
ar
X

iv
:1

31
1.

22
90

v1
 [

cs
.L

O
]

10
 N

ov
 2

01
3

Applying Quantitative Semantics
to Higher-Order Quantum Computing ∗

Michele Pagani
Université Paris 13, Sorbonne Paris Cité

Villetaneuse, France

michele.pagani@lipn.univ-paris13.fr

Peter Selinger
Dalhousie University

Halifax, Canada

selinger@mathstat.dal.ca

Benoı̂t Valiron
CIS Dept, University of Pennsylvania

Philadelphia, U.S.A.

benoit.valiron@monoidal.net

Abstract

Finding a denotational semantics for higher order quantum com-
putation is a long-standing problem in the semantics of quantum
programming languages. Most past approaches to this problem
fell short in one way or another, either limiting the language to
an unusably small finitary fragment, or giving up important fea-
tures of quantum physics such as entanglement. In this paper, we
propose a denotational semantics for a quantum lambda calculus
with recursion and an infinite data type, using constructions from
quantitative semantics of linear logic.

1 Introduction

Type theory and denotational semantics have been successfully
used to model, design, and reason about programming languages
for almost half a century. The application of such methods to
quantum computing is much more recent, going back only about
10 years [17].

An important problem in the semantics of quantum computing
is how to combine quantum computing with higher-order func-
tions, or in other words, how to design a functional quantum
programming language. A syntactic answer to this question was
arguably given with the design of the quantum lambda calculus
[22, 19]. The quantum lambda calculus has a well-defined syn-
tax and operational semantics, with a strong type system anda
practical type inference algorithm. However, the questionof how
to give adenotationalsemantics to the quantum lambda calculus
turned out to be difficult, and has remained open for many years
[18, 21]. One reason that designing such a semantics is difficult
is that quantum computation is inherently defined onfinite di-
mensionalHilbert spaces, whereas the semantics of higher-order
functional programming languages, including such features as in-
finite data types and recursion, is inherently infinitary.

In recent years, a number of solutions have been proposed to
the problem of finding a denotational semantics of higher-order
quantum computation, with varying degrees of success. The
first approach [20] was to restrict the language to strict linear-
ity, meaning that each function had to use each argument ex-
actly once, in the spirit of linear logic. In this way, all infinitary
concepts (such as infinite types and recursion) were eliminated

∗Partially founded by French ANR project COQUAS(number 12 JS02 006 01)
and CNRS chair “Logique linéaire et calcul”.

from the language. Not surprisingly, the resulting finitarylan-
guage permitted a fully abstract semantics in terms of finitedi-
mensional spaces; this was hardly an acceptable solution tothe
general problem. The second approach [13] was to construct
a semantics of higher-order quantum computation by methods
from category theory; specifically, by applying a presheaf con-
struction to a model of first-order quantum computation. This
indeed succeeds in yielding a model of the full quantum lambda
calculus, albeit without recursion. The main drawbacks of the
presheaf model are the absence of recursion, and the fact that
such models are relatively difficult to reason about. The third ap-
proach [6] was based on the Geometry of Interaction. Starting
from a traced monoidal category of basic quantum operations,
Hasuo and Hoshino applied a sequence of categorical construc-
tions, which eventually yielded a model of higher-order quantum
computation. The problem with this approach is that the tensor
product constructed from the geometry-of-interaction construc-
tion does not coincide with the tensor product of the underlying
physical data types. Therefore, the model drops the possibility of
entangled states, and thereby fails to model one of the defining
features of quantum computation.
Our contribution. In this paper, we give a novel denotational
semantics of higher-order quantum computation, based on meth-
ods fromquantitative semantics. Quantitative semantics refers
to a family of semantics of linear logic that interpret proofs as
linear mappings between vector spaces (or more generally, mod-
ules), and standard lambda terms as power series. The original
idea comes from Girard’s normal functor semantics [4]. More re-
cently, quantitative semantics has been used to give a solid, deno-
tational semantics for various algebraic extensions of lambda cal-
culus, such as probabilistic and differential lambda calculi (e.g.
[1], [2]).

One feature of our model is that it can representinfinite di-
mensionalstructures, and is expressive enough to describe re-
cursive types, such as lists of qubits, and to model recursion.
This is achieved by providing an exponential structureà la linear
logic. Unlike the Hasuo-Hoshino model, our model permits gen-
eral entanglement. We interpret (a minor variant of) the quantum
lambda calculus in this model. Our main result is the adequacy
of the model with respect to the operational semantics.

The model is the juxtaposition of a simple, finite-dimensional
model of quantum computation together with a canonical com-
pletion yielding the structures of linear logic. Our model demon-
strates that the quantum and the classical “universes” workwell

1

http://arxiv.org/abs/1311.2290v1

qubit 1: |φ〉 • H

(i) (ii) M
x,y

qubit 2: |0〉 H • ⊕

qubit 3: |0〉 ⊕
location B

location A

Uxy

(iii)

|φ〉

Figure 1:The quantum teleportation protocol.

together, but also – surprisingly – that they do not mix too much,
even at higher order types.
Outline. In Section2, we briefly review some background.
Section3 presents the version of the quantum lambda calculus
that we use in this paper, including its operational semantics.
Section4 presents the denotational semantics of the quantum
lambda calculus, and Section5 proves the adequacy theorem.
Section6 concludes with some properties of the representable
elements.

2 Background

2.1 Quantum computation in a nutshell

Quantum computation is a computational paradigm based on
the laws of quantum physics. We briefly recall some basic no-
tions; please see [16] for a more complete treatment. The ba-
sic unit of information in quantum computation is aquantum
bit or qubit, whose state is given by a normalized vector in the
two-dimensional Hilbert spaceC2. It is customary to write the
canonical basis ofC2 as{|0〉, |1〉}, and to identify these basis
vectors with the booleans false and true, respectively. Thestate
of a qubit can therefore be thought of as a complex linear combi-
nationα|0〉 + β|1〉 of booleans, called aquantum superposition.
More generally, the state ofn qubits is an element of then-fold
tensor productC2 ⊗ . . .⊗ C2.

There are three kinds of basic operations on quantum data: ini-
tializations, unitary maps and measurements. Initialization pre-
pares a new qubit in state|0〉 or |1〉. A unitary map, orgate, is an
invertible linear mapU such thatU∗ = U−1; hereU∗ denotes
the complex conjugate transpose ofU . Finally, the operation of
measurement consumes a qubit and returns a classical bit. Ifn
qubits are in stateα|0〉⊗φ0+β|1〉⊗φ1, whereφ0 andφ1 are nor-
malized states ofn− 1 qubits, then measuring the leftmost qubit
yields false with probability|α|2, leaving the remaining qubits
in stateφ0, and true with probability|β|2, leaving the remaining
qubits in stateφ1.

Example 1. A small algorithm is the simulation of an unbiased
coin toss: initialize one quantum bit to|0〉, apply the Hadamard
gate sending|0〉 to 1√

2
(|0〉 + |1〉) and|1〉 to 1√

2
(|0〉 − |1〉), then

measure. The result is true with probability12 and false with
probability 1

2 .

Example 2. A slightly more involved algorithm is thequantum
teleportation algorithm(see [16] for details). The procedure is
summarized in Figure1. Wires represent the path of quantum
bits in the computation, and time flows from left to right. The
gate H stands for an application of the Hadamard gate, whereas
the gate•⊕ is a controlled-not: it negates the bottom qubit if the
upper one is in state|1〉. The boxM is a measurement. The
unitariesUxy are

U00 = (1 0
0 1) , U01 = (0 1

1 0) , U10 = (1 0
0 -1) , U11 = (0 1

-1 0) .

The goal is to send a quantum bit in an unknown state|φ〉 from
Location A to Location B using two classical bits. The procedure
can be reversed to send two classical bits using a quantum bit. In
this case it is called thedense coding algorithm[16].

The algorithm consists of three parts. In (i), two quantum bits
(qubits 2 and 3) are entangled in state1√

2
(|00〉 + |11〉). In (ii),

the input qubit 1 in state|φ〉 is entangled with qubit 2, then both
are measured. The result is sent over location B, where in (iii) an
correctionUxy is applied on qubit 3, setting it to state|φ〉.

2.2 Density matrices and completely positive
maps

If we identify |0〉 and|1〉 with the standard basis vectors
(

1
0

)

and
(

0
1

)

, the state of a qubit can be expressed as a two-dimensional

vectorv = α|0〉 + β|1〉 =
(

α
β

)

. Similarly, the state of ann-
qubit system can be expressed as an2n-dimensional column vec-
tor. Often, it is necessary to considerprobability distributionson
quantum states; these are also known asmixed states. Consider
a quantum system that is in one of several statesv1, . . . , vk with
probabilitiesp1, . . . , pk, respectively. Thedensity matrixof this
mixed state is defined to beA =

∑

i piviv
∗
i , where(−)∗ de-

notes the adjoint operator. By a theorem of Von Neumann, the
density matrix is a good representation of mixed states, in the
following sense: two mixed states are indistinguishable byany
physical experiment if and only if they have the same density
matrix [16]. Note thattrA = p1 + . . . + pk. For our purposes,
it is often convenient to permit sub-probability distributions, so
thatp1 + . . .+ pk 6 1.

Let us writeCn×n for the space ofn × n-matrices. Recall
that a matrixA ∈ C

n×n is calledpositiveif v∗Av > 0 for all
v ∈ Cn. GivenA,B ∈ Cn×n, we writeA ⊑ B iff B − A
is positive; this is the so-calledLöwner partial order. A linear
mapF : Cn×n → Cm×m is calledpositiveif A ⊒ 0 implies
F (A) ⊒ 0, andcompletely positiveif F ⊗ idk is positive for all
k, where idk is the identity function onCk×k. If F moreover
satisfiestr(F (A)) 6 trA for all positiveA, then it is called a
superoperator. The density matrices are precisely the positive
matricesA of trace6 1. Moreover, the superoperators corre-
spond precisely to those functions from mixed states to mixed
states that are physically possible [16, 17].

2.3 The category CPM

The categoryCPMs is defined as follows: the objects are natural
numbers, and a morphismF : n → m is a completely posi-
tive mapF : Cn×n → Cm×m. Let CPM be the free comple-
tion of CPMs under finite biproducts; specifically, the objects

2

of CPM are sequences~n = (n1, . . . , nk) of natural numbers,
and a morphismF : ~n → ~m is a matrix(Fij) of morphisms
Fij : nj → mi of CPMs. The categoriesCPMs andCPM are
symmetric monoidal, and in fact, compact closed [17].

2.4 Limitations of CPM as a model

The categoryCPM can serve as a fully abstract model for a sim-
ple, strictly linear, finitary quantum lambda calculus [20]. For
example, the typebit is interpreted as(1, 1), and the typequbit
is interpreted as(2). Measurement, as a map fromqubit tobit,
sends(a bc d) to (a, d). The coin toss is a map(1) → (1, 1) send-
ing (p) to (p2 ,

p
2). Function spaces are interpreted via the compact

closed structure.
As mentioned in the introduction, the semantics of [20] is ex-

tremely limited, because it is completely finitary. Thus recur-
sion, infinite data types, and non-linear functions (i.e., those that
can use their argument more than once) had to be completely re-
moved from the language in order to fit the model. For example,
even the simple squaring functionf 7→ λx.f(f x) is not repre-
sentable inCPM.

The purpose of the present paper is to remove all of these re-
strictions. As an example, consider the following pseudo-code
(in ML-style):

val qlist : qubit -> qubit list
let rec qlist q = if (cointoss) then [q]

else let (x,y) = entangle q in x::(qlist y)

Here,cointoss is a fair coin toss, and the functionentangle
sendsα|0〉+ β|1〉 toα|00〉+ β|11〉.

So if the functionqlist is applied to a qubitα|0〉 + β|1〉, the
output isα|0〉 + β|1〉 with probability 1

2 , α|00〉 + β|11〉 with
probability 1

4 , α|000〉+ β|111〉 with probability 1
8 , and so on. Its

semantics should be of type2 → (2, 4, 8, . . .), mapping

(
a b
c d

)
7→

(
1

2

(
a b
c d

)
,
1

4

(
a 0 0 b
0 0 0 0
0 0 0 0
c 0 0 d

)

, . . .

)

.

The categoryCPM is “almost” capable of handling this case, but
not quite, because it cannot express infinite tuples of matrices.
The model we propose in this paper is essentially an extension of
CPM to infinite biproducts, using methods developed in [5, 15,
11, 12].

3 A quantum lambda calculus

We define a variant of the typed quantum lambda calculus of [21].
The main difference is that the language in this present paper is a
true extension of linear logic (see the type assignment system of
Table2). In particular, in contrast with [21], !(A⊗B) ⊸ !A⊗!B
is not provable and there is no need for a subtyping relation.The
operational semantics implements a call-by-value strategy. An
untyped call-by-name variant has been studied in [10].

The classes ofterms, valuesand types are defined in Ta-
ble 1. The symbolc ranges over the set of term constants
{skip, splitA, meas, new, U}. The constantU ranges over a
set of elementary unitary transformations on quantum bits.In the

Terms M,N,P ::=

x λxA.M MN skip M ;N

M ⊗N let xA ⊗ yB = M in N

inℓ M inr M match P with (xA :M | yB : N)

splitA letrec fA⊸Bx =M inN meas new U

Values V,W ::=

x c λxA.M V ⊗W inℓ V inr W

Types A,B,C ::=

qubit A⊸B !(A⊸B) 1 A⊗B A⊕B Aℓ.

Table 1:Grammars of terms, values and types.

examples below, we will be using the Hadamard gateH and the
controlled-not gateNc, defined as follows [16]:

H =
1√
2

(
1 1
1 −1

)
Nc =

(
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)

(1)

Notice that bound variables are given in Church style, i.e.,with
a type annotation. This enables Proposition4, and simplifies the
semantic interpretation of the typed terms. We omit such annota-
tions in the sequel if uninteresting or obvious.

We have two kinds of arrows: the linear arrowA⊸B, and the
intuitionistic arrow!(A⊸ B), which is obtained by the call-by-
value translation of the intuitionistic implication into linear logic
[3]. Intuitively, only the terms of type!(A⊸ B) represent func-
tions that can be used repeatedly, whereas terms of typeA⊸B
must be used exactly once. A type of the form!A is called a
!-typeor non-linear type, and all other types are calledlinear.
The distinction between linear and non-linear types is crucial for
allowing the type system to enforce the no-cloning propertyof
quantum physics.

By convention,⊸ is associative to the right, while application
and tensor are associative to the left. We use the notationA⊗n

for A tensoredn times. The typeAℓ denotes finite lists of type
A. When doing structural induction on types, we assume thatAℓ

is greater thanA⊗n, for anyn ∈ N.
The set of terms and types is somewhat spartan; however it can

be easily extended by introducing syntactic sugar. Note that, for
technical convenience, we have only allowed types of the form
!A whenA is an arrow type. However, for an arbitrary typeA,
the type!A can be simulated by using!(1 ⊸ A) instead.

Notation 3. We write bit = 1 ⊕ 1, tt = inr skip,
ff = inℓ skip, nil = inℓ skip and M ::N =
inr (M ⊗ N). We write λskip.M for the termλz1.(z;M),
where z is a fresh variable, andif P thenM elseN for
match P with (x1 : N | y1 : M).

A context∆ is a function from a finite set of variables to types.
We denote the domain of∆ by |∆|, and we write∆ = x1 :
A1, . . . , xn : An whenever|∆| = {x1, . . . , xn} and∆(xi) =

3

A linear
!∆, x : A ⊢ x : A

ax
!∆, x : !(A⊸ B) ⊢ x : A⊸ B

axd
!∆ ⊢ V : A⊸ B V value

!∆ ⊢ V : !(A⊸ B)
p

!∆ ⊢ skip : 1
1I

∆, x : A ⊢M : B

∆ ⊢ λxA.M : A⊸ B
⊸I

!∆,Γ ⊢M : A⊸ B !∆,Σ ⊢ N : A

!∆,Γ,Σ ⊢MN : B
⊸E

!∆,Γ ⊢M : 1 !∆,Σ ⊢ N : A

!∆,Γ,Σ ⊢M ;N : A
1E

!∆,Γ ⊢M : A !∆,Σ ⊢ N : B

!∆,Γ,Σ ⊢M ⊗N : A⊗B
⊗I

!∆,Γ ⊢M : A⊗B !∆,Σ, x : A, y : B ⊢ N : C

!∆,Γ,Σ ⊢ let xA ⊗ yB = M inN : C
⊗E

!∆,Γ ⊢M : A

!∆,Γ ⊢ inℓ M : A⊕B
⊕ℓI

!∆,Γ ⊢M : B

!∆,Γ ⊢ inr M : A⊕B
⊕rI

!∆,Γ ⊢ P : A⊕B
!∆,Σ, x : A ⊢M : C
!∆,Σ, y : B ⊢ N : C

!∆,Γ,Σ ⊢ match P with (xA :M | yB : N) : C
⊕E

!∆,Γ ⊢M : 1⊕ (A⊗Aℓ)
!∆,Γ ⊢M : Aℓ

−ℓI
!∆ ⊢ splitA : Aℓ⊸1⊕ (A⊗Aℓ)

split
!∆, f : !(A⊸ B), x : A ⊢M : B !∆,Γ, f : !(A⊸ B) ⊢ N : C

!∆,Γ ⊢ letrec fA⊸B x =M in N : C
rec

!∆ ⊢ meas : qubit ⊸ bit
meas

!∆ ⊢ new : bit ⊸ qubit
new

U of arity n

!∆ ⊢ U : qubit⊗n ⊸ qubit
⊗n U

Table 2:Typing rules. The contextsΓ andΣ are assumed to be linear.

Ai. We call∆ exponential(resp.linear) whenever allAi are!-
types (resp. noAi is a !-type). We write!∆ for a context that
is exponential. The notationΓ,Σ refers to the union of the two
contextsΓ andΣ and assumes that|Γ| and|Σ| are disjoint.

A judgementis a tripleΓ ⊢ M : A of a contextΓ, a termM
and a typeA. A judgement is calledvalid if it can be inferred
from the typing rules in Figure2, using the convention that the
contextsΓ andΣ are linear.

Proposition 4. There is at most one derivation inferring a given
typing judgementΓ ⊢M : A.

Example 5. In Section2.4, we wrote the informal program
qlist. Our language is expressive enough to represent it. The
termcointoss can be defined asmeas(H(new tt)), and it has
type bit. The termentangle is λxqubit.Nc(x ⊗ (newff)),
which has typequbit ⊸ qubit⊗ qubit. Then,qlist is

letrec fqubit⊸qubitℓq =

if cointoss then q :: nil

else let xqubit ⊗ yqubit = entangle q in x :: fy

which has typequbit ⊸ qubit
ℓ. In Examples9 and28 we

discuss its operational and denotational semantics, respectively.

Example 6. In Example2 and Figure1, we sketched the quan-
tum teleportation algorithm. We said that the algorithm canbe
decomposed into 3 parts. Each of these parts can be described
and typed in the quantum lambda calculus, yielding a higher-
order term. This is an adaptation of an example provided in [19].

(i) generates an EPR pair of entangled quantum bits. Its typeis
therefore1 ⊸ qubit⊗ qubit. The corresponding term is

EPR = λskip.Nc ((H(new ff))⊗ (new ff)) .

(ii) performs a Bell measurement on two quantum bits and out-
puts two classical bitsx, y. Its type is thusqubit ⊸

qubit ⊸ bit ⊗ bit, and the termBellMeasure is defined
as

λq1.λq2.

(
let x⊗ y = Nc (q1 ⊗ q2)
in (meas (H x))⊗ (meas y)

)

.

(iii) performs a correction. It takes one quantum bit, two classi-
cal bits, and outputs a quantum bit. It has a type of the form
qubit ⊸ bit⊗ bit ⊸ qubit. The term is

U = λq.λx ⊗ y.ifxthen (if y thenU11 q elseU10 q)
else (if y thenU01 q elseU00 q).

We can now write the term

telep = λskip.let x⊗ y = EPR skip in

let f = BellMeasure x in

let g = U y
in f ⊗ g.

It can then be shown that

⊢ telep :!(1 ⊸ (qubit ⊸ bit⊗bit)⊗(bit⊗bit ⊸ qubit))

is a valid typing judgement. In other words, the teleportation
algorithm produces a pair of entangled functionsf : qubit →
bit ⊗ bit andg : bit ⊗ bit → qubit. These functions have
the property thatg(f(|φ〉)) = |φ〉 for all qubits|φ〉, andf(g(x⊗
y)) = (x ⊗ y) for all booleansx andy. These two functions
are each other’s inverse, but because they contain an embedded
qubit each, they can only be used once. They can be said to
form a “single-use isomorphism” between the (otherwise non-
isomorphic) typesqubit andbit ⊗ bit. However, the whole
procedure is duplicable: one can generate as many one-time-use
isomorphism pairs as desired.

3.1 Operational semantics

The operational semantics is defined in terms of an abstract ma-
chine simulating the behavior of Knill’s QRAM model [8]. It is
similar to the semantics given in [21].

4

Definition 7. A quantum closureis a triple[q, ℓ,M] where

• q is a normalized vector ofC2n , for some integern > 0.
The vectorq is called thequantum state;

• M is a term, not necessarily closed;

• ℓ is a one-to-one map from the set of free variables ofM to
the set{1, . . . , n}. It is called thelinking function.

We write |ℓ| for the domain ofℓ. By abuse of language we may
call a closure[q, ℓ, V] a valuewhen the termV is a value. We
denote the set of quantum closures byCl and the set of quantum
closures that are values byVal. We write ℓ|M for the linking
function whose domain is restricted to the set of free variables of
M . We say that the quantum closure[q, ℓ,M] is total when|ℓ|
has cardinalityn, the size of the quantum state. In that case, if
|ℓ| = {x1, . . . , xn} andℓ(xi) = i, we write ℓ as |x1, . . . , xn〉.
A quantum closure[q, |x1, . . . , xn〉,M] has a typeA, whenever
x1 : qubit, . . . , xn : qubit ⊢ M : A. In caseℓ = |x1, . . . , xn〉
we can also writeℓ ⊢M : A.

The purpose of a quantum closure is to provide a mechanism
to talk about terms with embedded quantum data. The idea is
that a variabley ∈ FV(M) is bound in the closure[q, ℓ,M]
to qubit numberℓ(y) of the quantum stateq. So for example,
the quantum closure[1√

2
(|00〉+ |11〉), |x1, x2〉, λyA.yx1x2] de-

notes a termλyA.yx1x2 with two embedded qubitsx1, x2 in the
entangled state|x1x2〉 = 1√

2
(|00〉+ |11〉).

The notion ofα-equivalence extends naturally to quantum clo-
sures, for instance, the states[q, |x〉, λyA.x] and [q, |z〉, λyA.z]
are equivalent. From now on, we tacitly identify quantum clo-
sures up to renaming of bound variables.

The evaluation of a term is defined as a probabilistic rewriting
procedure on quantum closures, using a call-by-value reduction
strategy. We use the notation[q, ℓ,M]

p→ [q′, ℓ′,M ′] to mean
that the left-hand side closure reduces in one step to the right-
hand side with probabilityp ∈ [0, 1].

Definition 8. The reduction rules are shown in Table3. The
rules split into three categories:(a) rules handling the classical
part of the calculus;(b) rules dealing with quantum data; and(c)
congruence rules for the call-by-value strategy. Note thatin the
statement of the rules,V andW refer to values.

In the rules in Table3(b), the quantum stateq has sizen. The
quantum stateq′ in the first rule is obtained by applying thek-
ary unitary gateU to the qubitsℓ(x1), . . . , ℓ(xk). Precisely,q′ =
(σ ◦ (U ⊗ id) ◦ σ−1)(q), whereσ is the action onC2n of any
permutation over{1, . . . , n} such thatσ(i) = ℓ(xi) whenever
i 6 k. In the rules about measurements, we assume that ifq0 and
q1 are normalized quantum states of the form

∑

jαj |φj〉 ⊗ |0〉 ⊗ |ψj〉,
∑

jβj |φj〉 ⊗ |1〉 ⊗ |ψj〉, (2)

thenq′0 andq′1 are respectively

∑

jαj |φj〉 ⊗ |ψj〉,
∑

jβj |φj〉 ⊗ |ψj〉, (3)

where the vectorsφj have dimensionℓ(x) − 1 (so that the mea-
sured qubit isℓ(x)).

In summary, the quantum state acts as a shared global store
that is updated destructively by the various quantum operations.

Note that the only probabilistic reduction step is the one corre-
sponding to measurement. Also, we underline that the hypothesis
associated with a congruence rule[q, ℓ, C[M]]

p→[q′, ℓ′, C[M ′]]
takes into account the whole quantum statesq andq′. In fact,
because of the entanglement, the evaluation of[q, ℓ|M ,M] may
have a side-effect on the state of the qubits pointed to by thevari-
ables occurring in the contextC[].

The rules assume that the involved closures are well-defined.
In particular, whenever[q, ℓ,M]

p→ [q, ℓ,M ′], the two termsM
andM ′ have the same free variables. For example, the closure
[|00〉, |yz〉, (λx.y)z] cannot reduce and it represents an error: it
would reduce to the erroneous quantum closure[|00〉, |yz〉, z],
where the domain of the linking function is not the set of free
variables, as specified by Definition7. The type system will pre-
vent such an error as proven in Proposition12.

Example 9. Recall Example5. We have[|〉, |〉, cointoss] 1→
[|1〉, |x〉, meas(Hx)] 1→ [1√

2
(|0〉+ |1〉), |x〉, meas x], the latter

reducing to either[|〉, |〉, tt] or [|〉, |〉, ff], with equal probability
1
2 . As forentangle, we have that

[α|0〉+ β|1〉, |x〉, entangle x]
1→ [α|0〉+ β|1〉, |x〉, Nc(x⊗ (new ff))]

1→ [α|00〉+ β|10〉, |xy〉, Nc(x⊗ y)]

1→ [α|00〉+ β|11〉, |xy〉, x⊗ y].

Similarly, one can check that[α|0〉+ β|1〉, |q〉, qlist q]
behaves as described in Section2.4, reducing to
[α|0〉+ β|1〉, |q〉, q :: nil] with probability 1

2 , to
[α|00〉+ β|11〉, |qq′〉, q′ :: q :: nil] with probability 1

4 , etc.
In particular, notice that in any single reduction sequencethe
variableq has not been duplicated, as correctly asserted by the
type ofqlist.

Lemma 10 (Substitution). Suppose!∆,Γ, x : A ⊢ M : B and
!∆,Σ ⊢ V : A, whereΓ andΣ are linear contexts with disjoint
domain. Then!∆,Γ,Σ ⊢M{V/x} : B.

Proposition 11(Subject reduction). When[q, |y1 . . . yn〉,M]
p→

[q′, |x1 . . . xn′〉,M ′] andy1 : qubit, . . . , yn : qubit ⊢ M : A,
thenx1 : qubit, . . . , xn′ : qubit ⊢M ′ : A.

Proposition 12 (Type safety). If [q, ℓ,M] is typable then ei-
ther M is a value or there is a closure[q′, ℓ′,M ′] such that
[q, ℓ,M]

p→ [q′, ℓ′,M ′]. Moreover, ifM is not a value, the total
probability of all possible single-step reductions from[q, ℓ,M] is
1.

Lemma 13(Totality). If [q, ℓ,M]
p→ [q′, ℓ′,M ′] and[q, ℓ,M] is

total, then[q′, ℓ′,M ′] is total too.

Proof. By induction on a derivation of[q, ℓ,M]
p→ [q′, ℓ′,M ′],

one proves thatdim(q′) = dim(q) + dim(ℓ′) − dim(ℓ) where
dim(q) is the size of the quantum stateq anddim(ℓ) is the cardi-
nality of the domain set of the linking functionℓ. Then, one gets
the statement, since[q, ℓ,M] is total iff dim(q) = dim(ℓ).

5

[q, ℓ, (λxA.M)V] 1→ [q, ℓ,M{V/x}] [q, ℓ, let xA ⊗ yB = V ⊗W inN] 1→ [q, ℓ,N{V/x,W/y}]

[q, ℓ, skip;N] 1→ [q, ℓ,N] [q, ℓ, match (inℓ V) with (xA :M | yB : N)] 1→ [q, ℓ,M{V/x}]

[q, ℓ, splitV] 1→ [q, ℓ, V] [q, ℓ, match (inr V) with (xA :M | yB : N)] 1→ [q, ℓ,N{V/y}]

[q, ℓ, letrec fA⊸B x =M inN] 1→ [q, ℓ,N{(λxA.letrec fA⊸B x =M inM)/f}]

(a) Classical control.

[q, ℓ, U(x1 ⊗ · · · ⊗ xk)]
1→ [q′, ℓ, x1 ⊗ · · · ⊗ xk]

[q, ∅, new ff] 1→ [q ⊗ |0〉, {y 7→ n+ 1}, y] [αq0 + βq1, {x 7→ i}, meas x]
|β|2

−−→ [q′1, ∅, tt]

[q, ∅, new tt] 1→ [q ⊗ |1〉, {y 7→ n+ 1}, y] [αq0 + βq1, {x 7→ i}, meas x]
|α|2

−−−→ [q′0, ∅, ff]

(b) Quantum data. The variabley is fresh. The decomposition of the quantum array in the case of meas x is explained in Definition8.

[q, ℓ,MN]
p
→ [q′, ℓ′,M ′N] [q, ℓ,M ⊗N]

p
→ [q′, ℓ′,M ′ ⊗N] [q, ℓ, inℓ M]

p
→ [q′, ℓ′, inℓ M

′]

[q, ℓ, V M]
p
→ [q′, ℓ′, V M ′] [q, ℓ, V ⊗M]

p
→ [q′, ℓ′, V ⊗M ′] [q, ℓ, inr M]

p
→ [q′, ℓ′, inr M

′]

[q, ℓ,M ;N]
p
→ [q′, ℓ′,M ′;N] [q, ℓ, let xA ⊗ yB = M inN]

p
→ [q′, ℓ′, let xA ⊗ yB = M ′ inN]

[q, ℓ, matchM with (xA : P | yB : N)]
p
→ [q′, ℓ′, matchM ′ with (xA : P | yB : N)]

(c) Congruence rules, under the hypothesis that for someℓ0 we haveℓ = ℓ0 ⊎ ℓ|M , ℓ′ = ℓ0 ⊎ ℓ′|M′ and[q, ℓ|M ,M]
p
→[q′, ℓ′|M′ ,M ′].

Table 3:Reduction rules on closures.

Notation 14. The reduction relation→ defines the probability
that a closure reduces to another one in a single step. We extend
this relation to an arbitrary large (but finite) number of reduction
steps with the notationRedn[q,ℓ,M],[q′,ℓ′,V]: it is the total proba-
bility of [q, ℓ,M] reducing to a value[q′, ℓ′, V]. It is defined as
the sum of all

∏m
i=1 pi, where[q, ℓ,M]

p1→ [q1, ℓ1,M1] · · ·
pm→

[q, ℓ′, V] is a finite reduction sequence ofm 6 n steps. We write
Red∞[q,ℓ,M],[q′,ℓ′,V] for the sup overn of Redn[q,ℓ,M],[q′,ℓ′,V]. Fi-
nally, we define thetotal probabilityHalt[q,ℓ,M] of [q, ℓ,M] con-
verging to any value as

∑

[q′,ℓ′,V]∈ValRed
∞
[q,ℓ,M],[q′,ℓ′,V] .

4 Denotational semantics

We interpret the quantum lambda calculus in a suitable exten-

sionCPMs
⊕

of the categoryCPM described in Section2. What
CPM essentially misses is the linear logic exponential!A, and
our plan is to introduce it via the equation

!A :=
∞⊕

k=0

A⊙k, (4)

where
⊕∞

k=0 is the infinite biproduct of the family{A⊙k}k,
eachA⊙k being the symmetrick-fold tensor power ofA, i.e.,
the equalizer of thek! symmetries of thek-ary tensorA⊗k :=
A⊗ · · · ⊗A.

The categoryCPM cannot express this equation because it
lacks both infinite biproducts and a convenient definition ofsym-

metric tensor powers. The categoryCPMs
⊕

is in some sense the
minimal extension ofCPM having these two missing ingredients.

The plan of the section is as follows. Section4.1 presents
some preliminary material. Section4.2definesCPMs

⊕
and Sec-

tion 4.3develops the categorical structure allowing us to interpret

the quantum lambda calculus. Section4.4 sketches the proof of
the soundness of the model with respect to the operational se-
mantics. Finally, Section4.5 discusses the denotations of the
programsqlist andteleport.

4.1 Preliminaries: from CPM to CPMs

Permutation groups. LetSn be the symmetric group of degree
n, i.e., the group of permutations ofn = {0, . . . , n − 1}. Any
permutationg ∈ Sn gives rise to a matrixPg ∈ Cn×n, defined
by Pg(ei) = eg(i), whereei is theith standard basis vector. We
define an action ofg onCn×n by g ·M := PgMP−1

g . Moreover,
for a subgroupG ⊆ Sn, we define

G ·M :=
1

#G

∑

g∈G
g ·M, (5)

where#G is the number of elements ofG.

Lemma 15. Given a subgroupG ⊆ Sn, its action onCn×n is
idempotent (i.e.,G · G ·M = G ·M for all M) and completely
positive.

Proof. For the idempotence, notice that for everyg ∈ G, gG =
G, therefore:G · G ·M = 1

#G

∑

g∈G gG ·M = G ·M . The
complete positivity ofG is derived from the complete positivity
of each mapM 7→ g ·M = PgMP−1

g .

In the sequel, we use the notationG both for a subgroup of
Sn and for the completely positive map defined by it. The above
Lemma allows us to define the set of completely positive maps
from Cn×n to Cm×m invariant under the actions of two sub-
groupsG ⊆ Sn,H ⊆ Sm by

CPMs(G,H) := {f ∈ CPM(n,m) | G ; f ;H = f},

6

where f ; g is the diagrammatic composition(f ; g)(x) =
g(f(x)), andCPM(n,m) is the set of completely positive maps
fromCn×n toCm×m.

Completion of the Löwner positive cone. The set
CPMs(G,H) is a module over the semi-ringR+ of the
non-negative real numbers. The Löwner order⊑ on completely
positive maps [17] endows this module with the structure of a
boundeddirected complete partial order (bdcpo), i.e., there is a
minimum element (the zero function0), and any directed setD
that is bounded (i.e., such that there existsf ∈ CPMs(G,H)
such that for allg ∈ D, g ⊑ f) has a least upper bound
∨
D ∈ CPMs(G,H). However there exist unbounded directed

subsets inCPMs(G,H). We therefore need to complete
CPMs(G,H) to a dcpo.

The relevant construction is theD-completionof [23], which
we briefly recall. Given any posetP , say that a subsetX is
Scott-closedif it is down-closed and for every directedI ⊆ S,
if the least upper bound

∨
I exists inP , then

∨
I ∈ S. We

say that a monotone function between posetsf : P → Q is
Scott-continuousif it preserves allexisting least upper bounds
of directed subsets. LetΓ(P) be the set of Scott-closed sub-
sets ofP ; this forms a dcpo under the subset ordering. TheD-
completionc(P) is defined to be the smallest sub-dcpo ofΓ(P)
containing all sets of the form↓x. Thenc(P) is a dcpo, and there
is a canonical injective Scott-continuous mapι : P → c(P),
defined byι(x) = ↓x, which allows us to regardP as a sub-
set ofc(P). The D-completion preserves all existing least up-
per bounds of directed sets, is idempotent, and satisfies thefol-
lowing universal property: given any other dcpoE and Scott-
continuous mapf : P → E, there exists a unique Scott-
continuousg : c(P) → E such thatf = ι ; g. It follows that
the D-completion is functorial. Moreover, ifP is a bounded di-
rected complete partial order, thenP is an initial subset ofc(P),
i.e., the only new elements added by the completion are “at infin-
ity”. We call these theinfiniteelements ofc(P).

The homsetCPMs(G,H) is then extended by D-completion,
namely,CPMs(G,H) := c(CPMs(G,H)). The categorical op-
erations are extended in the unique Scott-continuous way, us-
ing the universal property of D-completion. This allows us
to define indexed sums overCPMs(G,H), as follows. If
{fi}i∈I ⊆ CPMs(G,H) is a (possibly infinite) indexed fam-
ily,

∑

i∈I fi is defined as
∨

F⊆finI

(∑

i∈F fi
)
. Indeed, the set

{∑i∈F fi ; F ⊆fin I} is always directed, so has a least upper
bound in the order completionCPMs(G,H) of CPMs(G,H).

4.2 The categoryCPMs
⊕

Given a setA anda, a′ ∈ A, define theKronecker symbolδa,a′ ∈
N which takes value1 if a = a′ and0 if a 6= a′.

Objects are given by indexed familiesA = {(dAa , GA
a)}a∈|A|,

where the index set|A| is called thewebof A and, for every
a ∈ |A|, dAa is a natural non-negative integer, andGA

a a
subgroup of permutations of degreedAa , called respectively
thedimensionand thepermutation groupof Aa.

Morphisms from A to B are matricesφ indexed by|A| × |B|
and such thatφa,b ∈ CPMs(GA

a , G
B

b).

Composition of φ ∈ CPMs
⊕
(A,B) andψ ∈ CPMs

⊕
(B,C)

is the matrixφ ; ψ defined by, fora ∈ |A| and c ∈ |C|,
(φ ; ψ)a,c :=

∑

b∈|B| φa,b ; ψb,c.

Identity is the diagonal matrix built with the symmetries ofA,
i.e., fora, a′ ∈ |A|, idA

a,a′ := δa,a′G
A
a .

The description of the objects and the morphisms as indexed
families is crucial for inferring the structure of a compactclosed
Lafont category (Section4.3). However, it is worthwhile to no-

tice thatCPMs
⊕

can also be presented as a concrete category of
modules and linear maps between modules. Let us sketch such
an alternative presentation.

Let A be an object ofCPMs
⊕

. We define a modulePos(A)
overR+ = R+ ∪{∞} as follows. For everya in |A|, let us write
Pos(a) for the cone of the positive matrices inGA

a (C
dAa ×dAa),

this latter being the subspace of the matrices inCd
A

a ×dAa invariant
underGA

a . This positive conePos(a) is anR+-module. We then
define:

Pos(A) :=
⊕

a∈|A|
(c(Pos(a))}). (6)

In fact, we have thatPos(a) ≃ CPMs(S1, G
A
a) andPos(A) ≃

⊕

a∈|A| CPMs(S1, G
A
a). Hence,Pos(A) is a continuous module

overR+: addition and scalar multiplication are defined pointwise
and are continuous operations with respect to the Löwner order.

Let f : Pos(A) → Pos(B) be a continuous module homo-
morphism. We say thatf is completely positiveif all the module
homomorphismsfa,b = ιa ; f ; πb are completely positive maps,
for all a ∈ |A| andb ∈ |B|. (Indeed, since the positive matrices
span the complex vector space of square matrices (of correspond-
ing size), one can canonically extend the definition of complete
positivity to module homomorphismsPos(a) → Pos(b)).

Proposition 16. There is an isomorphism between the homset

CPMs
⊕
(A,B) and the continuous module homomorphisms from

Pos(A) to Pos(B) that are completely positive.

4.3 CPMs
⊕

as a model of the quantum lambda
calculus

A compact closed category is a special case of symmetric
monoidal closed category. A symmetric monoidal closed cat-
egory with finite products, such that each object has a corre-
sponding free commutative comonoid, is called aLafont cate-
gory, which is known to be a model of intuitionistic linear logic
[9, 14]. The categoryCPMs

⊕
can be endowed with such a struc-

ture, as we will show in Sections4.3.1–4.3.4 below. We can
therefore interpret the quantum lambda calculus inCPMs

⊕
.

The denotationJAK of a typeA is an object ofCPMs
⊕

. In
caseA is the ground type (i.e.,1, qubit), its denotation is:

|JqubitK| := {⋆}, d
JqubitK
⋆ := 2, G

JqubitK
⋆ := {id},

|J1K| := {⋆}, d
J1K
⋆ := 1, G

J1K
⋆ := {id}.

The denotation of the other types is given by structural induction,

following the compact closed Lafont structure ofCPMs
⊕

. We

7

!∆⊗A
w⊗id

1⊗ A ≃ A

(a) !∆, x : A ⊢ x : A

!∆⊗ !A
w⊗d

1⊗A ≃ A

(b) !∆, x : !A ⊢ x : A

!∆
dig

!!∆
m

!(!∆)
!φ

!A

(c) !∆,⊢ V : !A

!∆⊗ Γ
Λ(φ)

A⊸ B

(d) !∆,Γ ⊢ λxA.M : A ⊸ B

!∆⊗ Γ⊗ Σ
c⊗id

!∆⊗ Γ⊗ !∆⊗ Σ
φ⊗ψ

A⊗A⊸ B
eval

B

(e) !∆,Γ,Σ ⊢MN : B

!∆
w

1

(f) !∆ ⊢ skip : 1

!∆⊗ Γ⊗ Σ
c⊗id

!∆⊗ Γ⊗ !∆⊗ Σ
φ⊗id

1⊗ !∆⊗ Σ ≃ !∆⊗ Σ
ψ
A

(g) !∆,Γ,Σ ⊢ M ;N : A

!∆⊗ Γ⊗ Σ
c⊗id

!∆⊗ Γ⊗ !∆⊗ Σ
φ⊗ψ

A⊗B

(h) !∆,Γ,Σ ⊢M ⊗N : A⊗B

!∆⊗ Γ⊗ Σ
c⊗id

!∆⊗ Γ⊗ !∆⊗ Σ
φ⊗id

A⊗B ⊗ !∆⊗ Σ
ψ
C

(i) !∆,Γ,Σ ⊢ let xA ⊗ yB = M inN : C

!∆⊗ Γ
φ
A

ιℓ

A⊕B

(j) !∆,Γ ⊢ in
ℓ
M : A⊕ B

!∆⊗ Γ
φ
B

ιr

A⊕B

(k) !∆,Γ ⊢ inr M : A⊕B

!∆⊗ Γ⊗ Σ
c⊗id

!∆⊗ Γ⊗ !∆⊗ Σ
ψ⊗id

(A⊕B)⊗ !∆⊗ Σ
distr

(A⊗ !∆⊗ Σ)⊕ (B ⊗ !∆⊗ Σ)
φA⊕φB

C

(l) !∆,Γ,Σ ⊢ matchM with (xA : N | yB : L) : C

!∆⊗ Γ
φ

1⊕ (A⊗Aℓ)
id⊕distr

1⊕ (
⊕∞

n=1A
⊗n) = Aℓ

(m) !∆,Γ ⊢ M : Aℓ

!∆⊗ Γ
c−→ !∆⊗ Γ⊗ !∆

id⊗Y(dig;m;!(Λφ))−−−−−−−−−−−→ !∆⊗ Γ⊗ !(A⊸ B)
ψ−→ C

(n) !∆,Γ ⊢ letrec f x = M inN : C

Table 5:Sketch of the interpretation of the typing judgements, using the Lafont structure ofCPMs
⊕

defined in Section4.3. The morphismsφ, ψ, φA, φB refer to
the denotation of the premises of the unique derivation concluding a typing judgement. In (c) and (n), the morphismm stands form1 or the suitable sequence ofm⊗,
depending on the context!!∆.

JmeasK
!∆⊢qubit⊸bit

~m,(∗,b) = (α β
γ δ) 7→







α if ~m = ~[] andb = ff,

δ if ~m = ~[] andb = tt,

0 otherwise.

JnewK
!∆⊢bit⊸qubit

~m,(b,∗) = α 7→







(α 0
0 0) if ~m = ~[] andb = ff,

(0 0
0 α) if ~m = ~[] andb = tt,

0 otherwise.

JUK!∆⊢qubit⊗n
⊸qubit⊗n

~m,(~∗,~∗) =M 7→
{

UMU−1 if ~m = ~[],

0 otherwise.

Table 4: Interpretation of the quantum constants. The writing~m stands for
a sequence of multisets in|J!∆K|, the equality~m = ~[] meaning that each of
these multisets is empty.U andM have the same dimensionC2

n×2
n

, U being
unitary.

note in particular that the permutation groups play a role only
when interpreting!-formulas.

LetΓ = x1:A1, . . . , xn:An. The denotation of a typing judge-
mentΓ ⊢ M : A is a morphismJMK

Γ⊢A
: JA1 ⊗ · · · ⊗AnK →

JAK. The definition is by structural induction on the unique type
derivationπ of Γ ⊢ M : A (see Proposition4). The denota-
tions of the constantsmeas, new and the unitary transformations
are given in Table4. Table5 briefly recalls the denotation of the
usual linear logic rules. Here, the morphismsφ, ψ, φA, φB refer
to the denotation of the premises of the last rule ofπ, which are
uniquely defined givenΓ ⊢M : A.

In the interpretation of theletrec constructor, the fixed point
operatorY is defined as follows. Letφ be a morphism in the set
CPMs

⊕
(!C ⊗ !A, !A). By induction onn, we define the mor-

phismφn ∈ CPMs
⊕
(!C, !A): φ0 := !C

w;!0−−→ !A, φn+1 :=

!C
c−→ !C ⊗ !C

id⊗φn

−−−−→ !C ⊗ !A
φ−→ !A. Sinceφ can be regarded

as a continuous module homomorphism (in particular it is mono-
tone), the set{φn} is directed complete. We defineY(φ) as its
least upper bound.

4.3.1 Biproduct (A⊕B)

Let I be a (possibly infinite) set of indexes. The biproduct
⊕

i∈I Ai of a family {Ai}i∈I of objects inCPMs
⊕

is defined
by

|
⊕

i∈I
Ai| :=

⋃

i∈I
{i} × |Ai|, d

⊕

i∈I Ai

(j,a) := dAj
a , G

⊕

i∈I Ai

(j,a) := GAj
a .

The corresponding projections and injections are denoted respec-
tively by πj andιj and defined as:

πj(i,a),a′ := ιj
a′,(i,a) := δj,iδa,a′G

Ai
a .

The tupling〈φi〉i∈I (resp. (co)-tupling[ψi]i∈I) of a family of

morphismsφi elements ofCPMs
⊕
(A,Bi) (resp.ψi elements of

CPMs
⊕
(Ai,B)) is defined by(〈φi〉i∈I)a,(j,b) := (φj)a,b (resp.

([ψi]i∈I)(j,a),b := (ψj)a,b).

Example 17. Recall that in Notation3, the typebit is inter-
preted as the biproductJ1K⊕ J1K, which is the two-element fam-
ily {(1, {id})tt, (1, {id})ff}. The positive cones associated with

1 andbit are:Pos(J1K) = R+ andPos(JbitK) = R+
2
.

The typing judgement⊢ tt : bit is interpreted as the right in-
jection, which can be seen both as a family of two completely
positive maps fromC to C (i.e., JttK

⊢bit
⋆,tt = p 7→ p and

JttK
⊢bit
⋆,ff = p 7→ 0) and as a quantum compatible and completely

positive map sendingp ∈ R+ to (0, p) ∈ R+
2
. Symmetrically,

JffK
⊢bit is the mapp 7→ (p, 0).

8

As an example of a term with free variables, considerNegx :=
if x then ff else tt. The denotation ofx : bit ⊢ Negx : bit
can be seen both as a family of four constant mapsJNegxK

bit⊢bit
b,b′

fromC to C of value1 if b 6= b′ and0 otherwise, and as a single

map fromR+
2

toR+
2

sending(p, p′) to (p′, p).

4.3.2 Symmetric monoidal structure (A⊗B, 1 andAℓ)

The bifunctor⊗ : CPMs
⊕ × CPMs

⊕ → CPMs
⊕

is defined on
objectsA,B by:

|A⊗B| := |A| × |B|, dA⊗B

(a,b) := dAa × dBb ,

GA⊗B

(a,b) := {(g, h) ; g ∈ GA

a , h ∈ GB

b },

wheredAa × dBb is the multiplication of the two numbersdAa
anddBb , which can be seen as the lexicographically ordered set
of pairs (i, j), for i < dAa , j < dBb . Hence, the action of a
permutation(g, h) ∈ GA⊗B

(a,b) on dAa × dBb can be described as
(i, j) 7→ (g(i), h(j)).

The bifunctor⊗ on morphisms is defined componentwise, us-
ing the standard tensor of the categoryCPM extended to the infi-
nite elements by the universal property of the D-completion(Sec-
tion 4.1). The tensor unit is the objectJ1K interpreting the unit
type.

The associativity, unit, and symmetry isomorphisms are de-
fined componentwise from the corresponding isomorphisms in
CPM, composed with the actions of the groups of the objects.
E.g., the symmetry isσA,B

(a,b),(b′,a′) := δa,a′δb,b′G
A⊗B

(a,b) ; σd
A

a ,d
B

b ,

whereσd
A

a ,d
B

b is the symmetry inCPM betweenCd
A

a ×dAa ⊗
C
dBb ×dBb andC

dBb ×dBb ⊗ C
dAa ×dAa . Notice that it is sufficient

to pre-composeσd
A

a ,d
B

b with GA⊗B

(a,b) (or, symmetrically, post-

compose withGB⊗A

(b,a)), in order to have a map invariant under

both the permutation groupsGA⊗B

(a,b) andGB⊗A

(b,a) . This is because

GA⊗B

(a,b) ; σd
A

a ,d
B

b = GA
a ⊗GB

b ; σd
A

a ,d
B

b = σd
A

a ,d
B

b ;GB

b ⊗GA
a =

σd
A

a ,d
B

b ;GB⊗A

(b,a) . Similar simplifications will be done henceforth
without explicitly mentioning it.

Example 18. The denotation ofqubit ⊗ qubit is the single-
ton web family {(4, {id})⋆}. This object is associated with
the cone of positive matrices of dimension4 × 4 plus the in-
finite elements needed to complete the Löwner order. The de-
notation ofbit ⊗ bit instead has a web of cardinality4, i.e.,
{(ff, ff), (ff, tt), (tt, ff), (ff, ff)}, and, for each indexb ∈
|Jbit⊗ bitK|, we havedJbit⊗bitK

b = 1 andGJbit⊗bitK
b = {id}.

This object is associated with the biproductR+⊕R+⊕R+⊕R+.

Notice that in the above example the tensor product distributes
over the biproducts:Jbit⊗ bitK = J(1 ⊕ 1)⊗ (1⊕ 1)K =
J1⊕ 1⊕ 1⊕ 1K. This is true in general: the isomorphism be-
tweenA⊗ (

⊕

i∈I Bi) and
⊕

i∈I(A⊗Bi) is

distr(a,(i,b)),(i′,(a′,b′)) := δi,i′δa,a′δb,b′G
A⊗Bi

(a,b) .

This isomorphism allows us to define the list constructor as the
infinite biproduct of tensor powersAℓ :=

⊕∞
n=0 A

⊗n. In fact,
we haveAℓ ≃ 1⊕ (A⊗ Aℓ).

Example 19. The denotation of the unit type list is:|J1ℓK| = N

and, for everyn ∈ N, dJ1ℓK
n = 1, GJ1ℓK

n = {id}. This object

can be associated with the moduleR+
N

and is suitable for de-
noting the numerals in unary notation. Indeed, writingn for the

list skip :: . . . skip :: nil of lengthn, we haveJnK
⊢1ℓ

= p 7→
(0, . . . , 0
︸ ︷︷ ︸

n−1 times

, p, 0, . . .).

4.3.3 Compact closure (A⊥,A ⊸ B)

Dual objects coincide: we haveA⊥ := A. The unit ηA ∈
CPMs

⊕
(1,A⊥ ⊗ A) and co-unitǫA ∈ CPMs

⊕
(A ⊗ A⊥,1) are

defined componentwise composing the unit and co-unit ofCPM
with the correspondent permutation group. WritingEi,j for the
matrix that has0 everywhere except1 at (i, j), we have:

ηA⋆,(a,a′) := 1 7→
∑

i,j<dA

GA

a (Ei,j)⊗GA

a (Ei,j)

ǫA(a,a′),⋆ := (Ei,j ⊗ Ei′,j′) 7→
∑

g,g′∈GA
a

1

#GA
a

δg(i),g′(i′)δg(j),g′(j′).

Compact closed categories are monoidal closed. Let us re-
call the monoidal closure structure, which is needed to model
the abstraction and the application of the quantum lambda cal-
culus. The internal hom object is defined asA ⊸ B :=
(A⊥ ⊗ B) = A ⊗ B. The evaluation morphismEvalA,B :

CPMs
⊕
((A ⊸ B)⊗A,B) and the currying isomorphismΛ(−)

from CPMs
⊕
(C⊗ A,B) to CPMs

⊕
(C,A ⊸ B) are,

EvalA,B:= σ;α;(ǫ⊗id);λ, Λ(φ) := λ−1;(η⊗id);α−1;(id⊗(σ;φ)),

whereα, λ, andσ are the associative, left unit and symmetric
isomorphisms associated with⊗.

Example 20. Let us consider the abstractionλx.Negx of
the term Negx discussed in Example17. The denota-
tion Jλx.NegxK

⊢bit⊸bit is obtained from JNegxK
x:bit⊢bit

just by shifting the matrix indexes:Jλx.NegxK
⊢bit⊸bit

⋆,(b,b′) =

JNegxK
x:bit⊢bit
b,b′ . Looking at this matrix as a module homomor-

phism, the mapJλx.NegxK
⊢bit⊸bit is p 7→ (0, p, p, 0), which is

a map fromR+ toR+
(ff,ff)⊕R+

(ff,tt)⊕R+
(tt,ff)⊕R+

(tt,tt),
where we make explicit the correspondence between the web el-
ements ofJbit ⊸ bitK and the components of the biproduct as-
sociated with.

Application corresponds basically to matrix multiplication.
For example,J(λx.Negx)(meas y)K

y:qubit⊢bit
⋆,b is the function

defined as
∑

b′∈{tt,ff} Jλx.NegxK
⊢bit⊸bit

⋆,(b′,b) Jmeas yKy:qubit⊢bit⋆,b′ ,

which is sending(α β
γ δ) to δ if b = ff, α if b = tt, and0 other-

wise.

4.3.4 Free commutative comonoids (A⊙k, !A)

Let us now focus on the crucial structure modeling the linear
logic modality !. We first define the notion ofk-th symmetric
power of an object and then we show how the biproduct of all
such symmetric powers yields an exponential structure.

9

Notation 21. Given a setX , a multisetµ overX is a function
X 7→ N. Thesupportof µ is the set|µ| = {a | µ(a) 6= 0} ⊆ X ,
the disjoint unionis (µ ⊎ ν)(a) = µ(a) + ν(a), and theempty
multiset is the zero constant function. Thecardinality of µ is
∑

a∈X µ(a) ∈ N ∪ {∞}. A multiset is finite if it has finite car-
dinality. Mk(X) (resp.Mf (X)) is the set of the multisets over
X with cardinalityk (resp. finite). Finite multisets can be de-
noted by listing the occurrences of their elements between square
brackets, i.e.,µ = [a, a, b] is µ(a) = 2, µ(b) = 1 and zero on the
other elements, and[] is the empty multiset.

In a symmetric monoidal category, given a natural numberk,
thek-th symmetric powerof an objectA is a pair(A⊙k, eqA

⊙k

)

of an objectA⊙k and a morphismeqA
⊙k

from A⊙k to A⊗k,
which is an equalizer of thek! symmetries of thek-ary tensor
A⊗k. Such equalizers do not exist in general, but they do exist

in CPMs
⊕

and can be concretely represented using the multisets
notation, as follows:

|A⊙k| := Mk(|A|), dA
⊙k

µ :=
∏

a∈|µ|
(dAa)

µ(a),

GA
⊙k

µ := {(ha, g1a, . . . , gµ(a)a)a∈|µ| ; ha ∈ Sµ(a), g
i
a ∈ GA

a },

where (ha, g
1
a, . . . , g

µ(a)
a)a∈|µ| is a |µ|-indexed family of se-

quences of permutations andGA
⊙k

µ is a group (composition be-

ing defined componentwise) whose action onC
dA

⊙k

µ ×dA⊙k

µ can
be described by seeingdA

⊙k

µ as the set of families of sequences of

the form(i1a, . . . , i
µ(a)
a)a∈|µ|, with ija < dAa for everyj 6 µ(a).

Then, the action of(ha, g1a, . . . , g
µ(a)
a)a∈|µ| on such families is:

(i1a, . . . , i
µ(a)
a)a∈|µ| 7→ (g1a(i

ha(1)
a), . . . , gµ(a)a (iha(µ(a))

a))a∈|µ|.

The morphismeqA
⊙k

is given by

eqA
⊙k

µ,(a1,...,ak)
:=

{

GA
⊙k

µ if µ = [a1, . . . , ak],

0 otherwise.

Remark 22. The objectJAK
⊙k describesk unordereduses of an

element of typeA. The fact that our model uses the symmetric
tensor powerA⊙k instead of thek-fold tensorA⊗k means oper-
ationally that the behavior of a program calling its inputk times
does not depend on the order of the calls.

Example 23. In Example18, we have seen thatJqubitK⊗2 =

{(4, {id})⋆}. The symmetric2-powerJqubitK⊙2 is instead the
singleton web family{(4, {id, σ})⋆}, where 4 is represented
as the lexicographically ordered set{(0, 0), (0, 1), (1, 0), (1, 1)}
and the permutationσ acts on it by(b, b′) 7→ (b′, b). The group
of permutations{id, σ} shrinks the set of possible morphisms to
or from JqubitK⊙2. For example, the matrixNc associated with
the controlled-not gate (Equation (1)) defines a complete positive
endo-map ofC4×4, which is an endo-morphism ofJqubitK⊗2

but not ofJqubitK⊙2, becauseNc is not invariant under the ac-
tion of {id, σ}:

{id, σ}(Nc) =
1

2
(id(Nc) + σ(Nc)) =

1

2

(
2 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0

)

6= Nc.

Concerning the module associated with symmetric tensor pow-
ers,Pos(JqubitK⊙2

) is the D-completion of
{(

α1 α2 α2 α3

α4 α5 α6 α7

α4 α6 α5 α7

α8 α9 α9 α10

)

positive; ∀i, αi ∈ C

}

which is a subcone of the positive cone ofC4×4 of dimension10.
Concerning biproducts, the denotation ofqubit ⊕ qubit is

given by {(2, {id})tt, (2, {id})ff}, while its symmetric tensor
powerJqubit⊕ qubitK⊙2 is given by the three-element fam-
ily {(4, {id, σ})[tt,tt], (4, {id})[tt,ff], (4, {id, σ})[ff,ff]}. Notice
the difference between the pair(4, {id}) associated with[tt, ff]
and the pair(4, {id, σ}) associated with the two multisets of sin-
gleton support.

The biproduct!A :=
⊕∞

k=0 A
⊙k of all symmetric powers of

A can be defined as

|!A| = Mf (|A|), d!Aµ = dA
⊙k

µ , G!A
µ = GA

⊙k

µ (µ ∈ Mk(|A|))

This object yields a concrete representation of the free commu-
tative comonoid generated byA. The counit (also calledweak-

ening) w ∈ CPMs
⊕
(!A,1) and the comultiplication (orcontrac-

tion) c ∈ CPMs
⊕
(!A, !A⊗ !A) are:

wµ,⋆ := δµ,[]G
!A
[] , cµ,(µ′,µ′′) := δµ,µ′+µ′′G!A

µ .

The freeness of the comonoid gives the structure of exponen-
tial comonad. The functorial promotion maps an objectA to !A

and a morphismφ ∈ CPMs
⊕
(A,B) to !φ ∈ CPMs

⊕
(!A, !B)

defined by, forµ ∈ Mf (|A|) andν = [b1, . . . , bk] ∈ Mf (|B|),

!φµ,ν :=
∑

(a1,...,ak), st
[a1,...,ak]=µ

G!A
µ ;

k⊗

i=1

φai,bi ;G
!B
ν .

The counit of the comonad (ordereliction) d ∈ CPMs
⊕
(!A,A)

and the comultiplication (ordigging) dig ∈ CPMs
⊕
(!A, !!A) are

dµ,a := δµ,[a]G
A

a , digµ,M := δµ,
∑

MG
!A
µ ,

whereM ∈ |!!A| is a multiset of multisetsν over|A| and
∑
M ∈

|!A| is the multiset union of suchν’s, i.e., for everya ∈ |A|,
∑
M(a) =

∑

ν∈|M| ν(a)
M(ν).

Finally, the last two morphisms that are essential to interpret

our calculus are Bierman’sm⊗ ∈ CPMs
⊕
(!A ⊗ !B, !(A ⊗ B))

andm1 ∈ CPMs
⊕
(1, !1), given bym⊗(µ,ν),η := δη,µ×νG

!(A⊗B)
η

andm1⋆,µ := δµ,[⋆]G
1
µ, whereµ × ν is the multiset in|!(A⊗B)|

defined by,µ× ν(a, b) := µ(a)ν(b).

Example 24. Using the isomorphism betweenMf ({⋆}) and the
setN, and betweenMf ({tt, ff}) andN × N, the free com-
mutative comonoids associated withJ1K and JbitK are !J1K =
{(1, {id})n}n∈N, and!JbitK = {(1, {id})(n,m)}n,m∈N. In gen-
eral, notice that all constructions of the Lafont category pre-
serve the underlying pair(1, {id}) and act only at the level of
webs. For more involved examples, one should look for objects
with larger dimension, likeJqubitK. For example,!JqubitK =
{(2n, Sn)n}n∈N. Notice that!1, !bit and!qubit are not allowed

10

by our type grammar. In fact,!qubit is meaningless because
of the no-cloning constraint on quantum bits. However, such
spaces should exist in the model since they are isomorphic to
the denotations of legal types, like!(1 ⊸ 1), !(1 ⊸ bit) and
!(1 ⊸ qubit).

4.4 The soundness theorem

The soundness ofCPMs
⊕

with respect to the operational seman-
tics given in Figure3 is an easy consequence of the fact that
the category gives a (dcpo-enriched) model of linear logic.In
fact, the operational semantics is a trivial extension of a head-
reduction strategy of linear logic cut-elimination.

Proposition 25. The categoryCPMs
⊕

is a dcpo-enriched com-
pact closed Lafont category, henceCPMs

⊕
is a model of linear

logic.

Proof (Sketch).This basically amounts to showing thatCPMs
⊕

is the result of a categorical construction applied toCPMs which
is known to give, under certain circumstances, a dcpo-enriched
Lafont category and to preserve the compact closed structure
of CPMs. This construction was sketched in [5] and detailed
in [15, 11, 12]. It consists in moving: (i) fromCPMs to a
categoryCPMs with symmetric tensors, which is actually a
full sub-category of the Karoubi envelope ofCPMs; (ii) to a
dcpo-enriched categoryCPMs using the D-completion defined
in [23, 7]; and, finally, (iii) constructing the free biproduct com-
pletionCPMs

⊕
of CPMs and applying Equation (4).

Given a linkingℓ = |y1, . . . , ym〉, we writeℓ ⊢ M : A for the
judgementy1 : qubit, . . . , ym : qubit ⊢M : A.

Proposition 26 (Invariance of the interpretation). Let ℓ be the
linking |y1, . . . , ym〉, and assumeℓ ⊢ M : A. If M is not a
value, then for all quantum statesq ∈ C2m ,

JMK
ℓ⊢A

(qq∗) =
∑

[q,ℓ,M]
p→[q′,ℓ′,N]

p · JNK
ℓ′⊢A

(q′q′
∗
). (7)

Proof. By hypothesis,[q, ℓ,M] is a typable total closure, and so,
by Proposition11and Lemma13, all of its reducts[q′, ℓ′, N] are

typable total closures, so thatJNK
ℓ′⊢A

(q′q′∗) is well-defined.
Equation7 is proven by cases, depending on the rule applied

to [q, ℓ,M]. The cases of Table3(a) follows from the fact that

CPMs
⊕

is a dcpo-enriched model of linear logic. The quantum
rules (Table3(b)) are trivial consequences of Table4, and the
congruence rules of Table3(c)are done by induction onM , using

the fact that the categoryCPMs
⊕

is linear.

Corollary 27. We haveJMK
⊢1
∗ > Halt[| 〉,| 〉,M].

Proof. By induction on n and using Proposition 7
we can show thatJMK

ℓ⊢1
∗ (qq∗) is greater or equal to

∑

[q′,ℓ′,V] Red
n
[ℓ,q,M],[q′,ℓ′,V]. ThenJMK

ℓ⊢1
∗ (qq∗) > Halt[q,ℓ,M]

follows by taking the limit asn → ∞,and invoking the
monotonicity of{Redn}n.

4.5 The denotations of qlist and teleport

Example 28. Recall the terms of Example5. The web
of JqubitℓK is N, while JqubitℓKn=(2n, {id}). Note
that Pos(JqubitℓK) is equivalent to the D-completion of
⊕

n P (C
2n×2n) where the setP (C2n×2n) is the cone of2n ×

2n positive matrices. The denotation of the termqlist is a

morphism in CPMs
⊕
(qubit,qubitℓ), that is, a map send-

ing a 2 × 2 positive matrix onto
⊕

n P (C
2n×2n). The pro-

gramqlist is defined using recursion: its semantics is the limit
of the morphismsfn sending(a bc d) to the infinite sequence
(0, 12e1, . . .,

1
2n en,0,0, . . .) whereei is the2i×2i positive ma-

trix








a 0 · · · 0 b
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
c 0 · · · 0 d









.

This limit is the map sending(a bc d) to the sequence of infinitely
increasing matrices(0, 12e1, . . . ,

1
2n en, . . .). Note that the first

element of the sequence is0, as the programqlist never return the
empty list. Also note that all the positive matrices in the sequence
represententangled states of arbitrary sizes. Our semantics is the
first one to be able to account for such a case: in [6], only fixed
sizes were allowed for entangled states.

Example 29. We claim in the introduction that the model is ex-
pressive enough to describe entanglement at higher-order types.
As we discuss in Example6, the encoding of the quantum tele-
portation algorithm produces two entangled, mutually inverse
functions:f : qubit ⊸ bit⊗ bit andg : bit⊗bit ⊸ qubit.

The term(teleportskip) of type(qubit ⊸ bit ⊗ bit) ⊗
(bit⊗bit ⊸ qubit) is one instance of such a pair of functions.
Its denotation is a finite sequence of16 square matrices of size
4 × 4. Using a lexicographic convention, we can lay them out
as in Fig.6. Because of the convention, morally each row corre-
sponds to an element of typebit⊗ bit ⊸ qubit whereas each
column corresponds to an element of typequbit ⊸ bit⊗ bit.
Picking a row, i.e., a choice of two left-sided booleans, amounts
to choosing the two booleans that will be passed to the function
g. Picking a column, i.e., a choice of two right-sided booleans,
amounts to deciding on the probabilistic result we get from the
functionf . The intersection of a column and a row is therefore
the representation of a mapqubit ⊸ qubit. This map is a de-
scription of a possible path in the control flow of the algorithm.

The matrices on the diagonal correspond to a run of the algo-
rithm as it was intended: applyingg to the result off . Since they
are supposed to be the identity onqubit, we can therefore de-
duce that the matricesA00,00, A01,01, A10,10 andA11,11 are all

equal to

(
1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

)

. Since this matrix cannot be written as the

tensor of two2 × 2 matrices, we conclude that the denotationA
of (teleportskip) is indeed entangled.

We can compute the other matricesAxy,zt using the same ar-
gument: in general,Axy,zt is a composition off andg, except
that instead of applyingg to (x, y), we apply it to(z, t). We
therefore get a functionqubit → qubit constructed out of the
U−− that might (ifxy = zt) or might not be the identity. In gen-
eral, the matrixAxy,zt is the denotation of the unitaryUztU∗

xy.
The denotationA is given in full detail in Table6.

11

Remark 30. Example29 is a good illustration of what we
claimed in the introduction: the model reflects the juxtaposi-
tion of quantum and classical structures, even at higher-order
types. Here, the control-flow is handled by the biproduct struc-
ture, and the quantum part of the algorithm is split across the list
of 4×4 matrices.

5 Adequacy

In the following, we prove the adequacy ofCPMs
⊕

(Theo-
rem 38). This amounts to achieving the converse inequality of
Corollary27. The proof uses a syntactic approach, following [6].
We introduce a boundedletrecn, which can be unfolded at
most n times. On the one hand, the language allowing only
boundedletrec is strongly normalizing (Lemma33), hence
the adequacy for it can be easily achieved by induction on the
longest reduction sequence of a term (Corollary34). On the other
hand, the unboundedletrec can be expressed as the supremum
of its bounded approximants, both semantically (Lemma36) and
syntactically (Lemma37). We then conclude the adequacy for
the whole quantum lambda calculus by continuity.

Definition 31. Let us extend the grammar of terms (Table1) by
adding: (i) a new termΩA; (ii) a family of new term constructs
letrecn fA⊸B x =M in N indexed by natural numbersn >

0.
The typing rules for these new constructs are

!∆ ⊢ ΩA : A

!∆, f : !(A⊸ B), x : A ⊢M : B
!∆,Γ, f : !(A⊸ B) ⊢ N : C

!∆,Γ ⊢ letrecn fA⊸B x =M in N : C

Their denotations are given, respectively, by the map0 and the
family of maps

!∆⊗Γ
c−→ !∆⊗Γ⊗!∆

id⊗(dig;m;!(Λφ))n−−−−−−−−−−→ !∆⊗Γ⊗!(A⊸ B)
ψ−→ C,

where φ ∈ CPMs
⊕
(!∆ ⊗ !(A ⊸ B) ⊗ A,B) and ψ ∈

CPMs
⊕
(!∆ ⊗ Γ ⊗ !(A ⊸ B), C) are the denotations of the

premises and(dig; m; !(Λφ))n ∈ CPMs
⊕
(!∆, !(A⊸ B)) is de-

fined in a similar fashion as in Table5.
The reduction rules are updated as follows.

[q, ℓ, letrec0 fA⊸B x =M in N] 1−→ [q, ℓ,N{(λxA.ΩB)/f}]
[q, ℓ, letrecn+1 fA⊸B x =M in N]

1−→ [q, ℓ,N{(λxA.letrecn fA⊸B x =M inM)/f}].

The additions to the language do not modify the properties
of the language: subject reduction (Proposition11) and totality
(Lemma13) hold as they are stated, while type safety (Propo-
sition 12) and soundness (Proposition26) are satisfied, with the
proviso of considering the set of normal forms to consist of the
set of valuesand the set of terms containingΩ in evaluating po-
sition.

Definition 32. A term is calledfinitary when it does not con-
tain any occurrence of the un-indexedletrec construct. It can
however containΩ and any of the indexedletrecn. We call a
closurefinitary when its term is finitary.

Lemma 33 (Strong normalization). If [q1, ℓ1,M1] is fini-
tary and typable, then every reduction sequence of the form
[q1, ℓ1,M1]

p1−→ [q2, ℓ2,M2]
p2−→ [q3, ℓ3,M3]

p3−→ · · · is finite.

Proof (Sketch).We reduce the finitary quantum lambda calculus
to a simply typed non-deterministic language without quantum
states, for which a standard proof technique can be used. The
terms of this language are the terms of the extended quantum
lambda calculus, minus theletrec construct. The operational
semantics is obtained from Table3 and the rules forletrecn

by replacing closures with the respective terms and the rules of
Table 3b by dummy reduction rules: likeU(• ⊗ · · · ⊗ •) →
•⊗· · ·⊗•, ornew ff → •. The symbol• denotes a distinct term
variable, which, by convention, it is never bound by an abstrac-
tion. Clearly, the strong normalization of this language implies
that of the finitary quantum lambda calculus.

Corollary 34 (Finitary adequacy). Let M be a closed finitary
term of unit type. ThenJMK

⊢1
∗ = Halt[| 〉,| 〉,M] .

Proof (Sketch).We prove that, for any total finitary quantum clo-
sure of unit type[q, ℓ,M] we haveJMK

ℓ⊢1
(qq∗) = Halt[q,ℓ,M].

In fact, by Lemma33, there existsm ∈ N such thatHalt[q,ℓ,M] =∑

[q′,ℓ′,V]Red
m
[q,ℓ,M],[q′,ℓ′,V]. We conclude by induction onm.

Definition 35. Let⊳ be a relation between finitary terms and gen-
eral terms defined as the smallest congruence relation on terms
satisfying, for everyM ⊳ M ′ andN ⊳ N ′:

N{(λxA.ΩB)/f} ⊳ (letrec f x =M ′ in N ′),

(letrecn f x =M in N) ⊳ (letrec f x =M ′ in N ′).

Lemma 36. If Γ ⊢ M : A, thenJMK
Γ⊢A

=
∨

M ′⊳M
M ′ finitary

JM ′KΓ⊢A.

Lemma 37. If M ⊳ M ′, thenHalt[q,ℓ,M] 6 Halt[q,ℓ,M ′].

Proof (Sketch).By induction onn, one proves the inequality:
∑

[q′,ℓ′,V]Red
n
[q,ℓ,M],[q′,ℓ′,V] 6

∑

[q′,ℓ′,V] Red
n
[q,ℓ,M ′],[q′,ℓ′,V],

from which the statement follows trivially.

Theorem 38. Let M be a program, i.e., a closed term of unit
type. ThenJMK

⊢1
∗ = Halt[| 〉,| 〉,M] .

Proof. By Corollary27 we haveJMK
⊢1
∗ > Halt[| 〉,| 〉,M]. Con-

versely, by Lemma36, JMK
⊢1
∗ =

∨

M ′⊳M JM ′K⊢1∗ , which is
equal to

∨

M ′⊳M Halt[| 〉,| 〉,M ′] by Corollary34, which is less or
equal toHalt[| 〉,| 〉,M] by Lemma37.

6 Structure of the sets of representable
elements

We conclude this paper with an analysis of some of the properties
of the denotation of terms. Recall that a morphism inCPMs

⊕
is

an indexed family of either completely positive maps, or infinite
elements added during D-completion. We show that (1) all types
have a non-zero inhabitant; (2) provided that the term constantU
ranges over arbitrary unitary matrices, the representableelements

12

A = 1
4

(

A00,00 =

(
1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

)

, A00,01 =

(
0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

)

, A00,10 =

(
1 0 0 -1
0 0 0 0
0 0 0 0
-1 0 0 1

)

, A00,11 =

(
0 0 0 0
0 1 -1 0
0 -1 1 0
0 0 0 0

)

,

A01,00 =

(
0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

)

, A01,01 =

(
1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

)

, A01,10 =

(
0 0 0 0
0 1 -1 0
0 -1 1 0
0 0 0 0

)

, A01,11 =

(
1 0 0 -1
0 0 0 0
0 0 0 0
-1 0 0 1

)

,

A10,00 =

(
1 0 0 -1
0 0 0 0
0 0 0 0
-1 0 0 1

)

, A10,01 =

(
0 0 0 0
0 1 -1 0
0 -1 1 0
0 0 0 0

)

, A10,10 =

(
1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

)

, A10,11 =

(
0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

)

,

A11,00 =

(
0 0 0 0
0 1 -1 0
0 -1 1 0
0 0 0 0

)

, A11,01 =

(
1 0 0 -1
0 0 0 0
0 0 0 0
-1 0 0 1

)

, A11,10 =

(
0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

)

, A11,11 =

(
1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

))

.

Table 6:The denotation of the quantum teleportation algorithm.

ωqubit = λskip.new ff ωqubit = λxqubit.if measx then skip else skip

ωA⊸B = λskip.λxA.(ωA x);(ωB skip) ωA⊸B = λfA⊸B.ωB (f (ωA skip))

ω!(A⊸B) = λskip.λxA.(ωA⊸B skip)x ω!(A⊸B) = µgf !(A⊸B).if c then skip else (ωA⊸B f); (g f)
ω1 = λskip.skip ω1 = λskip.skip
ωA⊗B = λskip.(ωA skip)⊗ (ωB skip) ωA⊗B = λxA⊗B .let z1 ⊗ z2 = x in (ωA z1);(ωB z2)
ωA⊕B = λskip.if c then (ωA skip) else (ωB skip) ωA⊕B = λxA⊕B .match x with (zA1 : ωA z1 | zB2 : ωB z2)

ωAℓ = µfskip.if c then (skip) else (ωA skip) :: (f skip) ωAℓ = µfxA
ℓ

.matchsplit x with

(z11 : z1 zA⊗Aℓ

2 : let y1 ⊗ y2 = z2 in (ωA y1);(f y2))

Table 7:Two mutually recursive families of terms

of a given homset form a convex set including0; and (3) infinite
elements are not part of any representable map.

We first need two auxiliary definitions.

Definition 39. We define two type-indexed families of termsωA
andωA by mutual induction in Table7. The termc represents
the fair coin tossmeas (H (new ff)) (recall Example1) and the
notationµfx.M stands forletrec f x =M in f .

Lemma 40. For all typesA, we have⊢ ωA : 1 ⊸ A and⊢ ωA :
A ⊸ 1. Moreover, the morphismsJωAK

⊢1⊸A and JωAK
⊢A⊸1,

seen as indexed families, do not contain the zero map.

Corollary 41. All types are inhabited by at least one closed value
of non-null denotation.

Proof. Immediate with Lemma40: for a given typeA, choose
the term(ωA skip).

Proposition 42. Given a typeA and a contextΓ, the denotations
JMKΓ⊢A of valid typing judgementsΓ ⊢ M : A form a convex
set including0.

Proof. Suppose thatΓ is x1 : A1, . . . , xn : An. A term M
mapping to0 is (ωA1

x1; . . . ;ωAn
xn;Ω) where the termΩ is a

shortcut forletrec f x = f x in f skip, of denotation0.
Now, suppose thatf = JM1K

Γ⊢A and g = JM2K
Γ⊢A,

and choose two non-negative real numbersρ1, ρ2 such that
ρ1 + ρ2 = 1. There exists an angleφ such that(cosφ)2 =
ρ1 and that(sinφ)2 = ρ2. As the term constantsU range
over arbitrary unitaries, the unitary matrixVφ = (cosφ − sinφ

sinφ cosφ)
is representable in the quantum lambda calculus. The term
c′ = meas (Vφ (newff)) has denotation(ρ1, ρ2). We then
conclude that the termif c′ thenM1 elseM2 has denotation
ρ1f + ρ2g.

Proposition 43. If Γ ⊢ M : A is valid, then no infinite element
is part of the denotationJMK

Γ⊢A ofM .

Proof. Suppose that one of the infinite elements of the D-
completion were to be found in the interpretation ofx1 :
A1, . . . , xn : An ⊢M : A. Then the closed term

(λx1 . . . xn.ωAM)(ωA1
skip) . . . (ωAn

skip)

of type1 has infinite denotation, contradicting Theorem38.

This last proposition indicates that infinite elements introduced
during the D-completion are really an artifact only needed for
the categorical construction. The representable elementsin the
model are only built out of families of completely positive maps.

7 Conclusion

We presented a higher-order lambda calculus for quantum com-
putation featuring classical and quantum data, duplication, recur-
sion, and an infinite parametric type for lists. We then answered
a long-standing open question: the description of a model for the
full quantum lambda calculus. The model we propose is a free
construction based on the known model of completely positive
maps, but nevertheless has a concrete presentation.

One thing that this model explains and illustrates is the dis-
tinction between the quantum and classical parts of the language.
The quantum part is described by completely positive maps (fi-
nite dimension), whereas the classical control is given by the La-
font category (i.e., linear logic). The model demonstratesthat the
two “universes” work well together, but also – surprisingly– that
they do not mix too much, even at higher order types (we always

13

have aninfinite list of finite dimensional CPMs). The control
flow is completely handled by the biproduct completion, and not
by the CPM structure. The adequacy result, moreover, validates
that the model is a “good” representation of the language.

One should also note that the product and the coproduct co-
incide in our model. For example, the model has morphisms
that correspond to a program returning true with probability 1
and false with probability1. We would like to point out that
our interpretation is notsurjective. For example, there are also
morphisms in the model corresponding to “probability 2”. (In-
cidentally, adding terms with such behavior makes it possible to
build a term whose denotation is∞ – so the fact that this prov-
ably does not happen somehow captures the sanity of the model).
Interpretations in denotational models are often not surjective. In
fact, it is an open problem to give a non-syntactic characteriza-
tion of the image of our interpretation. Similarly, the problem of
full-abstraction is still open.

References

[1] V. Danos and T. Ehrhard. Probabilistic coherence spacesas
a model of higher-order probabilistic computation.Inform.
Comput., 2011.

[2] T. Ehrhard. Finiteness spaces.MSCS, 15(4):615–646,2005.

[3] J.-Y. Girard. Linear logic.Th. Comp. Sc., 50:1–102, 1987.

[4] J.-Y. Girard. Normal functors, power series and lambda-
calculus.Ann. Pure Appl. Logic, 37(2):129–177, 1988.

[5] J.-Y. Girard. Coherent Banach spaces: a continuous denota-
tional semantics.Theoretical Computer Science, 227:297,
1999.

[6] I. Hasuo and N. Hoshino. Semantics of higher-order quan-
tum computation via geometry of interaction. InProceed-
ings of LICS, pages 237–246, 2011.

[7] K. Keimel and J. D. Lawson. D-completions and thed-
topology. Annals of Pure and Applied Logic, 159(3):292 –
306, 2009.

[8] E. H. Knill. Conventions for quantum pseudocode. Techni-
cal Report LAUR-96-2724, Los Alamos National Labora-
tory, 1996.

[9] Y. Lafont. Logiques, cat́egories et machines. PhD thesis,
Université Paris 7, 1988.

[10] U. D. Lago, A. Masini, and M. Zorzi. Confluence results
for a quantum lambda calculus with measurements.Electr.
Notes Theor. Comput. Sci., 270(2):251–261, 2011.

[11] J. Laird, G. Manzonetto, and G. McCusker. Construct-
ing differential categories and deconstructing categories of
games.Information and Computation, 222:247–264, 2013.

[12] J. Laird, G. McCusker, G. Manzonetto, and M. Pagani.
Weighted relational models of typed lambda-calculi. In
LICS’13, 2013.

[13] O. Malherbe.Categorical models of computation: partially
traced categories and presheaf models of quantum compu-
tation. PhD thesis, University of Ottawa, 2010.

[14] P.-A. Melliès. Categorical semantics of linear logic.
Panoramas et Synthèses, 12, 2009.

[15] P.-A. Melliès, N. Tabareau, and C. Tasson. An explicitfor-
mula for the free exponential modality of linear logic. In
ICALP’09 (2), pages 247–260, 2009.

[16] M. A. Nielsen and I. L. Chuang.Quantum Computation and
Quantum Information. Cambridge University Press, 2002.

[17] P. Selinger. Towards a quantum programming language.
Mathematical Structures in Computer Science, 14(4):527–
586, 2004.

[18] P. Selinger. Towards a semantics for higher-order quantum
computation. InQPL’04, TUCS General Publication No
33, pages 127–143, 2004.

[19] P. Selinger and B. Valiron. A lambda calculus for quantum
computation with classical control.Mathematical Struc-
tures in Computer Science, 16(3):527–552, 2006.

[20] P. Selinger and B. Valiron. On a fully abstract model fora
quantum linear functional language. InQPL’06, 2008.

[21] P. Selinger and B. Valiron. Quantum lambda calculus.
In S. Gay and I. Mackie, editors,Semantic Techniques in
Quantum Computation, chapter 9, pages 135–172. Cam-
bridge University Press, 2009.

[22] B. Valiron. Semantics for a higher-order functional pro-
gramming language for quantum computation. PhD thesis,
University of Ottawa, 2008.

[23] D. Zhao and T. Fan. Dcpo-completion of posets.Th. Comp.
Sc., 411(22–24):2167–2173, 2010.

14

	1 Introduction
	2 Background
	2.1 Quantum computation in a nutshell
	2.2 Density matrices and completely positive maps
	2.3 The category CPM
	2.4 Limitations of CPM as a model

	3 A quantum lambda calculus
	3.1 Operational semantics

	4 Denotational semantics
	4.1 Preliminaries: from CPM to bar(CPMs)
	4.2 The category bar(CPMs)+
	4.3 bar(CPMs)+ as a model of the quantum lambda calculus
	4.3.1 Biproduct (A + B)
	4.3.2 Symmetric monoidal structure (A tensor B, 1 and list(A))
	4.3.3 Compact closure (dual(A) and A -o B)
	4.3.4 Free commutative comonoids (symmetric powers, !A)

	4.4 The soundness theorem
	4.5 The denotations of qlist and teleport

	5 Adequacy
	6 Structure of the sets of representable elements
	7 Conclusion

