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Partially traced categories∗

Octavio Malherbe, Philip J. Scott and Peter Selinger

Abstract

This paper deals with questions relating to Haghverdi and Scott’s notion of partially traced categories.

The main result is a representation theorem for such categories: we prove that every partially traced

category can be faithfully embedded in a totally traced category. Also conversely, every symmetric

monoidal subcategory of a totally traced category is partially traced, so this characterizes the partially

traced categories completely. The main technique we use is based on Freyd’s paracategories, along with

a partial version of Joyal, Street, and Verity’s Int-construction.

1 Introduction

Partially traced monoidal categories were introduced by Haghverdi and Scott [10, 11] as a general framework
for modelling a typed categorical version of Girard’s Geometry of Interaction. The Geometry of Interaction
(GoI) was developed by Girard in a series of influential works that examine dynamical models of proofs
in linear logic and their evaluation under normalization, using operator algebras and functional analysis
[4, 5, 6, 7]. This program has recently received increased attention as also having connections with quantum
computation and quantum protocols [1, 21, 22].

One of the objectives of this article is to systematically explore the Haghverdi-Scott notion of partially
traced categories by providing a representation theorem which establishes a precise correspondence between
partially traced and totally traced categories.

2 Background

To fix the notation for this paper, we briefly recall some basic notions from monoidal category theory. For
more details, see e.g. [2, 16, 17].

2.1 Monoidal categories

Definition 2.1. A monoidal category, also sometimes called tensor category, is a category C with a bifunctor

⊗ : C ×C → C together with a unit object I ∈ C and natural isomorphisms ρA : A⊗ I
∼=
→ A, λA : I ⊗A

∼=
→ A,

and αA,B,C : A ⊗ (B ⊗ C)
∼=
→ (A ⊗ B) ⊗ C, satisfying some coherence axioms [17]. The monoidal category

is strict if ρ, λ, and α are identities. It is well-known that every monoidal category is equivalent to a strict
one [17]. Here, and throughout the paper, we often omit the subscripts from notations such as αA,B,C when
they are clear from the context.

Definition 2.2. A symmetric monoidal category consists of a monoidal category C with a chosen natural

isomorphism σA,B : A⊗B
∼=
→ B ⊗A, called symmetry, which satisfies σB,A ◦ σA,B = 1A⊗B, λA ◦ σA,I = ρA,

and αC,A,B ◦ σA⊗B,C ◦ αA,B,C = (σA,C ⊗ 1B) ◦ αA,C,B ◦ (1A ⊗ σB,C).

Definition 2.3. A monoidal functor (F,mA,B ,mI) between monoidal categories (C,⊗, I, α, ρ, λ) and
(D,⊗′, I ′, α′, ρ′, λ′) is a functor F : C → D equipped with:

∗This research was supported by NSERC.
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- morphisms mA,B : F (A) ⊗′ F (B) → F (A⊗B) natural in A and B,

- a morphism mI : I ′ → F (I),

which satisfy some coherence axioms preserving the symmetric monoidal structure [17]. A monoidal functor
is strong when mI and all the mA,B are isomorphisms. It is strict when mI and all the mA,B are identities.

If in addition, C and D are symmetric monoidal with respective symmetries σ and σ′, then F is a
symmetric monoidal functor if for all A,B,

FA⊗′ FB
σ′

//

m
��

FB ⊗′ FA

m
��

F (A⊗B)
F (σ)

// F (B ⊗A).

2.2 Traced monoidal categories

Traced monoidal categories were introduced by Joyal, Street and Verity [15] as an attempt to model an
abstract notion of trace arising in different fields of mathematics, such as algebraic topology, knot theory,
and theoretical computer science. In computer science, this abstraction has been particularly useful in the
description of feedback, fixed-point operators, the execution formula in Girard’s Geometry of Interaction [4],
etc.

Definition 2.4. A trace for a symmetric monoidal category (C,⊗, I, ρ, λ, σ) consists of a family of functions

TrUA,B : C(A⊗ U,B ⊗ U) → C(A,B),

natural in A, B, and dinatural in U , satisfying the following axioms. Here we write without loss of generality
as if C were strict.

• Strength: For all f : A⊗ U → B ⊗ U and g : C → D,

g ⊗ TrUA,B(f) = TrUC⊗A,D⊗B(g ⊗ f).

• Vanishing I: For all f : A⊗ I → B ⊗ I,

f = TrIA,B(f).

• Vanishing II: For all f : A⊗ U ⊗ V → B ⊗ U ⊗ V ,

TrUA,B(Tr
V
A⊗U,B⊗U (f)) = TrU⊗V

A,B (f).

• Yanking: For all A,
TrAA,A(σA,A) = 1A.

Because we need them later, we explicitly spell out the conditions of naturality and dinaturality:

• Naturality: For all f : A⊗ U → B ⊗ U , g : A′ → A, and h : B → B′,

h ◦ TrUA,B(f) ◦ g = TrUA′,B′((h⊗ 1U ) ◦ f ◦ (g ⊗ 1U )).

• Dinaturality: For all f : A⊗ U → B ⊗ U ′ and g : U ′ → U ,

TrUA,B((1B ⊗ g) ◦ f) = TrU
′

A,B(f ◦ (1A ⊗ g)).

Definition 2.5. Let (C,Tr) and (D,Tr′) be traced monoidal categories. We say that a strong symmetric
monoidal functor (F,m) : C → D is traced monoidal when it preserves the trace operator in the following
sense: for all f : A⊗ U → B ⊗ U ,

Tr′
FU

FA,FB(m
−1
A,U ◦ F (f) ◦mA,U ) = F (TrUA,B(f)) : FA → FB.
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Object A:

A

Morphism f : A1 ⊗ . . . ⊗An →B1 ⊗ . . . ⊗Bm:

An Bm

A1

... f B1

...

Composition g ◦ f : A → C:

A
f

B g C

Tensor f ⊗ g : A⊗ C → B ⊗D:

C g D

A
f

B

Symmetry σA,B : A⊗B → B ⊗A:

B

❃❃
❃❃

❃ A

A

����� B

Trace TrUA,B f : A → B:

U U

A f B

Table 1: The graphical language of traced monoidal categories

2.3 Graphical language

Graphical calculi are a useful tool for reasoning about monoidal categories, dating back at least to the work
of Penrose [19]. There are various graphical languages that are provably sound and complete for equational
reasoning in different kinds of monoidal categories. They allow efficient geometrical and topological insights
to be used in a kind of calculus of “wirings”, which simplifies diagrammatic reasoning. See [23] for a detailed
survey of such graphical languages.

In particular, there is a graphical language for traced monoidal categories, which was already used in
Joyal, Street, and Verity’s original paper [15]. As shown in Table 1, wires represent objects, boxes represent
morphisms, composition is represented by connecting the outgoing wires of one diagram to the incoming
wires of another, and tensor product is represented by stacking wires and boxes vertically. Finally, trace is
represented by a loop. The axioms of traced (symmetric) monoidal categories are illustrated in Table 2.

We say that a diagram is expanded if all its wires are labelled by object variables and all its boxes are
labelled by morphism variables (as opposed to composite object and morphism terms). Thus, for example, a
wire labelled A⊗B is not expanded, but a pair of wires labelled A and B is expanded. Each non-expanded
diagram can be converted to an equivalent expanded diagram. The following theorem shows the validity of
diagrammatic reasoning in traced monoidal categories.

Theorem 2.6 (Coherence, see [23]). A well-formed equation between morphisms in the language of symmet-
ric traced monoidal categories follows from the axioms of symmetric traced monoidal categories if and only
if it holds, up to isomorphism of expanded diagrams, in the graphical language.

2.4 Compact closed categories

Definition 2.7. A compact closed category is a symmetric monoidal category C in which for every object
A, there is a given object A∗, called the dual of A, and a given pair of arrows η : I → A∗ ⊗ A (called the
unit), ε : A⊗A∗ → I (called the counit) such that the following are identities:

A
ρ−1

−−→ A⊗ I
1⊗η
−−→ A⊗ (A∗ ⊗A)

α
−→ (A⊗A∗)⊗A

ε⊗1
−−→ I ⊗A

λ
−→ A = 1A,

A∗ λ−1

−−→ I ⊗A∗ η⊗1
−−→ (A∗ ⊗A)⊗A∗ α−1

−−→ A∗ ⊗ (A⊗A∗)
1⊗ε
−−→ A∗ ⊗ I

ρ
−→ A∗ = 1A∗ .

3



Naturality:

g
hf =

g
f h

Dinaturality:

g
f

=
f

g

Strength:

g

f
=

g

f

Vanishing I:

f = f

I

Vanishing II:

VU

f
=

U    V

f

Yanking:

=

Table 2: The axioms of traced monoidal categories

Proposition 2.8. Let C be a compact closed category. Then C has a unique trace, which we call the canonical
trace. It is defined as follows (here we write without loss of generality as if the category were strict):

TrUA,B(f) = A
1⊗η
−−→ A⊗ U∗ ⊗ U

1⊗σ
−−−→ A⊗ U ⊗ U∗ f⊗1

−−−→ B ⊗ U ⊗ U∗ 1⊗ε
−−→ B.

Moreover, every strong symmetric monoidal functor between compact closed categories preserves the compact
closed structure, and therefore the canonical trace.

Proof. See [15]. For uniqueness of the trace, see [12, Appendix B].

3 Partially traced categories

Partially traced symmetric monoidal categories were introduced by Haghverdi and Scott [10] as part of a
categorical framework for a typed version of the Geometry of Interaction (GoI).

An important aspect of modelling the dynamics of proofs in Girard’s concrete models of GoI is that
proofs are interpreted as operators, and cut-elimination (normalization) is interpreted in terms of feedback
(the “execution formula”). Haghverdi and Scott [10] used a partial trace to define a categorical version
of the execution formula. This execution formula is (for large classes of sequents) an invariant of the cut-
elimination process. Types are given by an abstract orthogonality relation in the sense of Hyland and Schalk
[14]. Such an orthogonality relation arises naturally in the partially traced setting, and yields the required
convergence properties of Girard’s execution formula. Thus, partially traced categories (with additional
structure) provide the necessary ingredients for running Girard’s GoI machinery.

We note that, while totally traced categories are a special case of partially traced categories, partiality
was important in constructing nontrivial types in the typed version of GoI in [10]. Indeed, if one assumes a
total trace in this setting, the type structure collapses. By contrast, the earlier analysis of GoI in [9] used a
total categorical trace, but required the category to be equipped with a reflexive object satisfying appropriate
domain equations, which is a very strong assumption.
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In this section, we recall the definition of a partially traced category, and give some examples. We also
show that each symmetric monoidal subcategory of a (totally or partially) traced category is partially traced,
which gives rise to many more examples.

3.1 Definition of partially traced categories

We recall the definition of a partially traced (symmetric monoidal) category from [10]. We begin with some
notation for partial functions.

Definition 3.1. Let f and g be partially defined operations. We write f(x)↓ if f(x) is defined, and f(x)↑ if
it is undefined. Following Freyd and Scedrov [3], we also write f(x) ✄ �

✂ ✁g(x) if f(x) and g(x) are either both
undefined, or else they are both defined and equal. The relation “✄ �

✂ ✁” is known as Kleene equality. We also
write f(x) ✄✂ g(x) if either f(x) is undefined, or else f(x) and g(x) are both defined and equal. The relation
“✄✂ ” is known as directed Kleene equality.

Definition 3.2 ([10, 11]). Suppose (C,⊗, I, ρ, λ, σ) is a symmetric monoidal category. A partial trace is
given by a family of partial functions TrUA,B : C(A ⊗ U,B ⊗ U) ⇀ C(A,B), satisfying the following axioms.
Once again, we write the axioms as if C were strict.

• Naturality: For all f : A⊗ U → B ⊗ U , g : A′ → A, and h : B → B′,

h ◦ TrUA,B(f) ◦ g ✄
✂ TrUA′,B′((h⊗ 1U ) ◦ f ◦ (g ⊗ 1U )).

• Dinaturality: For all f : A⊗ U → B ⊗ U ′ and g : U ′ → U ,

TrUA,B((1B ⊗ g) ◦ f) ✄ �
✂ ✁TrU

′

A,B(f ◦ (1A ⊗ g)).

• Strength: For all f : A⊗ U → B ⊗ U and g : C → D,

g ⊗ TrUA,B(f) ✄
✂ TrUC⊗A,D⊗B(g ⊗ f).

• Vanishing I: For all f : A⊗ I → B ⊗ I,

f ✄ �
✂ ✁TrIA,B(f).

• Vanishing II: For all f : A⊗ U ⊗ V → B ⊗ U ⊗ V ,

TrVA⊗U,B⊗U (f) ↓ implies TrUA,B(Tr
V
A⊗U,B⊗U (f)) ✄ �

✂ ✁TrU⊗V
A,B (f).

• Yanking: For all A,
TrAA,A(σA,A) ✄ �

✂ ✁1A.

A partially traced category is a symmetric monoidal category with a partial trace.

Note that in the vanishing I axiom, the left-hand side is always defined, so Kleene equality in this case
just means that TrIA,B(f) is always defined an equals f . A similar remark applies to the yanking axiom.

Remark 3.3. Comparing this to Definition 2.4, we see that a traced monoidal category is just a partially
traced category where the trace operation happens to be total. We sometimes refer to traced monoidal
categories as totally traced categories, when we want to emphasize that they are not partial.

Definition 3.4. The subset of C(A⊗ U,B ⊗ U) where TrUA,B is defined is sometimes called the trace class,
and is written

T
U
A,B = {f : A⊗ U → B ⊗ U | TrUA,B(f) ↓}.

5



Remark 3.5. In case g and h are isomorphisms, by naturality we have

h−1 ◦ TrUA,B(f
′) ◦ g−1

✄
✂ TrUA′,B′((h−1 ⊗ 1U ) ◦ f

′ ◦ (g−1 ⊗ 1U )),

and therefore
TrUA′,B′((h⊗ 1U ) ◦ f ◦ (g ⊗ 1U )) ✄✂ h ◦ TrUA,B(f) ◦ g,

where f ′ = (h⊗ 1U ) ◦ f ◦ (g ⊗ 1U ). Therefore, the naturality axiom holds with Kleene equality when g and
h are isomorphisms.

Remark 3.6. The precondition to the vanishing II axiom is redundant for the left-to-right direction. In
other words, we have the directed Kleene equality

TrUA,B(Tr
V
A⊗U,B⊗U (f)) ✄

✂ TrU⊗V
A,B (f)

regardless of whether TrVA⊗U,B⊗U (f) is defined or not. However, the assumption TrVA⊗U,B⊗U (f)↓ is of course
critical for the right-to-left direction.

Lemma 3.7. The strength axiom in the context of Definition 3.2 is equivalent to the following axiom (see
also [15]):

• Superposing: For all f : A⊗ U → B ⊗ U and g : C → D,

TrUA,B(f)⊗ g ✄
✂ TrUA⊗C,B⊗D((1B ⊗ σU,D) ◦ (f ⊗ g) ◦ (1A ⊗ σC,U )).

Proof. By the axioms of symmetric monoidal categories, we have (1B ⊗ σU,D) ◦ (f ⊗ g) ◦ (1A ⊗ σC,U ) =
(σ ⊗ 1U ) ◦ (g ⊗ f) ◦ (σ ⊗ 1U ). From this and Remark 3.5, it follows that the right-hand sides of the
superposing and strength axioms are related by conjugation with σ:

TrUA⊗C,B⊗D((1B ⊗ σU,D) ◦ (f ⊗ g) ◦ (1A ⊗ σC,U )) ✄ �✂ ✁ TrUA⊗C,B⊗D((σ ⊗ 1U ) ◦ (g ⊗ f) ◦ (σ ⊗ 1U ))

✄ �
✂ ✁ σ ◦ TrUC⊗A,D⊗B(g ⊗ f) ◦ σ.

On the other hand, the left-hand sides of the superposing and strength axioms are also related by conjugation
with σ:

TrUA,B(f)⊗ g ✄ �
✂ ✁ σ ◦ (g ⊗ TrUA,B(f)) ◦ σ.

The claim then follows.

3.2 Graphical language

Because a morphism such as

f

may be undefined in a partially traced category, we may not a priori assume that the graphical language of
Section 2.3 is sound for partially traced categories, or even that every diagram describes a unique morphism.
For example, both sides of the naturality axiom correspond, up to isomorphism of diagrams, to the same
diagram

g
f

h .
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However, one side of the axiom may be undefined and the other defined, so the diagram does not have a
unique meaning.

Nevertheless, we wish to use graphical reasoning to simplify our exposition, particularly in Section 5.
The following standard trick will allow us to do this. Whenever we take the trace of a composite diagram,
we will draw a special box around the portion of the diagram that is being traced, like this:

f

h

❴ ❴ ❴ ❴ ❴ ❴✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤
❴ ❴ ❴ ❴ ❴ ❴

g k .

Note that, since every partially traced category is a symmetric monoidal (total) category, the graphical
language of symmetric monoidal categories is still sound for partially traced categories, and therefore any
symmetric monoidal portion of a graphical diagram can be soundly manipulated up to graph isomorphism.
This means that one can soundly manipulate the inside of a box, as well as the box as a whole, up to graph
isomorphism. With this convention, any diagram (up to box-respecting graph isomorphism) has a unique
meaning (up to Kleene equality) in a partially traced category.

3.3 Examples: partial traces on (Vect,⊕)

It is well-known that the category Vectfin of finite dimensional vector spaces (over any field k), with the
symmetric monoidal structure given by the tensor product ⊗, is totally traced. In fact, this category is
compact closed.

On the other hand, with respect to the monoidal structure given by the biproduct ⊕, neither Vect nor
Vectfin is totally traced. However, it is possible to define a partial trace on these categories. In fact, this
can be done in more than one way, as we will now discuss.

Recall that in a category with biproducts, a morphism f : A⊕U → B⊕U is characterized by the matrix[
f11 f12
f21 f22

]
, where fij = πi◦f◦ inj . Composition corresponds to multiplication of matrices. Also recall that

an additive category is a category with finite biproducts and where each morphism f : A → B has an additive
inverse g : A → B such that f + g = 0.

3.3.1 Non-examples: Kleene trace and sum trace

A first attempt to define a partial trace with respect to biproducts on vector spaces is by summing over all
paths in the graph

f22

f12

f21

f11
.

We consider two variants:

Definition 3.8 (Kleene trace [20]). The Kleene trace is the following partial operation on (Vect,⊕). For
f : A⊕ U → B ⊕ U , define

TrUk (f) = f11 + f12(
∑

n>0

fn
22)f21, (3.1)

if this sum exists, and TrUk (f) is undefined otherwise.

To give the summation an unambiguous meaning, let us assume here that the vector spaces are over the
real or complex numbers, and that convergence is taken with respect to some convenient topology, such as
the weak operator topology, where Xn → X iff for all v ∈ A and w ∈ B∗, wXnv → wXv. We also consider:

7



Definition 3.9 (Sum trace). On (Vect,⊕), for f : A⊕ U → B ⊕ U , define the sum trace

TrUs (f) = f11 +
∑

n>0

(f12 f
n
22 f21), (3.2)

if this sum exists, and TrUs (f) is undefined otherwise.

Proposition 3.10. Neither (3.1) nor (3.2) is a partial trace in the sense of Definition 3.2. Both operations
satisfy naturality, dinaturality, strength, vanishing I, and yanking. However, both fail to satisfy vanishing II.

Proof. Naturality, dinaturality, strength, vanishing I, and yanking are straightforward to check. To show
that the sum trace does not satisfy vanishing II, consider A = B = U = V = k and f : A⊕U⊕V → B⊕U⊕V
given by [

1 1 0
1 −2 1
0 1 1/2

]
.

Then

TrVs f =
[
1 1
1 −2

]
+

∑

n>0

[
0
1

](1

2

)n

[ 0 1 ] =
[
1 1
1 0

]
.

In particular, this sum exists, so the hypothesis of vanishing II is satisfied. Now TrUs TrVs f exists and is
equal to

TrUs TrVs f = 1 +
∑

m>0

1 · 0m · 1 = 2.

On the other hand,

TrU⊕V
s f = 1 +

∑

n>0

[ 1 0 ]
[
−2 1
1 1/2

]n[ 1
0

]
,

which does not converge, contradicting the vanishing II axiom. The same counterexample also applies to
the Kleene trace.

3.3.2 Haghverdi and Scott’s partial trace on (Vect,⊕)

One of the motivating examples of a partially traced category in [10, 8, 11] is the following partial trace on
(Vect,⊕). It can be seen as an effort to make the Kleene trace (3.1) more often defined by replacing the
sum

∑
n>0 f

n
22 by its limit (I − f22)

−1. The following definition makes sense in finite or infinite dimensions
and over any base field, or indeed in any additive category.

Definition 3.11 (Haghverdi-Scott trace [10]). On (Vect,⊕,0), or on any additive category, we define a
partial trace as follows: for f : A⊕ U → B ⊕ U , let

TrUhs(f) = f11 + f12(I − f22)
−1f21, (3.3)

if I − f22 is invertible, and TrUhs(f) is undefined otherwise. Here, I = 1 : U → U is the identity map on U .

Proposition 3.12. The Haghverdi-Scott trace is a partial trace.

Proof. [10, 8, 11].

Remark 3.13. Both the sum trace and the Haghverdi-Scott trace are strictly more defined than the Kleene
trace, in the sense that for all f , TrUk (f) ✄

✂ TrUs (f) and TrUk (f) ✄
✂ TrUhs(f). Moreover, it appears that

when the sum trace and the Haghverdi-Scott trace are both defined, then they coincide1. However, the sum
trace and the Haghverdi-Scott trace can each be defined without the other being defined. For example, for

f =
[
1 0
0 1

]
, the sum trace is defined but the Haghverdi-Scott trace is not, whereas for f =

[
1 1
1 2

]
, the

Haghverdi-Scott trace is defined and the sum trace is not. In fact, as the following proposition shows, there
is no partial trace (and hence definitely no total trace) on (Vect,⊕,0) that simultaneously generalizes the
sum trace and the Haghverdi-Scott trace.

1We know this for certain only in the finite dimensional case.
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Proposition 3.14. There exists no partial trace Tr on (Vect,⊕), such that for all f : A⊕ U → B ⊕ U ,

TrUs (f) ✄
✂ TrU (f) and TrUhs(f) ✄

✂ TrU (f).

Proof. Suppose there is such a partial trace Tr. Let A = B = U = k, X =
[
0 1
1 0

]
and consider f, g :

A⊕ U ⊕ U → B ⊕ U ⊕ U given by

f =

[
0 1 1
0 2 1
1 −1 0

]
and g = (1⊕X)f(1⊕X−1) =

[
0 1 1
1 0 −1
0 1 2

]
.

By direct calculation, one can verify that both TrUs TrUhs(f) and TrUs TrUhs(g) are defined and

TrUs TrUhs(f) = 1 and TrUs TrUhs(g) = 0.

By assumption,
TrU TrU (f) = 1 and TrU TrU (g) = 0,

hence by vanishing II,
TrU⊕U (f) = 1 and TrU⊕U (g) = 0.

On the other hand, dinaturality requires TrU⊕U (f) ✄ �
✂ ✁TrU⊕U (g), a contradiction.

3.3.3 The kernel-image partial trace on (Vect,⊕)

The following definition generalizes the Haghverdi-Scott partial trace, and is defined on slightly more mor-
phisms.

Definition 3.15 (Kernel-image trace). We define another partial trace on (Vect,⊕), or indeed on any
additive category, called the kernel-image trace. Given a map f : A⊕ U → B ⊕U , we say TrUki(f) ↓ iff there
exist morphisms i : A → U and k : U → B such that the following commutes:

A
i

//❴❴❴❴❴

f21
%%❑

❑❑
❑❑

❑❑
❑❑

❑❑
U

f12

%%▲
▲▲

▲▲
▲▲

▲▲
▲▲

I−f22

��

U
k

//❴❴❴❴❴ B.

Whenever this condition is satisfied we define

TrUki(f) = f11 + k ◦ f21 = f11 + f12 ◦ i : A → B. (3.4)

To show that this is well-defined, note that k ◦ f21 does not depend on i and f12 ◦ i does not depend on k,
so TrUki(f) is independent of the choice of both i and k.

Remark 3.16. In Vect, the existence of i and k is equivalent to the following two conditions, respectively:

im f21 ⊆ im(I − f22),

ker(I − f22) ⊆ ker f12.

This explains the name “kernel-image trace”.

Proposition 3.17. The kernel-image trace is a partial trace.

Proof. The proof for Vect can be found in [18]. Here, we prove it in the case of a general additive category.
Let us say that (k, i) witnesses the existence of Tr(f) if the condition of Definition 3.15 holds, i.e., f12 =
k ◦ (I − f22) and f21 = (I − f22) ◦ i. In this case, we also write (k, i)  Tr(f).

9



• To prove naturality, assume (k, i)  Tr(f). Then (h ◦ k, i ◦ g)  Tr((h ⊕ 1U ) ◦ f ◦ (g ⊕ 1U )), and
Tr((h⊕ 1U ) ◦ f ◦ (g ⊕ 1U )) = h ◦ f11 ◦ g + h ◦ k ◦ f21 ◦ g = h ◦ Tr(f) ◦ g.

A′
g

// A
i

//❴❴❴❴❴

f21
%%❑

❑❑
❑❑

❑❑
❑❑

❑❑
U

f12

%%❑
❑❑

❑❑
❑❑

❑❑
❑❑

I−f22

��

U
k

//❴❴❴❴❴ B
h

// B′.

• To prove dinaturality, assume (k, i)  Tr((1B ⊕ g) ◦ f):

A
i

//❴❴❴❴❴❴❴❴❴❴❴

f21
%%❑

❑❑
❑❑

❑❑
❑❑

❑❑
U

f12

%%❑
❑❑

❑❑
❑❑

❑❑
❑❑

I−g◦f22

��

U ′
g

// U
k

//❴❴❴❴❴ B.

Let j = f21 + f22 ◦ i and note that (I − g ◦ f22) ◦ i = g ◦ f21 implies i − g ◦ f22 ◦ i = g ◦ f21, hence
i = g ◦ (f21 + f22 ◦ i) = g ◦ j. Consider the diagram

A
j

//❴❴❴❴❴

f21
%%❑

❑❑
❑❑

❑❑
❑❑

❑❑
U ′

g
//

I−f22◦g

��

U
f12

%%❑
❑❑

❑❑
❑❑

❑❑
❑❑

I−g◦f22

��

U ′
g

// U
k

//❴❴❴❴❴ B.

The left triangle commutes because (I − f22 ◦ g) ◦ j = j − f22 ◦ g ◦ j = j − f22 ◦ i = f21. The center
square commutes because both sides are equal to g− g ◦ f22 ◦ g. Therefore (k ◦ g, j)  Tr(f ◦ (1A ⊕ g))
and Tr(f ◦ (1A ⊕ g)) = f11 + k ◦ g ◦ f21 = Tr((1B ⊕ g) ◦ f). This proves one direction of dinaturality;
the opposite direction is dual.

• To prove strength, assume (k, i)  Tr(f). Then (in2 ◦k, i ◦ π2)  Tr(g⊕ f) and Tr(g⊕ f) = (g⊕ f11) +
in2 ◦k ◦ f21 ◦ π2 = g ⊕ Tr(f).

C ⊕ A
π2

// A
i

//❴❴❴❴❴

f21
%%❑

❑❑
❑❑

❑❑
❑❑

❑❑
U

f12

%%❑
❑❑

❑❑
❑❑

❑❑
❑❑

I−f22

��

U
k

//❴❴❴❴❴ B
in2

// B ⊕D.

• To prove yanking, notice that (1, 1)  Tr(σU ), and Tr(σU ) = 0 + 1 = 1.

U
1

//❴❴❴❴❴

1
%%❑

❑❑
❑❑

❑❑
❑❑

❑❑
U

1

%%❑
❑❑

❑❑
❑❑

❑❑
❑❑

I−0

��

U
1

//❴❴❴❴❴ U.

• To prove vanishing I, consider f : A⊕ 0 → B ⊕ 0. Then (0, 0)  Tr(f) and, writing as if the monoidal
structure were strict, we have Tr(f) = f11 + 0 = f .

A
0

//❴❴❴❴❴

0
%%❑

❑❑
❑❑

❑❑
❑❑

❑❑
U

0

%%▲
▲▲

▲▲
▲▲

▲▲
▲▲

I−0

��

U
0

//❴❴❴❴❴ B.
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• Finally, to prove vanishing II, consider

f =

[
L M N
P A B
Q C D

]
: A⊕ U ⊕ V → B ⊕ U ⊕ V.

Assume TrV (f) is defined and witnessed by some (k, i). We write i = [E F ] and k =
[
G
H

]
.

A⊕ U
[ E F ]

//❴❴❴❴❴

[ Q C ]
%%▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

V
[

N
B

]

%%▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲

I−D

��

V

[

G
H

]

//❴❴❴❴❴ B ⊕ U.

For greater brevity, let us write D′ = I −D and A′ = I −A. We have HD′ = B, GD′ = N , D′F = C,
and D′E = Q. Also,

TrV (f) =
[
L+GQ M +GC
P +HQ A+HC

]
=

[
L+NE M +NF
P +BE A+BF

]
.

What we must show is that some (k′, i′) witnesses TrU TrV (f) if and only if some (k′′, i′′) witnesses

TrU⊕V (f), and in this case, TrU TrV (f) = TrU⊕V (f). Let us write k′′ = [R S ] and i′′ =
[
J
K

]
, and

consider the corresponding diagrams

A
i′

//❴❴❴❴❴❴

P+BE

##●
●●

●●
●●

●●
●●

●●
●

(a)
(b)

U

M+NF

##❍
❍❍

❍❍
❍❍

❍❍
❍❍

❍❍
❍

I−A−BF

��

U
k′

//❴❴❴❴❴❴ B,

A

[

J
K

]

//❴❴❴❴❴❴

[

P
Q

]

%%❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

(c)
(d)

U ⊕ V

[ M N ]

%%❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

I−
[

A B
C D

]

��

U ⊕ V
[ R S ]

//❴❴❴❴❴❴ B.

We note that (a) commutes iff P + BE = A′i′ − BFi′ iff P = A′i′ − B(E + Fi′), and (c) commutes
iff P = A′J − BK and Q = D′K − CJ . Now given i′ such that (a) commutes, we can set J = i′

and K = E + Fi′. Then P = A′i′ − B(E + Fi′) = A′J − BK, and Q = D′E = D′(K − Fi′) =
D′K − D′FJ = D′K − CJ , and therefore (c) commutes. Conversely, given J and K such that (c)
commutes, we can set i′ = J , and we have: P = A′J − BK = A′i′ −HD′K = A′i′ −H(Q + CJ) =
A′i′ −HD′E−HD′FJ = A′i′ −HD′(E+Fi′) = A′i′−B(E+Fi′), and therefore (a) commutes. The
proof for (b) and (d) is dual. Finally, if both diagrams are witnessed, with J = i′ and K = E + Fi′,
then we have TrU TrV (f) = L+NE+MJ +NFJ and TrU⊕V (f) = L+MJ+NK; the two are equal
because NE +NFJ = N(E + Fi′) = NK.

Remark 3.18. Notice that the kernel-image partial trace generalizes the Haghverdi-Scott trace. Indeed,
if I − f22 is invertible, then one can take i = (I − f22)

−1 ◦ f21 and k = f12 ◦ (I − f22)
−1, in which case

TrUki(f) = f11 + f12(I − f22)
−1f21. Therefore Tr

U
hs(f) ✄

✂ TrUki(f). Moreover, the kernel-image trace is strictly

more general, because for the identity map f =
[
1 0
0 1

]
, the kernel-image trace is defined but the Haghverdi-

Scott trace is not. However, although the kernel-image trace is more defined than the Haghverdi-Scott trace,

because of Proposition 3.14, it still does not subsume the sum trace. For example, for f =
[
0 1
0 1

]
, the sum

trace is defined and the kernel-image trace is not.

Remark 3.19. Let U = V ⊕ W be a finite dimensional Hilbert space and consider a hermitian positive
operator A : U → U . Then A is characterized by its unit ball B = {u ∈ U | 〈u,Au〉 6 1}. Let B′ ⊆ V be
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the orthogonal projection of B to the subspace V . Then B′ is the unit ball of a hermitian positive operator
A′ : V → V , which can be explicitly defined by 〈v,A′v〉 := min{〈v+w,A(v+w)〉 | w ∈ W}. This construction
is intimately related to the kernel-image trace in the following way: If A is positive, then TrWki (I −A) always

exists and is equal to I − A′. Such a property fails to hold for the sum-trace (e.g., A =
[
1 1
1 2

]
) and the

Haghverdi-Scott trace (e.g., A =
[
1 0
0 0

]
).

3.4 Partial trace in a symmetric monoidal subcategory of a partially traced

category

The aim of this section is to show that any symmetric monoidal subcategory of a partially (or totally) traced
category is partially traced. Suppose (D,⊗, I, σ,Tr) is a partially traced category with trace

TrUA,B : D(A⊗ U,B ⊗ U) ⇀ D(A,B).

Given a symmetric monoidal subcategory C ⊆ D, we get a partial trace on C, defined by T̂r
U

A,B(f) = TrUA,B(f)

if TrUA,B(f) exists and is an element of C(A,B), and undefined otherwise.
Slightly more generally, we have the following:

Proposition 3.20. Let F : C → D be a faithful strong symmetric monoidal functor from a symmetric
monoidal category (C,⊗, I, σ) to a partially traced category (D,⊗, I, σ,Tr). Then we obtain a partial trace

T̂r on C as follows. For f : A⊗U → B⊗U , we define T̂r
U

A,B(f) = g if there exists some (necessarily unique)

g : A → B such that F (g) = TrFU
FA,FB(m

−1
B,U ◦ F (f) ◦mA,U ) is defined, and T̂r

U

A,B(f) undefined otherwise.

Proof. The details can be found in [18].

Remark 3.21. This yields a large class of examples of partially traced categories that are related to known
totally traced categories. For example, consider the category SRelfin of finite sets and stochastic maps. Here,
a stochastic map from A to B is a function from A to sub-probability distributions on B, with the obvious
identities and composition. In elementary terms, this is a [0, 1]-valued matrix whose columns have sum 6 1.
With the tensor ⊕ (disjoint union), this category is totally traced. With the tensor ⊗ (cartesian product),
it is not totally traced; however, (SRelfin,⊗) can be regarded as a symmetric monoidal subcategory of the
totally traced category (Vectfin,⊗) of finite dimensional real vector spaces and linear functions. Therefore
it inherits a partial trace.

Other examples of partial traces arise in this way from the models for quantum computing considered in
[21], for example on completely positive maps and on superoperators. Such examples are described in detail
in [18].

4 Paracategories and their completion

The goal of the remainder of this paper is to prove a strong converse to Proposition 3.20, i.e.: every partially
traced category arises as a symmetric monoidal subcategory of a totally traced category. More precisely, we
show that every partially traced category can be faithfully embedded in a compact closed category in such
a way that the trace is preserved and reflected.

Our construction uses a partial version of the Int-construction of Joyal, Street, and Verity [15]. When
we try to apply the Int-construction to a partially traced category C, we find that composition in Int(C)
is in general only partially defined. We therefore consider a notion of “categories” with partially defined
composition, namely, Freyd’s paracategories [13]. Specifically, we introduce the notion of a strict symmetric
compact closed paracategory.

We first show in Section 4 that every partially traced category can be fully and faithfully embedded in a
compact closed paracategory, by an analogue of the Int-construction. We then show in Section 5 that every
compact closed paracategory can be embedded (faithfully, but not necessarily fully) in a compact closed
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(total) category, using a construction similar to that of Freyd. Finally, every compact closed category is
(totally) traced, yielding the desired result in Section 6.

4.1 Paracategories

We recall Freyd’s notion of paracategory. A reference on this subject is [13]. Informally, a paracategory is a
category with partially defined composition.

Definition 4.1. A (directed) graph C consists of:

• a class of objects obj(C), and

• for every pair of objects A,B, a set C(A,B) of arrows from A to B.

If C,D are graphs, a graph homomorphism F : C → D is given by a (total) function F : obj(C) → obj(D) and a
family of (total) functions F : C(A,B) → D(FA,FB). We say that F is faithful if F : C(A,B) → D(FA,FB)
is one-to-one for all A,B.

Definition 4.2. Let C be a graph. We define P(C), the path category of C, by obj(P(C)) = obj(C) and
arrows from A0 to An are finite sequences (A0, f1, A1, f2, . . . , fn, An) of alternating objects and arrows of
the graph C, where n > 0 and fi : Ai−1 → Ai for all i. We say that n is the length of the path. To be clear,
equality of arrows is literal equality of sequences. Composition is defined by concatenation, and the identity
arrow at an object A is the path (A) of length zero.

Notation. For the sake of simplicity, we often write ~f = f1, f2, . . . , fn for a path, when the objects are
understood. We use the comma “,” for concatenation. We also write ǫA = (A) for the path of length zero

at A, so that ǫA, ~f = ~f = ~f, ǫB for a path ~f : A → B.

Recall the definition of Kleene equality “✄ �✂ ✁” and directed Kleene equality “✄✂ ” from Definition 3.1.

Definition 4.3. A paracategory (C, [−]) consists of a directed graph C and a family of partial operations
[−]A,B : P(C)(A,B) ⇀ C(A,B), called (partial) composition, which satisfies the following axioms. We usually
omit the subscripts.

(a) for all A, [ǫA]↓, i.e., [−] is a total operation on empty paths;

(b) for paths of length one, [f ]↓ and [f ] = f (or equivalently, using Kleene equality, [f ] ✄ �
✂ ✁f);

(c) for all paths ~r : A → B, ~f : B → C, and ~s : C → D,

[~f ] ↓ implies [~r, [~f ], ~s ] ✄ �
✂ ✁[~r, ~f , ~s ].

Remark 4.4. Every category C can be regarded as a paracategory with [f1, . . . , fn] = fn ◦ . . . ◦ f1. In this
case, composition is a totally defined operation.

Remark 4.5 (Identity). In any paracategory, we will write 1A = [ǫA]. Note that by (a) and (c), it follows
that [~r, 1A, ~s ] ✄ �

✂ ✁[~r, ~s ] for all ~r, ~s, so the arrow 1A indeed behaves like an identity.

Remark 4.6 (Inverses). If there are two arrows b : A → B and b−1 : B → A in a paracategory such that
[b, b−1] = 1A and [b−1, b] = 1B, then for all arrows f : X → A and g : X → B, [f, b] = g iff f = [g, b−1].
Namely, from the assumption [f, b] = g, we can deduce [g, b−1] ✄ �

✂ ✁[[f, b], b−1] ✄ �
✂ ✁[f, b, b−1] ✄ �

✂ ✁[f, [b, b−1]] ✄ �
✂ ✁

[f, 1] ✄ �
✂ ✁[f ] = f , and the proof of the converse is similar.

Convention 4.7. We extend any graph homomorphism F : C → D to paths by the following slight abuse of
notation: for any path ~f = f1, . . . , fn, we write

F ~f := Ff1, . . . , Ffn.
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Definition 4.8. Let (C, [−]) and (D, [−]′) be paracategories. A functor of paracategories is a graph homo-
morphism F : C → D such that for all ~p,

F [ ~p ] ✄✂ [F~p ]′.

We note that functors of paracategories preserve identities. Indeed, since [ǫA]↓, we have F (1A) = F [ǫA] =
[FǫA] = [ǫFA] = 1FA.

Definition 4.9. Let (C, [−]) and (D, [−]′) be paracategories. Then the paracategory C × D has obj(C ×
D) := obj(C) × obj(D) and (C × D)((A,A′), (B,B′)) := C(A,B) × D(A′, B′), and [(f1, g1), . . . , (fn, gn)] :✄ �

✂ ✁

([f1, . . . , fn], [g1, . . . , gn]). Then C×D is a categorical product in the category of paracategories and functors.

4.2 Symmetric monoidal paracategories

Definition 4.10. A strict symmetric monoidal paracategory (C, [−],⊗, I, σ) consists of:

(a) a paracategory (C, [−]);

(b) a functor of paracategories ⊗ : C × C → C, and an object I, satisfying

• (A⊗B)⊗ C = A⊗ (B ⊗ C) on objects and (f ⊗ g)⊗ h = f ⊗ (g ⊗ h) on arrows (associativity);

• A⊗ I = A = I ⊗A on objects and f ⊗ 1I = f = 1I ⊗ f on arrows (unit laws);

(c) for all objects A and B, an arrow σA,B : A⊗B → B ⊗A such that:

- for every f : X ⊗B ⊗A → Y , g : Y → X ⊗A⊗B, [1X ⊗ σA,B, f ]↓ and [g, 1X ⊗ σA,B]↓ (totality);

- for every f : A → A′ and g : B → B′: [f ⊗ 1B, σ] = [σ, 1B ⊗ f ] and [1A ⊗ g, σ] = [σ, g ⊗ 1A]
(naturality);

- for every A and B: [σA,B, σB,A] = 1A⊗B (symmetry);

- for every A, B, and C: σA,B⊗C = [σA,B ⊗ 1C , 1B ⊗ σA,C ] (“hexagon” axiom).

The assumption that ⊗ is a functor of paracategories explicitly means that it is a graph homomorphism
satisfying

[f1, . . . , fn]⊗ [g1 . . . , gn] ✄✂ [f1 ⊗ g1, . . . , fn ⊗ gn]. (4.1)

Lemma 4.11. For arrows p : A → B, q : C → D of a strict symmetric monoidal paracategory C, we have
that [p⊗ 1C , 1B ⊗ q] and [1A ⊗ q, p⊗ 1D] are both defined and equal to p⊗ q. Moreover, for any paths ~f and

~g, we have [~f, p⊗ 1, 1⊗ q,~g ] ✄ �✂ ✁[~f, p⊗ q,~g ] ✄ �✂ ✁[~f, 1⊗ q, p⊗ 1, ~g ].

Proof. Let p : A → B and q : C → D. By Remark 4.5 and functoriality, p ⊗ q = [p, 1B] ⊗ [1C , q] ✄✂

[p ⊗ 1C , 1B ⊗ q] and p ⊗ q = [1A, p] ⊗ [q, 1D] ✄✂ [1A ⊗ q, p ⊗ 1D]. But p ⊗ q is totally defined, so all of the

above terms are defined and equal. Using this and axiom (c) of paracategories, we have for any paths ~f and
~g,

[~f, p⊗ 1, 1⊗ q,~g ] ✄ �
✂ ✁[~f, [p⊗ 1, 1⊗ q ], ~g ] ✄ �

✂ ✁[~f, p⊗ q,~g ],

and similarly for [~f, 1⊗ q, p⊗ 1, ~g ].

Lemma 4.12. In the definition of a strict symmetric monoidal paracategory, condition (4.1) is equivalent
to the following pair of conditions:

(a) [f, f ′]⊗ [g, g′] ✄✂ [f ⊗ g, f ′ ⊗ g′] where f, g, f ′, g′ are arrows of C; and

(b) 1⊗ [ ~p ] ✄✂ [ 1⊗ ~p ] and [ ~p ]⊗ 1 ✄✂ [ ~p⊗ 1 ].

Note that in stating (b), we have used Convention 4.7, so by definition, 1⊗ ~p = 1⊗ p1, . . . , 1⊗ pn.
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Proof. Clearly (4.1) implies (a). Also, by Remark 4.5 and (4.1), we have 1⊗ [ ~p ] ✄ �
✂ ✁[1, . . . , 1]⊗ [ ~p ] ✄✂ [1⊗ ~p ],

and similarly [ ~p ]⊗1 ✄
✂ [ ~p⊗1 ], so (4.1) implies (b). For the converse, first note that the proof of Lemma 4.11

only uses property (a). Assume [~f ] and [~g ] are defined. Then by Lemma 4.11 and (b), we have [~f ]⊗ [~g ] =

[[~f ]⊗ 1, 1⊗ [~g ]] ✄✂ [~f ⊗ 1, 1⊗ ~g ] ✄ �
✂ ✁. . . ✄ �

✂ ✁[f1 ⊗ 1, 1⊗ g1, . . . , fn ⊗ 1, 1⊗ gn] ✄ �
✂ ✁[f1 ⊗ g1, . . . , fn ⊗ gn].

Definition 4.13. Let (C, [−],⊗, I, σ) and (D, [−]′,⊗′, I ′, σ′) be strict symmetric monoidal paracategories.
A functor between them is strict symmetric monoidal when F (A) ⊗′ F (B) = F (A ⊗ B) and F (I) = I ′ on
objects, and F (f)⊗′ F (g) = F (f ⊗ g) and F (σ) = σ′ on arrows.

4.3 The completion of symmetric monoidal paracategories

In this section, we will prove that every strict symmetric monoidal paracategory can be faithfully embedded
in a strict symmetric monoidal category. From now on, C denotes a strict symmetric monoidal paracategory.

Definition 4.14. A congruence relation S on P(C) is given as follows: for every pair of objects A,B, an

equivalence relation ∼A,B
S

on the hom-set P(C)(A,B), satisfying the following axioms. We usually omit the
superscripts when they are clear from the context.

(1) If ~p ∼S ~p ′ and ~q ∼S ~q ′, then ~p, ~q ∼S ~p ′, ~q ′.

(2) Whenever [~p ]↓, then ~p ∼S [~p ].

(3) If ~p ∼S ~q, then ~p⊗ 1 ∼S ~q ⊗ 1 and 1⊗ ~p ∼S 1⊗ ~q.

Definition 4.15. We define a particular congruence relation Ŝ as follows: ~p ∼
Ŝ

~q if and only if for all
objects A,B and all ~r, ~s,

[~r, 1A ⊗ ~p⊗ 1B, ~s ] ✄ �
✂ ✁[~r, 1A ⊗ ~q ⊗ 1B, ~s ].

Remark 4.16. It should be observed that ~p ∼
Ŝ
~q implies [ ~p ] ✄ �

✂ ✁[ ~q ] by letting A = B = I and ~r, ~s be empty
lists.

Lemma 4.17. Ŝ is a congruence relation.

Proof. We need to show axioms (1)–(3). To show (1), note that ~p ∼
Ŝ
~p ′ and ~q ∼

Ŝ
~q ′ implies

[~r, 1A ⊗ (~p, ~q)⊗ 1B, ~s ] ✄ �
✂ ✁ [~r, 1A ⊗ ~p⊗ 1B, 1A ⊗ ~q ⊗ 1B, ~s ]

✄ �
✂ ✁ [~r, 1A ⊗ ~p ′ ⊗ 1B, 1A ⊗ ~q ⊗ 1B, ~s ]

✄ �
✂ ✁ [~r, 1A ⊗ ~p ′ ⊗ 1B, 1A ⊗ ~q ′ ⊗ 1B, ~s ]

✄ �
✂ ✁ [~r, 1A ⊗ (~p ′, ~q ′)⊗ 1B, ~s ],

where the first and last equation is just the definition of ⊗ on paths. Therefore ~p, ~q ∼S ~p ′, ~q ′. To show
(2), assume [~p ]↓. Then by Lemma 4.12(b), 1A ⊗ [~p ]⊗ 1B = [1A ⊗ ~p⊗ 1B] is defined, and from the laws of
paracategories,

[~r, 1A ⊗ ~p⊗ 1B, ~s ] ✄ �
✂ ✁[~r, [1A ⊗ ~p⊗ 1B], ~s ] ✄ �

✂ ✁[~r, 1A ⊗ [~p ]⊗ 1B, ~s ].

Property (3) is immediate from the definition of Ŝ.

Definition 4.18. Let ∼ be the smallest congruence relation on P(C), i.e., the intersection of all congruence
relations.

Lemma 4.19. ~p ∼ ~q implies [ ~p ] ✄ �✂ ✁[ ~q ].

Proof. Since ∼ is the smallest congruence relation, ~p ∼ ~q implies ~p ∼
Ŝ

~q, which implies [ ~p ] ✄ �✂ ✁ [ ~q ] by
Remark 4.16.

Corollary 4.20. If ~p, q : A → B are paths where q is of length 1, then ~p ∼ q iff [~p ]↓ and [~p ] = q.
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Proof. The left-to-right direction is obvious from Lemma 4.19 and axiom (b) of paracategories. The right-
to-left direction is Definition 4.14(2).

Corollary 4.21. If p, q : A → B are paths of length 1, then p ∼ q iff p = q.

Proof. From Lemma 4.19 and axiom (b) of paracategories.

Definition 4.22. We now introduce the following notation, where ~f and ~g are paths, not necessarily of the
same length.

~f ⊠ ~g := (~f ⊗ 1), (1⊗ ~g). (4.2)

Note that, as a path, this is not equal to (1⊗~g), (~f ⊗ 1). However, we will show that they are congruent.

Lemma 4.23. Let S be a congruence relation on P(C). Then ~f ∼S
~f ′ and ~g ∼S ~g ′ implies ~f⊠~g ∼S

~f ′⊠~g ′.

Proof. Assuming ~f ∼S
~f ′ and ~g ∼S ~g ′, we immediately have (~f ⊗ 1), (1 ⊗ ~g) ∼S (~f ′ ⊗ 1), (1 ⊗ ~g ′) by

Definition 4.14(1) and (3).

Lemma 4.24. Let S be a congruence relation of P(C). Then

(~f ⊗ 1), (1⊗ ~g) ∼S (1 ⊗ ~g), (~f ⊗ 1).

Proof. First, consider arrows f, g of C. By Lemma 4.11, we have [f ⊗ 1, 1⊗ g] = f ⊗ g = [1⊗ g, f ⊗ 1], and
in particular, these terms are defined. Therefore by Definition 4.14(2),

f ⊗ 1, 1⊗ g ∼S [f ⊗ 1, 1⊗ g] = [1⊗ g, f ⊗ 1] ∼S 1⊗ g, f ⊗ 1.

The general claim follows by induction, using Definition 4.14(1) and transitivity.

Proposition 4.25. Let C be a strict symmetric monoidal paracategory, and let S be a congruence relation
on P(C). Then the quotient P(C)/S is a strict symmetric monoidal category.

Proof. P(C)/S is evidently a category; its objects are those of C and its morphisms ~̄f = f1, . . . , fn are
S-equivalence classes of paths. Composition is given by concatenation of paths, and is well-defined by

Definition 4.14(1). A bifunctor ⊠̄ : P(C)/S × P(C)/S → P(C)/S is defined by ~̄f ⊠̄ ~̄g = ~f ⊠ ~g, and is well-
defined by Lemma 4.23. The symmetry is given by σA,B : A ⊗ B → B ⊗ A. The laws of strict symmetric
monoidal categories are easily verified.

From now on, we also write “;” to denote composition in the quotient category written in diagrammatic
order, i.e., concatenation of (equivalence classes of) paths. Also, by a slight abuse of notation, we write
1A = 1A for the identities in P(C)/S, i.e., this is the equivalence class of the empty path at A.

We are now ready to prove that every strict symmetric monoidal paracategory can be faithfully embedded
in a strict symmetric monoidal category.

Definition 4.26. If C is a strict symmetric monoidal paracategory, S a congruence, and P(C)/S is the
quotient category, we define a functor of paracategories F : C → P(C)/S, where the category P(C)/S is
understood as a (total) paracategory, as follows.

- on objects, F is the identity, and

- on arrows, F (f) = f , the equivalence class of a path of length 1.

Proposition 4.27. F : C → P(C)/S is a well-defined functor of symmetric monoidal paracategories. More-
over, if S is the smallest congruence relation ∼, then F is faithful.
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Proof. Observe that F is indeed a functor of paracategories as in Definition 4.8: when [~f ] is defined, then

by Definition 4.14(2) [~f ] ∼S
~f , hence

F [~f ] = [~f ] = ~f = f1, . . . , fn = f1 ; . . . ; fn = Ff1 ; . . . ; Ffn.

Moreover, F is strictly monoidal: by Lemma 4.11, Definition 4.14(2), Definition 4.22 and by definition of
the tensor on P(C), we have

F (f ⊗ g) = f ⊗ g = [f ⊗ 1B, 1C ⊗ g] = f ⊗ 1B, 1C ⊗ g = f ⊠ g = Ff ⊠̄ Fg.

Also, trivially, F (σ) = σ.
For general S, the functor F may not be faithful. For a trivial example, consider the maximal relation

S = P(C) × P(C), which is always a congruence. However, if S is the smallest congruence relation, then
F is faithful by Corollary 4.21. Indeed, by Remark 4.16, this is true for any congruence relation satisfying
S ⊆ Ŝ.

4.4 Compact closed paracategories

Definition 4.28. A (strict symmetric) compact closed paracategory (C, [−],⊗, I, σ, η, ε) is a strict symmetric
monoidal paracategory, equipped for every object A with a given object A∗ and given arrows ηA : I → A∗⊗A,
εA : A⊗A∗ → I, such that

• [1A ⊗ ηC , f ⊗ 1C ], [g ⊗ 1C∗ , 1B ⊗ εC ], [ηA ⊗ 1B, 1A∗ ⊗ h], and [1A ⊗ k, εA ⊗ 1C ] are defined, for all
f : A⊗ C∗ → B, g : A → B ⊗ C, h : A⊗B → C, and k : B → A∗ ⊗ C (totality);

• [1A ⊗ ηA, εA ⊗ 1A] = 1A and [ηA ⊗ 1A∗ , 1A∗ ⊗ εA] = 1A∗ .

Theorem 4.29. If C is a compact closed paracategory, then P(C)/S is a compact closed category. In
particular, every compact closed paracategory can be faithfully embedded in a compact closed category.

Proof. We must show that P(C)/S, with η′ = η and ε′ = ε, is compact closed. This is easily verified. For
example, the condition [1⊗ η, ε⊗ 1]↓ implies:

1A ⊠̄ η ; ε ⊠̄ 1A = 1A ⊗ η ; ε⊗ 1A

= 1A ⊗ η, ε⊗ 1A

= [1A ⊗ η, ε⊗ 1A]

= 1A = 1A.

The proof of η ⊠̄ 1A∗ ; 1A∗ ⊠̄ ε = 1A∗ is similar.

Remark 4.30. By analogy with Proposition 2.8, in any compact closed paracategory, we can define the
trace of an arrow f : A⊗ U → B ⊗ U to be

TrUA,B(f) ✄ �✂ ✁ [1A ⊗ ηU , 1A ⊗ σU∗,U , f ⊗ 1U∗ , 1B ⊗ εU ] : A → B.

Then TrUA,B is of course a partially defined operation.

Recall from Definition 4.18 that ∼ is the smallest congruence relation on P(C).

Theorem 4.31. The functor F : C → P(C)/∼ preserves and reflects the trace. This means that for all
f : A⊗ U → B ⊗ U and g : A → B in C, we have TrU (f) = g iff TrFUF (f) = F (g).

Proof. By definition, we have TrFUF (f) = F (g) in P(C)/∼ if and only if 1A ⊗ ηU , 1A⊗ σU∗,U , f ⊗ 1U∗ , 1B ⊗
εU ∼ g is an equivalence of paths in P(C). By Corollary 4.20, this is the case iff [1A ⊗ ηU , 1A ⊗ σU∗,U , f ⊗

1U∗ , 1B ⊗ εU ] = g in C, i.e., TrU (f) = g.
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4.5 The universal property of P(C)/∼

We can strengthen Proposition 4.27 by noting that the faithful embedding satisfies a universal property when
S is the smallest congruence relation.

Theorem 4.32. Let C be a strict symmetric monoidal paracategory, and let ∼ be the smallest congruence
relation on P(C). Then the category P(C)/∼ satisfies the following property: for any strict symmetric
monoidal category D and any strict symmetric monoidal functor G : C → D of paracategories, there exists a
unique strict symmetric monoidal functor L : P(C)/∼ → D such that L ◦ F = G, where F is the canonical
functor as in Definition 4.26.

C
F

//

G

''P
PP

PP
PP

PP
PP

PP
PP

P P(C)/∼

L

��

D

Proof. For consistency of notation, let us write “;” for composition in D in diagrammatic order. Define a
family of relations S on P(C) by:

~f ∼S ~g :⇐⇒ G(f1) ; . . . ;G(fn) = G(g1) ; . . . ;G(gm),

where ~f = f1, . . . , fn and ~g = g1, . . . , gm. We claim that S is a congruence relation. Clearly, it is an
equivalence relation. Properties (1) and (3) of Definition 4.14 are trivialities; for (2), note that when [~f ]↓,

then G[~f ] = Gf1 ; . . . ;Gfn by Definition 4.8, hence [~f ] ∼S
~f .

We define L as follows:

L(A) = G(A) on objects and L(~̄p ) = G(p1) ; . . . ;G(pn), where ~p = p1, . . . , pn.

L is well-defined because ~p ∼ ~q implies ~p ∼S ~q, and this implies L(~̄p ) = L(~̄q ). L is easily seen to be a strict
symmetric monoidal functor satisfying L ◦ F = G.

For uniqueness, consider any other such functor L′. Then L′(A) = L′(FA) = GA = LA and L′(~̄p ) =
L′(p̄1 ; . . . ; p̄n) = L′(Fp1, . . . , Fpn) = L′(Fp1) ; . . . ; L

′(Fpn) = G(p1) ; . . . ;G(pn) = L(~̄p ), so L′ = L.

An analogous result holds with respect to compact closed paracategories and compact closed categories.

5 The Int-construction for partially traced categories

Joyal, Street, and Verity proved in [15] that every (totally) traced monoidal category C can be faithfully
embedded in a compact closed category Int(C). Here we show, by a similar construction, that every partially
traced category C can be faithfully embedded in a compact closed paracategory Intp(C). We call the corre-
sponding construction the partial Int-construction. We assume without loss of generality that C is strictly
monoidal.

5.1 The definition of Intp(C)

Definition 5.1. To any partially traced symmetric strictly monoidal category C, we associate a graph
Intp(C) as follows.

• an object is a pair (A+, A−) of objects of the category C.

• an arrow f : (A+
0 , A

−
0 ) → (A+

1 , A
−
1 ) is an arrow f : A+

0 ⊗A−
1 → A+

1 ⊗A−
0 in the category C.

To make Intp(C) into a paracategory, we need to define a partial composition operation [−] on paths.
Before giving the formal definition, we first illustrate the idea in the case of a path ~p = p1, p2, p3 of length
3, where

(A+
0 , A

−
0 )

p1
−→ (A+

1 , A
−
1 )

p2
−→ (A+

2 , A
−
2 )

p3
−→ (A+

3 , A
−
3 ).
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In this case, the partial composition [~p ] : (A+
0 , A

−
0 ) → (A+

3 , A
−
3 ) is defined as follows:

[~p ] :✄ �
✂ ✁

A−

A−

A−

A−

A+A+A+

A−

A−

A−

A−

A+
3

0

0

1

2

32211

2

1

0

3

0
p p p

(5.1)

See Section 3.2 for our conventions regarding the graphical language. In particular, the trace shown is a
single trace over the object A−

0 ⊗ A−
1 ⊗ A−

2 . Note that this trace may be undefined, and therefore [~p ] is a
partial operation.

To define [~p ] for paths of arbitrary length, we give a recursive definition. We first recursively define an
auxiliary operation, corresponding to the contents of the shaded area in (5.1).

Definition 5.2. We define an auxiliary (total) operation [[−]], called precomposition. This operation assigns
to each path ~p = p1, . . . , pn : (A+

0 , A
−
0 ) → (A+

n , A
−
n ), with n > 0 and pi : (A+

i−1, A
−
i−1) → (A+

i , A
−
i ), a

morphism
[[~p]] : A+

0 ⊗A
− ⊗A−

n → A+
n ⊗A−

0 ⊗A
−,

where A
− = A−

0 ⊗ . . .⊗A−
n−1. Precomposition is defined by recursion on paths. The base case is a path of

length 0:

[[ε(A+

0
,A

−

0
)]] = 1A+

0
⊗A

−

0

=
A+

0

A−
0

A+
0

A−
0

.

And when ~p = p1, . . . , pn as above is a path of length n, we define

[[~p, pn+1]] = ]][[ p p
n+1

A+
n

A−
n

A−
A−

0
A+

n+ 1

A−
n+1
A−

n

A+
0

A−

.

Here, a thick line represents the object A−, which really consists of n parallel lines.

Definition 5.3. For any path ~p = p1, . . . , pn, with n > 0 and pi : (A+
i−1, A

−
i−1) → (A+

i , A
−
i ), the partial

composition [~p ] is defined as

[~p ] :✄ �
✂ ✁ TrA

−

([[~p]] ◦ (A+
0 ⊗ σ

A
−

n ,A−)) ✄ �
✂ ✁ ]][[ p

A−A−

A−
0

A+
nA+

0

A−
n

.

The reader is invited to verify that in case n = 3, this definition indeed coincides with (5.1).

5.2 Intp(C) is a paracategory

We start with a lemma that will be useful in the proof of the paracategory properties for Intp(C).
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Lemma 5.4. For all paths ~p : (A+, A−) → (B+, B−) and ~q : (B+, B−) → (C+, C−),

[[~p, ~q]] ✄ �✂ ✁

]][[ p ]][[ q
.

In particular, the diagram is always defined.

Proof. Since the left-hand side is always defined, it suffices to prove “✄✂ ”. We do this by induction on ~q. For
the base case, we have by yanking, strength, and naturality:

[[~p]] ✄
✂ [[ ]]p ✄

✂ [[ ]]p ✄
✂ [[ ]]p

✄ �
✂ ✁ [[ ]]p (def)

✄ �
✂ ✁ [[ ]]p [[ ]]ε .

For the induction step, we have by superposing and naturality:

[[~p, ~q, qn+1]]
(def)
✄ �
✂ ✁

n+1
q

[[ ]]p,q (ind.hyp.)
✄ �
✂ ✁

n+1
q]][[ p ]][[ q

✄
✂

]][[ p ]][[ q
n+1

q
✄
✂

]][[ p ]][[ q
n+1

q

✄ �
✂ ✁ ]][[ p ]][[ q

n+1
q

(def)
✄ �
✂ ✁

]][[ p 1n+
[[ ]]q,q .

The above proof illustrates that the strength, superposing, and naturality axioms all serve to “enlarge”
the dashed boxes under directed Kleene equality. To save space, in the following we often combine these
axioms, as well as the left-to-right direction of vanishing II, into a single graphical step.

Lemma 5.5. Let C be a partially traced symmetric (strictly) monoidal category. With the partial composition
[−] defined in Definition 5.3, Intp(C) is a paracategory.

Proof. (a) By vanishing I, it follows immediately that [ǫ(A+,A−)] = [[ǫ(A+,A−)]] = 1(A+,A−). In particular,
[ǫ(A+,A−)]↓.

(b) For a path f : (A+
0 , A

−
0 ) → (A+

1 , A
−
1 ) of length 1, we have by yanking, strength, and naturality:

f ✄ �
✂ ✁ f ✄

✂ f ✄
✂ f ✄ �

✂ ✁ f
(def)
✄ �
✂ ✁ [f ].

In particular, the right-hand side is defined.

20



(c) We must show that whenever [~q ] is defined, then [~p, [~q ], ~r ] ✄ �
✂ ✁[~p, ~q, ~r ]. First, by Lemma 5.4, superpos-

ing, naturality, and vanishing II, we have

[[~p, ~q, ~r]] ◦ (1⊗ σ) ✄ �✂ ✁

[[ ]]q[[ ]]p [[ ]]r

✄
✂

[[ ]]r[[ ]]q[[ ]]p
. (5.2)

Second, assume that [~q ] is defined. By definition of [~q ], Lemma 5.4, superposing, naturality, and
vanishing II, we have

[[~p, [~q ], ~r]] ◦ (1⊗ σ) ✄ �
✂ ✁

[[ ]]p [[ ]]r[[ ]]q

✄
✂

[[ ]]r[[ ]]p [[ ]]q
. (5.3)

Note that every morphism mentioned so far is defined. Recall that by definition, [~p, ~q, ~r ] and [~p, [~q ], ~r ]
are the trace of (5.2) and (5.3), respectively, where the trace is taken on the “fat” wires. The fact that
[~p, ~q, ~r ] ✄ �

✂ ✁[~p, [~q ], ~r ] then follows immediately from vanishing II and dinaturality.

Lemma 5.6. For paths of length 2, we have

[f, g] ✄ �
✂ ✁ f g .

Proof. By yanking, strength, and naturality, we have

f g ✄
✂

gf ✄
✂ gf . (5.4)

Since the left-hand side is defined, so is the right-hand side. This justifies the application of vanishing II in
the following:

f g
(5.4)
✄ �
✂ ✁ gf

(v.II)
✄ �
✂ ✁

gf
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(dinat.)
✄ �
✂ ✁

gf ✄ �
✂ ✁

gf
(def)
✄ �
✂ ✁ [f, g].

5.3 Intp(C) is symmetric monoidal

Next, we wish to show that the paracategory Intp(C) is strictly monoidal.

Definition 5.7. The tensor on the paracategory Intp(C) is defined as follows:

• on objects: (A+, A−)⊗ (B+, B−) = (A+ ⊗B+, B− ⊗A−);

• on arrows: given f Intp : (A+, A−) → (C+, C−) and gInt
p

: (B+, B−) → (D+, D−), then (f ⊗ g)Int
p

:
(A+, A−)⊗ (B+, B−) → (C+, C−)⊗ (D+, D−) is defined by

C
D
B
A

A
B
D
C

−

−

+

+

−

−

+

+

f g

.

We also define the tensor unit to be (I, I).

Lemma 5.8. The operation ⊗ is a functor of paracategories.

Proof. We have to show the two conditions from Lemma 4.12.

(a) We show [f, f ′] ⊗ [g, g′] ✄
✂ [f ⊗ g, f ′ ⊗ g′]. By Lemma 5.6, strength, superposing, naturality, the

left-to-right direction of vanishing, and the laws of symmetric monoidal categories, we have:

[f, f ′]⊗ [g, g′] ✄ �
✂ ✁ ’ff g g’

✄
✂ ’ff g g’ ✄ �

✂ ✁ ’ff g g’ ,

and the final diagram is just the definition of [f ⊗ g, f ′ ⊗ g′].

(b) We will only show 1⊗ [ ~p ] ✄✂ [ 1⊗ ~p ]; the proof of the other property [ ~p ]⊗ 1 ✄
✂ [ ~p⊗ 1 ] is similar. Since

the proof by induction is long and not very interesting, we will only consider the representative case
when ~p = p1, p2, p3. Using superposing, yanking, strength, naturality, vanishing II, and dinaturality,
we have:

[ ~p ]⊗ 1
(def)
✄ �
✂ ✁ 1

p
2

p
3

p
✄
✂ 1

p
2

p
3

p

✄ �
✂ ✁

1
p

2
p

3
p ✄

✂
1

p
2

p
3

p (def)
✄ �
✂ ✁ [ ~p⊗ 1 ].
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Lemma 5.9. With the tensor product from Definition 5.7, Intp(C) is a strict monoidal paracategory in the
sense of Definition 4.10(b).

Proof. The conditions (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C), A ⊗ I = A = I ⊗ A, and f ⊗ 1I = f = 1I ⊗ f follow
immediately from the strictness of C. The condition (f ⊗ g)⊗ h = f ⊗ (g ⊗ h) holds because both sides are
equal to the diagram

hf g

.

Next, we will equip the category Intp(C) with a symmetry.

Definition 5.10. The symmetry σ : (A+, A−) ⊗ (B+, B−) → (B+, B−) ⊗ (A+, A−) in Intp(C) is given by
σA+,B+ ⊗ σA−,B− : (A+ ⊗B+)⊗ (B− ⊗A−) → (B+ ⊗A+)⊗ (A− ⊗B−).

Lemma 5.11. With this structure, Intp(C) is a strict symmetric monoidal paracategory.

Proof. We must show that σ satisfies the conditions of Definition 4.10(c). To prove totality, consider any
f : X ⊗ B ⊗ A → Y , where A = (A+, A−), B = (B+, B−), X = (X+, X−), and Y = (Y +, Y −). We must
prove that [1X ⊗ σA,B, f ] is defined. But using yanking, strength, naturality, and Lemma 5.6, we have

f
✄ �
✂ ✁ f ✄

✂ f ✄ �
✂ ✁ [1X ⊗ σA,B, f ]. (5.5)

Since the left-hand side is defined, so is the right-hand side. One similarly proves that [g, 1X ⊗ σA,B ]↓. By
setting X = 1 in (5.5) and the corresponding property for g, we get the identities

[σA,B, f ] = f and [g, σA,B] = g . (5.6)

The remaining laws follow from (5.6). We have:

[f ⊗ g, σ]
(5.6)
= f g = fg (5.6)

= [σ, g ⊗ f ]. (5.7)

[σ, σ]
(5.6)
= = 1 (5.8)

[σA,B⊗C , 1B ⊗ σC,A]
(5.6)
= ✄ �✂ ✁ ✄ �✂ ✁ σA,B ⊗ 1C . (5.9)

Naturality is (5.7), symmetry is (5.8), and the hexagon axiom is equivalent to (5.9) by Remark 4.6.
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5.4 Intp(C) is compact closed

Definition 5.12. On Intp(C), we define the dual of an object to be (A,B)∗ = (B,A). Using strictness, we
define the unit and counit morphisms η(A,B) : I → (A,B)∗ ⊗ (A,B) and ε(A,B) : (A,B)⊗ (A,B)∗ → I to be
the morphisms η(A,B) = 1 : B ⊗A → B ⊗A and as ε(A,B) = 1 : A⊗B → A⊗B in C.

Lemma 5.13. With this structure, Intp(C) is a compact closed paracategory.

Proof. Let f : A⊗ C∗ → B. We must show that [1A ⊗ ηC , f ⊗ 1C ] is defined. We have:

f ✄ �
✂ ✁ f ✄

✂ f ✄ �
✂ ✁ f

✄ �
✂ ✁

f

✄
✂ f

✄ �
✂ ✁

η f
✄ �
✂ ✁ [1A ⊗ ηC , f ⊗ 1C ],

and since the left-hand side is defined, so is the right-hand side. The proofs for the definedness of [g ⊗
1C∗ , 1B ⊗ εC ], [ηA ⊗ 1B, 1A∗ ⊗ h], and [1A ⊗ k, εA ⊗ 1C ] are similar. We prove that [1A ⊗ ηA, εA ⊗ 1A] = 1A
by setting C = A, B = I, and f = εA in the above, and recalling that εA = 1A+⊗A− = 1A as morphisms of
C. The proof of [ηA ⊗ 1A∗ , 1A∗ ⊗ εA] = 1A∗ is analogous.

5.5 An embedding of C in Intp(C)

Definition 5.14. In a similar way as done in [15], we define a full and faithful functor of paracategories
N : C → Intp(C). It is given on objects by N(A) = (A, I) and (using strictness of the category C) on
morphisms by N(f) = f .

Theorem 5.15. N is a full and faithful functor of strict symmetric monoidal paracategories. In particular,
every partially traced (strictly monoidal) category can be fully and faithfully embedded in a compact closed
paracategory.

Proof. To prove functoriality, note that we are considering the category C as a paracategory with composition
[f1, . . . , fn] = fn ◦ . . . ◦ f1. It follows immediately from the definition of composition on Intp(C), strictness,
and vanishing I that [N(f1), . . . , N(fn)] ✄ �

✂ ✁[f1, . . . , fn] = [[f1, . . . , fn]] = fn ◦ . . . ◦ f1 = N(fn ◦ . . . ◦ f1), so N
is a functor. The fact that N is full and faithful is also obvious, as is the fact that it preserves tensor and
symmetry.

Theorem 5.16. The functor N : C → Intp(C) preserves and reflects the trace, i.e., for all morphisms
f : A⊗ U → B ⊗ U and g : A → B in C, we have TrU (f) = g iff TrNUN(f) = N(g).

Proof. Recall that the trace on Intp(C) is defined as in Remark 4.30. Because N is full and faithful, the
claimed property is equivalent to N(TrU (f)) ✄ �

✂ ✁TrNUN(f). Using similar methods as in previous proofs, we
have:

N(TrU (f))
(def)
✄ �✂ ✁ TrU (f) ✄ �✂ ✁

f
✄ �✂ ✁ f

✄ �✂ ✁ f

✄ �
✂ ✁ f ✄ �

✂ ✁

η εσ
f (def)

✄ �
✂ ✁ TrNUN(f).
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5.6 The universal property of Intp(C)

The category Intp(C) is in fact the free compact closed paracategory over a given partially traced category.
To be able to state this theorem, we first need to define the notation of a (non-strict) functor of compact
closed paracategories.

Definition 5.17. An isomorphism m : A → B in a symmetric monoidal paracategory is said to be total if
[1C ⊗m, f ], [g, 1C ⊗m], [1C ⊗m−1, h], and [k, 1C ⊗m−1] are defined, for all f : C ⊗B → D, g : D → C ⊗A,
h : C ⊗A → D, and k : D → C ⊗B.

Definition 5.18. Let D and D′ be compact closed paracategories. A (non-strict) functor of compact closed
paracategories K : D → D′ is a functor of paracategories that is equipped with total natural isomorphisms
mA,B : K(A)⊗′K(B) → K(A⊗B), mI : I ′ → K(I), and m∗ : (KA)∗ → K(A∗), respecting all the structure.

Remark 5.19. In the presence of mA,B and mI , a unique coherent isomorphism m∗ : (KA)∗ → K(A∗)
automatically exists, but its totality is an additional property that must be required.

Theorem 5.20. Let C be a partially traced symmetric (strictly) monoidal category, D a compact closed
paracategory, and G : C → D a trace-preserving functor of symmetric monoidal paracategories. Then there
exists an essentially unique (non-strict) functor of compact closed paracategories K : Intp(C) → D such that

C
N

//

G
&&▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼ Intp(C)

K

��

D.

Proof. Without loss of generality we write as if D were also strictly monoidal. Let us also write G(A) = Ā.
The construction of the functor K : Intp(C) → D is similar to that of Joyal, Street, and Verity in [15]. On
objects, it is defined as K(A,B) = Ā⊗ B̄∗. A morphism f : (A,B) → (C,D) is given by f : A⊗D → C ⊗B
in C, and we have G(f) : Ā⊗ D̄ → C̄ ⊗ B̄. Then K(f) : Ā⊗ B̄∗ → C̄ ⊗ D̄∗ is defined as

K(f) := [1Ā ⊗ ηD̄ ⊗ 1B̄∗ , 1Ā ⊗ σD̄∗,D̄ ⊗ 1B̄∗ , G(f)⊗ σD̄∗,B̄∗ , 1C̄ ⊗ εB̄ ⊗ 1D̄∗ ].

It follows from the axioms of compact closed paracategories that K(f)↓. The remaining properties are
tedious but routine to verify.

Remark 5.21. Even when C, D, and G are strict, one cannot in general expect K to be strict. This is
because the objects of the category Intp(C) satisfy special equations, such as A⊗B∗ = B∗ ⊗A for all A,B
in the image of N . Since one cannot expect D to satisfy such equations, K cannot in general be strictly
monoidal.

6 Representation theorem for partially traced categories

By combining the results of the previous sections, we arrive at the main theorem of this paper.

Theorem 6.1. Every partially traced category can be faithfully embedded in a totally traced category. More-
over, the embedding is trace preserving and reflecting.

Proof. Let C be a partially traced category. We may without loss of generality assume that C is strictly
monoidal. By Theorems 5.15 and 5.16, there is a full and faithful, trace preserving and reflecting embedding
N : C → Intp(C) of C in a compact closed paracategory. By Theorem 4.29, there is a faithful embedding
F : Intp(C) → P(Intp(C))/∼ of Intp(C) in a compact closed category. Since P(Intp(C))/∼ is compact closed,
it is totally traced, and by Theorem 4.31, F is trace preserving and reflecting.
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Corollary 6.2. Every partially traced category arises from a totally traced category by the construction of
Proposition 3.20.

Corollary 6.3. Any equational law of totally traced categories also holds in all partially traced categories,
provided that the left-hand side and right-hand side are both defined. In particular, reasoning in the graphical
language of traced monoidal categories is sound for proving the equality of two morphisms in partially traced
categories, provided both morphisms are defined. The morphisms used in intermediate steps do not need to
be defined.

Proof. Via the faithful embedding in a totally traced category, the reasoning really takes place in that
category.

Moreover, the category P(Intp(C))/∼ satisfies the following universal property.

Theorem 6.4. Let C be a partially traced category and D a compact closed category. If G : C → D is
a traced symmetric monoidal functor, then there exists an essentially unique strong symmetric monoidal
functor L : P(Intp(C))/∼ → D such that

C
N

//

G

**❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯ Intp(C)
F

// P(Intp(C))/∼

L

��

D.

Proof. By combining Theorems 5.20 and 4.32.

C
N

//

G

,,❳❳❳
❳❳❳❳

❳❳❳❳
❳❳❳❳

❳❳❳❳
❳❳❳❳

❳❳❳❳
❳❳❳❳

❳❳❳❳
❳ Intp(C)

F
//

K

))❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙
P(Intp(C))/∼

L

��

D.

7 Discussion and future work

We established that the partially traced categories, in the sense of Haghverdi and Scott, are precisely the
monoidal subcategories of totally traced categories. This was proved by a partial version of Joyal, Street,
and Verity’s Int-construction, and by considering a strict symmetric compact closed version of Freyd’s
paracategories.

Some readers may wonder whether we have stated these results at the right level of generality. It has
been suggested that one could start from partially traced paracategories, or perhaps even partially traced
paramonoidal paracategories, and still get an analogous result. Indeed, this can probably be done. One can
a priori aim for a representation theorem of the form “every partially traced paracategory can be faithfully
embedded in a totally traced category, in such a way that the operations are preserved and reflected”. This
uniquely determines the notion of partially traced paracategory, namely, they are precisely the reflexive
monoidal subgraphs of totally traced categories. One may then go through the exercise of axiomatizing this
notion. We remark that such an axiomatization is necessarily quite strange; for example, it can happen
that Tr([~p ]) is defined even when [~p ] is undefined. Whatever axiomatization one discovers will immediately
be rendered obsolete by the representation theorem, because it is in any case easier to reason in the larger
totally traced category. Thus, in the absence of natural examples of such paracategories, it is an essentially
futile exercise to try to axiomatize them.

By contrast, the notion of partially traced category, while also made somewhat obsolete by our rep-
resentation theorem, is a pre-existing notion that had been studied in the literature and for which many
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interesting examples exist, including some examples that do not obviously arise as subcategories of a totally
traced category. Thus we believe this is indeed a good level of generality.

One question that we did not answer is whether specific partially traced categories can be embedded in
totally traced categories in a “natural” way. For example, the category of finite dimensional vector spaces,
with the biproduct ⊕ as the tensor, can be equipped with a natural partial trace in several ways. By our
proof, it follows that it can be faithfully embedded in a totally traced category. However, we do not know
any concrete “natural” description of such a totally traced category (i.e., other than the free one constructed
in our proof).
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