
Tree Checking for Sparse Complexes

Massimo Caboara1, Sara Faridi2,?, and Peter Selinger3,?

1 University of Pisa, Italy, caboara@dm.unipi.it.
2 Dalhousie University, Halifax, Canada, faridi@mathstat.dal.ca.

3 Dalhousie University, Halifax, Canada, selinger@mathstat.dal.ca.

Abstract. We detail here the sparse variant of the algorithm sketched
in [2] for checking if a simplicial complex is a tree. A full worst case
complexity analysis is given and several optimizations are discussed. The
practical complexity is discussed for some examples.

1 Introduction

The main goal of this paper is to give a detailed description and worst time
complexity for a sparse variant of the tree-checking algorithm introduced in the
paper [2]. For all the proofs in Sects. 2-3 we refer to [2].

Facet ideals were introduced in [4] as a method to study square-free monomial
ideals, generalizing results in [9] and [8] on edge ideals of graphs. The idea is
to associate a simplicial complex to a square-free monomial ideal, where each
facet (maximal face) of the complex is the collection of variables that appear in a
monomial in the minimal generating set of the ideal. The definition of a simplicial
tree is a generalization of the concept of a graph-tree. Monomial ideals associated
to trees have many properties that make them useful from an algebraic point of
view [4, 7].

In Sect. 2 we briefly recall the notation and results of [2]. In Sect. 3 we
borrow from [2] a first version of the tree checking algorithm and we discuss its
complexity. In Sect. 4 we present the main result of this paper, the full description
of a variant of the tree checking algorithm optimized for sparse complexes and
its worst case complexity. This variant has been briefly sketched in [2]. A brief
subsection proposing further developments ends the paper.

Implementations. The algorithms described in this paper have first been coded in
CoCoAL, the CoCoA system programming language (http://cocoa.dima.unige.it/).
These prototypical implementations can be downloaded from [1]. Much more
efficient (but less user friendly) C++ implementations have been developed for
several versions of Algorithm 3.1 using the CoCoALib framework (http://cocoa.
dima.unige.it/cocoalib/). The C++ code is also available at the website [1]. The
code will be available in the CoCoA system from version 4.6 onwards. The code
for the sparse variant is still a rough prototype, but already useful to test some
example.

? Research supported by NSERC

2 Simplicial Complexes and Trees

We define the basic notions related to facet ideals. More details and examples
can be found in [4, 5].

Definition 2.1 (Simplicial complex, facet). A simplicial complex ∆ over a
finite set of vertices V is a collection of subsets of V , with the property that if
F ∈ ∆ then all subsets of F are also in ∆. An element of ∆ is called a face of
∆, and the maximal faces are called facets of ∆.

Since we are usually only interested in the facets, rather than all faces, of a
simplicial complex, it will be convenient to work with the following definition:

Definition 2.2 (Facet complex). A facet complex over a finite set of vertices
V is a set ∆ of subsets of V , such that for all F, G ∈ ∆, F ⊆ G implies F = G.
Each F ∈ ∆ is called a facet of ∆.

The set of facets of a simplicial complex forms a facet complex. Conversely,
the set of subsets of the facets of a facet complex is a simplicial complex. This
defines a one-to-one correspondence between simplicial complexes and facet com-
plexes. In this paper, we will work primarily with facet complexes.

Let k be a field. To a facet complex over a vertex set {v1, . . . , vn}, one can
uniquely associate an ideal F(∆) in the polynomial ring k[x1, . . . , xn], where
F(∆) is generated by all the square-free monomials xi1 . . . xis

, with {vi1 , . . . , vis
}

a facet of ∆. This ideal is called the facet ideal of ∆.
From now on, we will often ease the notation by denoting facets of a com-

plex by their corresponding monomials; for example, we write xyz for the facet
{x, y, z}.

We now generalize some notions from graph theory to facet complexes. Note
that a graph can be regarded as a special kind of facet complex, namely one in
which each facet has cardinality 2.

Definition 2.3 (Path, connected facet complex). Let ∆ be a facet com-
plex. A sequence of facets F1, . . . , Fn is called a path if for all i = 1, . . . , n − 1,
Fi ∩Fi+1 6= ∅. We say that two facets F and G are connected in ∆ if there exists
a path F1, . . . , Fn with F1 = F and Fn = G. Finally, we say that ∆ is connected

if every pair of facets is connected.

Notation 2.1. If F , G and H are facets of ∆, H 6F G means that H ∩ F ⊆
G ∩ F . The relation 6F defines a preorder (reflexive and transitive relation) on
the facet set of ∆.

Definition 2.4 (Leaf, joint). Let F be a facet of a facet complex ∆. Then F
is called a leaf of ∆ if either F is the only facet of ∆, or else there exists some
G ∈ ∆ \ {F} such that for all H ∈ ∆ \ {F}, we have H 6F G.

It follows immediately from the definition that every leaf F contains at least
one free vertex, i.e., a vertex that belongs to no other facet.



Example 2.1. In the facet complex ∆ = {xyz, yzu, uv}, xyz and uv are leaves,
but yzu is not a leaf. Similarly, in ∆′ = {xyu, xyz, xzv}, the only leaves are xyu
and xzv.

∆ = x

y

z
v

u

∆′ =

u

y z

vx

Definition 2.5 (Forest, tree). A facet complex ∆ is a forest if every nonempty
subset of ∆ has a leaf. A connected forest is called a tree (or sometimes a
simplicial tree to distinguish it from a tree in the graph-theoretic sense).

It is clear that any facet complex of cardinality one or two is a forest. When ∆
is a graph, the notion of a simplicial tree coincides with that of a graph-theoretic
tree.

Example 2.2. The facet complexes in Example 2.1 are trees. The facet complex
∆′′ pictured below has three leaves F1, F2 and F3; however, it is not a tree,
because if one removes the facet F4, the remaining facet complex has no leaf.

∆′′ =
F3

F1 F2F4

Alternatively, one could define a cycle and define a tree to be a connected
complex that contains no cycles.

Definition 2.6 (Cycle). A cycle is a nonempty facet complex that has no leaf,
but every proper subset of it has a leaf.

For example, the subcomplex {F1, F2, F3} is a cycle in Example 2.2, but the
whole complex is not.

It follows immediately that a facet complex is a forest if and only if it contains
no cycles.

2.1 Characterization of Trees

We now consider the problem of deciding whether or not a given facet complex
is a tree.

Note that the näıve algorithm (namely, checking whether every non-empty
subset has a leaf) is extremely inefficient: for a facet complex of n facets, there
are 2n−1 subsets to check. Also note that the definition of a tree is not inductive
in any obvious way: for instance, attaching a single leaf to a tree need not yield a
tree, as Example 2.2 shows. This seems to rule out an easy recursive algorithm.

Nevertheless, we demonstrate that the decision problem for simplicial trees
can be solved efficiently. This is done via a characterization of trees given in this
section.

Definition 2.7 (Paths and connectedness outside V ). Let ∆ be a facet
complex, and let V be a set of vertices. We say that a sequence of facets
H1, . . . , Hn ∈ ∆ is a path outside V in ∆ if for all i = 1, . . . , n − 1, (Hi ∩
Hi+1) \ V 6= ∅. We say that two facets F, G ∈ ∆ are connected outside V in ∆ if
there exists a path H1, . . . , Hn outside V in ∆ such that H1 = F and Hn = G.

Note that in case V = ∅, this coincides with the definition of connectedness
from Definition 2.3.

Notation 2.2. If F, G1, G2 are three distinct facets of ∆, then we define ∆G1,G2

F

to be the following subset of ∆:

∆G1,G2

F = {H ∈ ∆ | H ∩ F = G1 ∩ G2} ∪ {G1, G2}.

Definition 2.8 (Triple condition). Let ∆ be a facet complex. We say a triple
of facets 〈F, G1, G2〉 satisfies the triple condition if G1 66F G2 and G2 66F G1,

and if G1 and G2 are connected outside F in the facet complex ∆G1,G2

F .

Example 2.3. Consider the facet complex

∆ = F1 F3

F2

F4

G

The triple 〈F1, F2, F4〉 satisfies the triple condition. This is because F4 66F1
F2

and F2 66F1
F4. Moreover ∆F2,F4

F1
= {F2, F3, F4, G}, and a path connecting F2

and F4 outside F1 is F2, F3, F4.

However, 〈G, F2, F3〉 does not satisfy the triple condition, since ∆F2,F3

G =
{F2, F3}, and F2 and F3 are not connected outside G.

Let ∆ be a connected facet complex. Then the triple condition determines
whether or not a triple of facets belongs to a cycle contained in ∆ ([2] Propo-
sition 4.5). In particular we have the following ([2] Theorem 4.6) criterion that
determines if a given facet complex is a tree.

Theorem 2.3 (Main Theorem). A connected facet complex ∆ is a tree if and

only if no triple of facets in ∆ satisfies the triple condition.



3 A Polynomial-time Tree Decision Algorithm

By Theorem 2.3, to check if a facet complex ∆ = {G1, . . . , Gl} is a tree, we only
need to check the triple condition for all triples of elements of ∆. The checks
themselves are straightforward. Since the triple condition for 〈F, G, G′〉 is clearly
unchanged if one switches G and G′, we can limit triple checking to the elements
of the set {〈F, Gi, Gj〉 ∈ ∆3 | Gi 6= F 6= Gj , i < j}. The procedures for the basic
steps follow immediately from the earlier definitions.

Algorithm 3.1 (Standard algorithm).
Input: a connected facet complex ∆ = {G1, . . . , Gl} with n vertices.
Output: True if ∆ is a tree, False otherwise.

1. For each triple 〈F, G, G′〉 ∈ {〈F, Gi, Gj〉 ∈ ∆3 | Gi 6= F 6= Gj , i < j}
(a) If G 6F G′ or G′ 6F G, continue with the next triple.

(b) Build ∆G,G′

F .

(c) If G and G′ are connected outside F in ∆G,G′

F , return False.
2. Return True.

The correctness of this algorithm is an immediate consequence of Theo-
rem 2.3. The algorithm uses very little memory; the input ∆ requires nl bits, and

∆G,G′

F ⊆ ∆ requires l bits. The memory required to perform the connectedness
check and to store the various counters is negligible. Thus, memory locality is
good, and the computations can generally take place in the cache.

Remark 3.1. In the process of checking the triple condition for a triple 〈F, G, G′〉
that is part of a cycle, we build a connection path outside F . Clearly, any such
path can be reduced to a minimal connected path {H1, . . . , Hn} outside F for
G, G′, and {F, H1, . . . , Hn} forms a cycle. Therefore, an easy modification of
Algorithm 3.1 allow us to produce the set of all the facets F ∈ ∆ that are part
of some cycle, and a cycle ∆′

F ⊇ {F} for each of them.

3.1 Complexity

For each triple it is trivial to see that steps (a) and (b) can be performed with
cost O(n) and O(nl) respectively. For step (c), the following holds.

Lemma 3.1 (Relation algorithm). Let ∆ be a facet complex with l facets

over n variables such that F, G, G′ are distinct facets of ∆. The connectedness

outside F of G, G′ ∈ ∆ can be determined with time cost O(nl).

Proof. First of all we substitute ∆ with the set {H−F | H ∈ ∆}. We then define
n + 1 equivalence relations P0, . . . , Pn on the set {1, . . . , l}. P0 is the identity
relation, i.e., each equivalence class is a singleton. For each j = 1, . . . , n, consider
the vertex vj and the set Xj = {i | vj ∈ Fi}. Let Pj be the smallest equivalence
relation such that Pj−1 ⊆ Pj and such that for all i, i′ ∈ Xj , (i, i′) ∈ Pj . Then
facets Fi and Fi′ are connected if and only if (i, i′) ∈ Pn. With a suitable data
structure for representing equivalence relations (e.g., the relation associated to
the partition {1}, {2, 3},{4, 5, 6} of {1, . . . , 6} can be represented by the array of
integers [1, 2, 2, 4, 4, 4]), the complexity of the procedure above is O(nl).

Consequently, step (c) of the tree decision algorithm can be performed at cost
O(nl). Thus, the total complexity of the tree decision algorithm is as follows:

in the worst case we have to check 3 ·
(

l
3

)

= l(l−1)(l−2)
2 = O

(

l3
)

triples. The
complexity of the steps (a)–(c) is O(nl) and hence the total complexity of the
algorithm is O

(

nl4
)

.

Example 3.1. Consider the facet complex ∆ = {xy, xz, yz, yu, zt}. We have to
check 3 ·

(

5
3

)

= 30 triples. We start with the triple 〈xy, xz, yz〉.
– xz 66xy yz since xy ∩ xz = x 6⊆ y = xy ∩ yz. Similarly yz 66xy xz.
– xz and yz are connected outside xy in the complex ∆xz,yz

xy = {zt, xz, yz}.
We have hence discovered that ∆ is not a tree. An unlucky choice of facets could
have brought about the checking of 27 useless triples before this discovery, the
other two useful triples being 〈yz, xy, xz〉 and 〈xz, xy, yz〉.

Remark 3.2. The relation algorithm for checking connectedness has very good
worst case complexity. It is not so efficient in the average case, as shown below,
see Table 2. Let us detail another algorithm for checking the connectedness of
F, G ∈ ∆′ = {H1, . . . , Hl}: we examine H1, H2, . . . the elements of ∆ − {F, G}
and pose F ′ = F ; if Hi ∩ F ′ 6= ∅ we substitute F ′ with F ′ ∪ Hi and delete
Hi from ∆. We repeat the previous procedure until F ′ ∩ G 6= ∅ (F and G are
connected) or ∆ = ∅ (F and G are not connected). Worst case complexity of
this list algorithm is O

(

nl2
)

, but we will see that it seems to be quite efficient
in the average case.

Some Statistics

The facet complex {xixi+1xi+2 · · ·xi+n | i = 1, . . . , m} is trivially a tree. We call
it the line n/m complex. The facet complex

{yx11x12x13, . . . , yx1n−2x1n−1x1n, . . . , yxm1xm2xm3, . . . , yxmn−2xmn−1xmn}

is also trivially a tree, and we call it star line m/n. A random facet complex over
m + 10 vertices, with m facets, each of which contains from n to k vertices, will
be called random m/n/k complex. It is extremely unlikely for such a complex
to be a tree if m > 30 and n, k > 5.

Let us examine the connectedness check (Conn. Chk.) timings for the list
and relation algorithms, compared to total timings, for some examples:

The list algorithm looks better in the average (sparse or almost sparse) case
than the relation algorithm with respect to practical complexity. In the following
examples, we will check connectedness with the list algorithm.

The following table gives the statistics for the checking of every triple for
some random n/k examples. The Conn. Chk. and Triple. Cond. columns give
the percentage of triples (against the total number of triples in both cases) that
need a connectedness check or satisfy the triple condition respectively. The Tot.
Time and Conn. Chk. Time columns give the total time spent and the time spent
checking connectedness.



Table 1. List and Relation algorithms - Conn. Chk. Timings

Example List algorithm Relation algorithm
Time Time

Total/Conn. Chk. Total/Conn. Chk.

Rand.100/5/10 2.9s/0.5s 26.0s/23.6s
Rand. 200/5/10 21.2s/4.4s 467s/448s
Line 400/3 14.2s/1.1s 30.0s/16.3s
Line 400/40 115.1s/31.2s 2,418s/2,332s

Table 2. Random Examples

Example Conn. Chk. Triple. Cond. Tot. Time Conn. Chk. Time

Rand. 100/5/10 14% 14% 2.9s 0.6s
Rand. 100/20/40 100% 98% 9.4s 1.3s
Rand. 200/5/10 6% 6% 21.0s 4.4s
Rand. 200/20/40 94% 93% 132s 9.7s
Rand. 200/120/120 100% 100% 138s 10.2s
Rand. 400/5/20 7% 7% 625s 106s
Rand. 400/40/80 99% 99% 2,637s 90s

The more “dense” a random complex is, the higher the percentage of triples
for which connectedness has to be checked and that satisfy the triple condition.
It is exceedingly difficult for a random complex to be a tree, and the detection
of a triple satisfying the triple condition is usually quite easy.

Tree examples are the hard cases, since every triple has to be checked.

Table 3. Tree Examples

Example Conn. Chk. Time

line 400/3 0.005% 14.2s
line 400/40 2% 115s
star line 4/100 0.01% 12.7s
star line 10/100 0.0003% 300s

3.2 Optimization

The runtime of Algorithm 3.1 can be improved by introducing some optimiza-
tions. First, note that if F is a facet such that no triple 〈F, G, G′〉 satisfies the

triple condition, then F cannot be part of any cycle of ∆. Therefore, F can be
removed from ∆, reducing the number of subsequent triple checks. We refer to
this optimization as the removal of useless facets.

Remark 3.3. The facet order in a complex can be crucial when using the useless
facet optimization, as shown in Table 4 below.

An important special case of a “useless facet” is a reducible leaf, as captured
in the following definition:

Definition 3.1 (Reducible leaf). A facet F of a facet complex ∆ is called a
reducible leaf if for all G, G′ ∈ ∆, either G 6F G′ or G′ 6F G.

A reducible leaf is called a “good leaf” by Zheng [10].

Remark 3.4. The facet F is a reducible leaf of ∆ if and only if F is a leaf of
every ∆′ ⊆ ∆ with F ∈ ∆′.

The remark immediately implies that a reducible leaf cannot be part of a
cycle. Thus, it can be removed from ∆, and the algorithm can then be recursively
applied to ∆\{F}. We were not able to find a tree without a reducible leaf; in fact,
Zheng [10] conjectured that this is always the case. Checking whether a given
facet F is a reducible leaf requires ordering all facets with respect to 6F , which
takes O(nl log l) steps. A reducible leaf can thus be found in time O

(

nl2 log l
)

.
Therefore, if Zheng’s conjecture is true, the tree problem can be decided in time
O
(

nl3 log l
)

. But even if the conjecture is not true, removing all reducible leaves
at the beginning of Algorithm 3.1 is still a worthwhile optimization.

4 Optimization for Sparse Complexes

Let ∆ be a facet complex with l facets. If every F ∈ ∆ intersects a substantial
(≈ l) number of facets, then the number of triples that satisfy the triple condition
is probably high and our algorithm is usually able to detect one of them easily.
If this does not happen, we can exploit the facet complex “sparseness” in our
algorithm. For the remainder of this subsection, ∆ will be a facet complex with
l facets over n vertices.

4.1 Sparse Algorithm

Precomputing the incidence matrix for the graph describing the connectedness
relation for the complex ∆ allows us to use very efficient versions of all the sub
procedures. The implementation of the sparse variant of the algorithm is still
not complete, but we give here a full description, a complexity analysis and a
prototype implementation, plus some examples.

Notation 4.1. Let ∆ be a facet complex and F ∈ ∆. We denote by dF the
cardinality of the set {H ∈ ∆ | H ∩ F 6= ∅}. We denote by vF the number of
vertices in F .



Note that for F ∈ ∆ we always have dF 6 l and vF 6 n. Note also that the
with a suitable implementation, costs for the intersection and equality/inequality
operations for F, G are O(min{vF , vG}).

Definition 4.1 (Connection block). Let ∆ = {F1, . . . , Fl} be a facet com-
plex. The connection block of ∆, (CB∆), is the list of pairs 〈i, {j1, . . . , jdFi

}〉,
1 6 i 6 l where {Fj1 , . . . , FjdFi

} is the list of the facets connected to Fi. We call

{j1, . . . , jdFi
} in 〈i, {j1, . . . , jdFi

}〉 the i-th row of CB∆.

Note that CB∆ is the incidence matrix for the graph describing the connect-
edness relation for the complex ∆. We denote the sum of the cardinality of the
i-th rows of CB∆ by E. Note that E =

∑l
i=1 dFi

= 2 · #(edges in the graph).
The space required to store CB∆ is O(E).

Notation 4.2. Let ∆ be a facet complex and F ∈ ∆. We denote by CBF
∆ the

connection block of the facet complex ∆ when the connectedness relation is
replaced by the connectedness outside F relation.

The space required to store CBF
∆ is less or equal than the space necessary to

store CB∆.
If we have ∆, CB∆,and ∆′ ⊂ ∆ and we want to build CB∆′ we can do that

efficiently by marking in ∆ all the elements in ∆−∆′. When using CB∆′ to check
connectedness, we work in CB∆ but we only consider indices whose associated
facet in ∆ is not marked. Marking, mark erasing and mark checking for a facet
Fi in ∆ can be done in constant time if we know the index i.

Example 4.1. Let ∆ be the facet complex

{F1 = xz, F2 = yz, F3 = ztu, F4 = twa, F5 = uva, F6 = ab}

∆ =
u

t

w
b

a

v z

x
y

Then
CB∆ ={〈1, {2, 3}〉, 〈2, {1, 3}〉, 〈3, {1, 2, 4, 5}〉, 〈4, {3, 5, 6}〉, 〈5, {3, 4, 6}〉, 〈6, {4, 5}〉}
CBF3

∆ = {〈1, ∅〉, 〈2, ∅〉, 〈3, ∅〉, 〈4, {5, 6}〉, 〈5, {4, 6}〉, 〈6, {4, 5}〉}
∆F4,F5

F3
= {F4, F5} and CB

∆
F4,F5

F3

= {〈4, {5}〉, 〈5, {4}〉}.
We have F6 /∈ ∆F4,F5

F3
= {F4, F5}. Equivalently, we can mark F6 in ∆ and avoid

to consider 6 in CBF3

∆ , the relation described by the incidence matrices is the
same.

Algorithm 4.3 (Tree decision sparse algorithm).
Input: a connected facet complex ∆ = {F1, . . . , Fl} with n vertices.
Output: True if ∆ is a tree, False otherwise.

1. Build CB∆.
2. For each i s.t. Fi ∈ ∆

(a) Build CBFi

∆ .
(b) For each 〈G, G′〉 ∈ {〈Gj , Gk〉 | Gj , Gk ∈ i-th row in CB∆ s.t. j < k}

i. If G 6Fi
G′ or G′ 6Fi

G, continue with the next couple.
ii. Build CB

∆
G,G′

Fi

from CBFi

∆ by marking ∆.

iii. If G and G′ are connected outside Fi in ∆G,G′

Fi
return False.

iv. Erase all marks in ∆.
3. Return True.

Note that we build CB
∆

G,G′

Fi

without building ∆G,G′

Fi
by using the previously

computed incidence matrices.
Let us describe the algorithms for the sub procedures and their costs when

not trivial.

1. Building CB∆: for every element Fi ∈ ∆ we check if any other element
G ∈ (∆ − F ) is connected to Fi. Cost is O

(

l2vFi

)

.

2. Building CBFi

∆ having CB∆: for every s-row of CB∆ and every element in
the row (H1, . . . , HdFs

) we check if the intersection holds outside Fi. This
check can be done for every H with time cost vH , and the total cost is hence

l
∑dFs

j=1 vHj
.

3. The cost of step 2(b).i is trivially O(vFi
)

4. Building CB
∆

G,G′

Fi

having CB∆ and CBFi

∆ : we don’t actually build CB
∆

G,G′

Fi

but we use CB∆Fi
marking the facets in ∆ that does not appear in CB

∆
G,G′

Fi

.

Instead of looking for a connected path in CB
∆

G,G′

Fi

outside Fi, we look

equivalently for a connected path in CB∆Fi
outside Fi whose links are not

marked in ∆.
There are two cases, G ∩ G′ = ∅ and G ∩ G′ 6= ∅.
G ∩G′ = ∅: we have to mark the facets H ∈ ∆ for which H ∩ Fi 6= ∅. These
are the dFi

elements in i-th row of CB∆. Cost is dFi
.

G ∩ G′ 6= ∅: we have to mark the facets H ∈ ∆ for which H ∩ Fi 6= G ∩ G′.
These are the elements outside i-th row of CB∆ (E − dFi

markings) and the
elements in the i-th row for which H ∩ Fi 6= G ∩ G′. (dFi

checks at cost vFi

and at most dFi
markings) The cost is hence O(dFi

vFi
+ E).

Total cost for step 2(b).ii is thus O(dFi
vFi

+ E).

5. To check if G and G′ are connected in ∆G,G′

Fi
outside Fi: having CB

∆
G,G′

Fi

the problem reduces to check connectedness in a graph with O(E) edges,
and that can be done with the well known Breadth First Search technique
at cost O(E).
Alternative: connection check using CB

∆
G,G′

Fi

: We start from the elements in

the G row of CB
∆

G,G′

Fi

in a dequeue list L. For every unmarked H there, we

check if it is G′, in which case we return true, we mark H in the complex
and add to L the elements in the H row of CB

∆
G,G′

Fi

. At most l merging



at unitary cost, at most E elements in L and E marking setting/checking.
Total cost is hence O(E).

This algorithm is a straightforward application of Theorem 2.3. Its complex-
ity is as follows:

We build CB∆ once (cost O(lE)), then for every i ∈ {1, . . . , l} we build CBFi

∆

at cost vFi
E and we perform steps 2(b).i-iv

(

dFi

2

)

times, at cost O(dFi
vFi

+ E)
for every iteration. The dominant cost is this last step. Total complexity is hence

O

(

l
∑

i=1

(d3
Fi

vFi
+ d2

Fi
E)

)

= O

(

l
∑

i=1

(

d3
Fi

vFi
+ d2

Fi

l
∑

s=1

dFs

))

– If the complex is not sparse (vFi
≈ n, dFi

≈ l for every i ∈ {1, . . . , l}) then
Sparse Algorithm complexity is equal to Standard Algorithm complexity,
O
(

nl4
)

.

– If dFi
, vFi

<
√

l, a possible definition of sparseness for a complex, then Sparse

Algorithm complexity is O
(

l3
√

l
)

.

Some Statistics

The line 400/3 example is a sparse tree, and the line 400/40 example is an almost
sparse tree. The star line examples are trees but they are not sparse. Permuted
means that the facet are fed to the algorithm not in the “natural” order but after
a random reshuffle. The R stands for the removal of useless facets optimization.

Table 4. Standard Alg./Sparse Alg. Comparison

Example Standard Standard+R Sparse Sparse+R

line 400-3 14.2s 4.3s 1.53s 0.01s
line 400-3 Permuted 12.8s 12.8s 0.86s 0.85s
line 400-40 115s 3.2s 100s 0.2s
line 400-40 Permuted 97s 89s 80s 80s
star-line 4/100 12.7s 3.7s 14.2s 4.5s
star-line 4/100 Permuted 12.4s 12.7s 14.1s 13.3s
star-line 10/100 300s 89s 318s 99s
star-line 10/100 Permuted 290s 279s 309s 296s

For sparse examples the sparse algorithm is clearly better than the standard
algorithm; as expected, this is not the case when the sparseness is lacking. The
useless facet removal optimization is very sensitive to facet ordering, but is very
useful when the conditions are suitable.

Conclusions and Further Work

Large sparse trees are the hardest cases for our tree checking algorithm. The
sparse algorithm looks very promising for these cases, especially from the point
of view of its practical complexity.

We are working on the further optimization of the sparse algorithm. Using
this algorithm for checking examples, we will work on Zheng’s conjecture. We
will then compare the sparse algorithm and the algorithm based on Zheng’s
conjecture performance for sparse complexes.

References

1. M. Caboara, S. Faridi, P. Selinger, Prototype implementation of tree algorithms,
available at http://www.dm.unipi.it/∼caboara/Research.

2. M. Caboara, S. Faridi, P. Selinger. Simplicial cycles and the computation of

simplicial trees. Journal of Symbolic Computation, to appear.
3. CoCoA Team, CoCoA: a system for doing Computations in Commutative Algebra,

available at http://cocoa.dima.unige.it/.
4. S. Faridi, The facet ideal of a simplicial complex, Manuscripta Mathematica 109

(2002), 159–174.
5. S. Faridi, Cohen-Macaulay properties of square-free monomial ideals, Journal of

Combinatorial Theory, Series A, 109 (2005), no. 2, 299–329.
6. S. Faridi, Simplicial trees are sequentially Cohen-Macaulay, J. Pure and Applied

Algebra 190 (2004), 121–136.
7. S. Faridi, Monomial ideals via square-free monomial ideals, Lecture Notes in

Pure and Applied Mathematics, to appear.
8. A. Simis, W. Vasconcelos, R. Villarreal, On the ideal theory of graphs, J. Algebra

167 (1994), no. 2, 389–416.
9. R. Villarreal, Cohen-Macaulay graphs, Manuscripta Math. 66 (1990), no. 3, 277–

293.
10. X. Zheng, Homological properties of monomial ideals associated to quasi-trees

and lattices, Ph.D. thesis, Universität Duisburg-Essen, August 2004.


