Θ in a weak linear

category for duplication.

Proof By induction on the definition of ≈ax , using a substitution lemma.

Theorem 1.6.32 (Completeness) If for every interpretation Θ in

every weak linear category for duplication, the equality [[∆ ⊲M : A]]
c
Θ =

[[∆ ⊲M ′ : A]]cΘ holds, then ∆ ⊲M ≈ax M
′ : A.

Proof It suffices to consider the term model C of Section 1.6.2, with Θ

the identity map.

1.6.8 Toward a concrete model

In light of the results of the last few subsections, we can now say what

it means to be a “concrete model of the quantum lambda calculus”.

Such a model should have the structure of a weak linear category for

duplication, with the further property that the ground type operations

(new , meas , and unitary operations) can be interpreted with their usual

meanings. More precisely, a concrete model of the quantum lambda cal-

culus is a weak linear category for duplication E with distributive fi-

nite coproducts, preserved by L, together with an object qbit ∈ |E|,
such that the full monoidal subcategory of ET of objects of the form

qbitn1 ⊕ . . . ⊕ qbitnk is equivalent to the category Q of tuples of finite

dimensional Hilbert spaces and norm non-increasing completely positive

maps (Selinger, 2004).

As mentioned in the introduction of Section 1.6, at the time of this

writing, it is still an open problem to find such a concrete model (other

than the term model).



44 P. Selinger and B. Valiron

The only partial result in this direction is a model for the strictly linear

fragment of the quantum lambda calculus (i.e., without the !A operator,

and without the possibility of duplication or erasure of either classical

or quantum information). A fully abstract model for this fragment was

given in (Selinger and Valiron, 2008b).

Bibliography

Abramsky, S. (1993) Computational interpretations of linear logic. Theoretical
Computer Science 111:3–57.

Altenkirch, T. and Grattage, J. (2005) A functional quantum programming
language. In Proceedings of the 20th IEEE Symposium on Logic in Com-
puter Science, LICS’05 , pages 249–258. IEEE Computer Society Press.

Barendregt, H. P. (1984) The Lambda Calculus: Its Syntax and Semantics,
volume 103 of Studies in Logic and the Foundation of Mathematics. North
Holland, 2nd edition.

Bell, J. S. (1964) On the Einstein Podolsky Rosen paradox. Physics 1:195–200.
Bennett, C. H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A. and Woot-

ters, W. K. (1993) Teleporting an unknown quantum state via dual
classical and Einstein-Podolsky-Rosen channels. Physical Review Letters
70(13):1895–1899.

Bennett, C. H. and Wiesner, S. J. (1992) Communication via one- and two-
particle operators on Einstein-Podolsky-Rosen states. Physical Review
Letters 69(20):2881–2884.

Benton, N. (1995) A mixed linear and non-linear logic: Proofs, terms and
models (extended abstract). In Proceedings of the Eighth Workshop on
Computer Science Logic, CSL’94, Selected Papers, volume 933 of Lecture
Notes in Computer Science, pages 121–135. Springer.

Benton, N., Bierman, G., de Paiva, V. and Hyland, M. (1993a) Linear λ-
calculus and categorical models revisited. In Proceedings of the Sixth
Workshop on Computer Science Logic, CSL’92, Selected Papers, volume
702 of Lecture Notes in Computer Science, pages 61–84. Springer.

Benton, N., Bierman, G., de Paiva, V. and Hyland, M. (1993b) A term calculus
for intuitionistic linear logic. In Proceedings of the International Confer-
ence on Typed Lambda Calculi and Applications, TLCA’93 , volume 664
of Lecture Notes in Computer Science, pages 75–90. Springer.

Benton, N. and Wadler, P. (1996) Linear logic, monads and the lambda cal-
culus. In Proceedings of the 11th IEEE Symposium on Logic in Computer
Science, LICS’96 , pages 420–431. IEEE Computer Society Press.

Bierman, G. (1993) On Intuitionistic Linear Logic. Ph.D. thesis, University
of Cambridge Computer Laboratory, Cambridge, England. Available as
Technical Report 346, August 1994.

Deutsch, D. and Jozsa, R. (1992) Rapid solution of problems by quantum
computation. Proceedings of the Royal Society of London A 439:553–558.

Girard, J.-Y. (1987) Linear logic. Theoretical Computer Science 50(1):1–101.
Hudak, P., Hughes, J., Peyton Jones, S. and Wadler, P. (2007) A his-

tory of Haskell: Being lazy with class. In HOPL III: Proceedings of
the Third ACM SIGPLAN Conference on History of Programming Lan-
guages, pages 12.1–55. Association for Computing Machinery.



Quantum Lambda Calculus 45

Knill, E. H. (1996) Conventions for quantum pseudocode. Technical Report
LAUR-96-2724, Los Alamos National Laboratory.

Lambek, J. and Scott, P. (1986) Introduction to Higher Order Categorical
Logic, volume 7 of Cambridge Studies in Advanced Mathematics. Cam-
bridge University Press.

Mac Lane, S. (1971) Categories for the Working Mathematician, volume 5 of
Graduate Texts in Mathematics. Springer.

Maneggia, P. (2004) Models of Linear Polymorphism. Ph.D. thesis, School of
Computer Science, University of Birmingham.

McCarthy, J. (1960) Recursive functions of symbolic expressions and their
computation by machine, part I. Communications of the ACM 3(4):184–
195.

Melliès, P.-A. (2003) Categorical models of linear logic revisited. Technical
Report 22, Laboratoire Preuves, Programmes et Systèmes, CNRS and
Paris 7. To appear in Theoretical Computer Science.

Milner, R. (1978) A theory of type polymorphism in programming. Journal
of Computer and System Sciences 17:348–375.

Moggi, E. (1991) Notions of computation and monads. Information and Com-
putation 93(1):55–92.

Pierce, B. C. (2002) Types and Programming Languages. MIT Press.
Schalk, A. (2004) What is a categorical model of linear logic? Manuscript,

available from http://www.cs.man.ac.uk/∼schalk/work.html.
Seely, R. A. (1989) Linear logic, *-autonomous categories and cofree coal-

gebras. In Proceedings of Categories in Computer Science and Logic,
Boulder, 1987 , volume 92 of Contemporary Mathematics, pages 371–382.
American Mathematical Society.

Selinger, P. (2004) Towards a quantum programming language. Mathematical
Structures in Computer Science 14(4):527–586.

Selinger, P. and Valiron, B. (2005) A lambda calculus for quantum compu-
tation with classical control. In Proceedings of the Seventh International
Conference on Typed Lambda Calculi and Applications, TLCA’05 , volume
3461 of Lecture Notes in Computer Science, pages 354–368. Springer.

Selinger, P. and Valiron, B. (2006) A lambda calculus for quantum computa-
tion with classical control. Mathematical Structures in Computer Science
16(3):527–552.

Selinger, P. and Valiron, B. (2008a) A linear-non-linear model for a compu-
tational call-by-value lambda calculus. In Proceedings of the Eleventh
International Conference on Foundations of Software Science and Com-
putation Structures, FOSSACS 2008 , volume 4962 of Lecture Notes in
Computer Science, pages 81–96. Budapest, Hungary.

Selinger, P. and Valiron, B. (2008b) On a fully abstract model for a quantum
linear functional language. In Proceedings of the Fourth International
Workshop on Quantum Programming Languages, QPL 2006 , volume 210
of Electronic Notes in Theoretical Computer Science, pages 123–137.

Sussman, G. J. and Steele Jr, G. L. (1975) Scheme: An interpreter for extended
lambda calculus. Technical Report AIM-349, MIT.

Troelstra, A. S. (1992) Lectures on Linear Logic, volume 29 of CSLI Lecture
Notes. University of Chicago Press, 2nd edition.

Turing, A. M. (1937) On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society,
Series 2 42:230–265.



46 P. Selinger and B. Valiron

Valiron, B. (2004a) A functional programming language for quantum compu-
tation with classical control . Master’s thesis, Department of Mathematics
and Statistics, University of Ottawa.

Valiron, B. (2004b) Quantum typing. In Proceedings of the Second Inter-
national Workshop on Quantum Programming Languages, QPL 2004 ,
TUCS General Publication 33, pages 163–178. Turku Centre for Com-
puter Science, Turku, Finland.

Valiron, B. (2008) Semantics for a Higher-Order Functional Programming
Language for Quantum Computation. Ph.D. thesis, Department of Math-
ematics and Statistics, University of Ottawa.

van Tonder, A. (2004) A lambda calculus for quantum computation. SIAM
Journal of Computing 33(5):1109–1135.


