
A lambda calculus for quantum computation with
classical control

Peter Selinger∗ Benoı̂t Valiron

Department of Mathematics and Statistics, University of Ottawa,
Ottawa, Ontario K1N 6N5, Canada

Abstract

The objective of this paper is to develop a functional programming language for
quantum computers. We develop a lambda calculus for the classical control model,
following the first author’s work on quantum flow-charts. We define a call-by-value
operational semantics, and we give a type system using affine intuitionistic linear
logic. The main results of this paper are the safety properties of the language and
the development of a type inference algorithm.

1 Introduction

The objective of this paper is to develop a functional programming language for quan-
tum computers. Quantum computing is a theory of computation based on the laws of
quantum physics, rather than of classical physics. Quantum computing has become a
fast growing research area in recent years. For a good introduction, see e.g. [9, 10].

Due to the laws of quantum physics, there are only two kinds of basic operations
that one can perform on a quantum state, namelyunitary transformationsandmeasure-
ments. Many existing formalisms for quantum computation put an emphasis on the
former, i.e., a computation is understood as the evolution of a quantum state by means
of unitary gates. Measurements are usually performed at the end of the computation,
and outside of the formalism. In these models, a quantum computer is considered as a
purely quantum system, i.e., without any classical parts. One example of such a model
is the quantum Turing machine [3, 6], where the entire machine state, including the
tape, the finite control, and the position of the head, is assumed to be in quantum su-
perposition. Another example is the quantum lambda calculus of van Tonder [14, 15],
which is a higher-order, purely quantum language without an explicit measurement
operation.

On the other hand, one might imagine a model of a quantum computer where uni-
tary operations and measurements can be interleaved. One example is the so-called
QRAM modelof Knill [8], which is also described by Bettelli, Calarco and Serafini [4].

∗Research supported by NSERC.

1

Here, a quantum computer consists of a classical computer connected to a quantum
device. In this configuration, the operation of the machine is controlled by a classical
program which emits a sequence of instructions to the quantum device for perform-
ing measurements and unitary operations. In such a model, the control structures of
the machine are classical, and only the data being operated upon is quantum. This
situation is summarized by the slogan “quantum data, classical control” [12]. Several
programming languages have been proposed to deal with such a model [4, 11]. The
present paper is based on the work of [12].

In this paper, we propose ahigher-orderquantum programming language, i.e., one
in which functions can be considered as data. A program is a lambda term, possibly
with some quantum data embedded inside. The basic idea is that lambda terms encode
the control structure of a program, and thus, they would be implemented classically,
i.e., on the classical device of the QRAM machine. However, the data on which the
lambda terms act is possibly quantum, and is stored on the QRAM quantum device.

Because our language combines classical and quantum features, it is natural to
consider two distinct basic data types: a type ofclassical bitsand a type ofquantum
bits. They behave very differently. For instance, a classical bit can be copied as many
times as needed. On the other hand, a quantum bit cannot be duplicated, due to the well-
known no cloning propertyof quantum states [9, 10]. However, quantum data types
are very powerful, due to the phenomena of quantum superposition and entanglement.

The semantics described in this paper is operational; a program is an abstract ma-
chine with reductions rules. The reduction rules are probabilistic.

Some care is needed when defining a type system for higher-order quantum func-
tions. This is because the question of whether a function is duplicable or not cannot
be directly seen from the types of its arguments or of its value, but rather it depends
on the types of any free variables occurring in the function definition. As it turns out,
the appropriate type system for higher-order quantum functions in our setting is affine
intuitionistic linear logic.

We also address the question of finding a type inference algorithm. Using the re-
mark that a linear type is a decoration of an intuitionistic one, we show that the question
of deciding whether or not a program is valid can be reduced to the question of finding
an intuitionistic type for it and to explore a finite number of linear decorations for the
type.

This work is based on the second author’s Master’s thesis [13]. A preliminary
version of this paper appeared in TLCA 2005.

2 Quantum computing basics

We briefly recall the basic definitions of quantum computing; please see [9, 10] for a
complete introduction to the subject. The basic unit of information in quantum com-
putation is a quantum bit orqubit. The state of a single qubit is a a normalized vec-
tor of the2-dimensional Hilbert spaceC2. We denote the standard basis ofC2 as
{|0〉, |1〉}, so that the general state of a single qubit can be written asα|0〉 + β|1〉,
where|α|2 + |β|2 = 1.

The state ofn qubits is a normalized vector in⊗n
i=1C

2 ∼= C2n

. We write |xy〉 =

2

|x〉 ⊗ |y〉, so that a standard basis vector ofC2n

can be denoted|piqn〉, wherepiqn is
the binary representation ofi in n digits, for0 6 i < 2n. As a special case, ifn = 0,
we denote the unique standard basis vector inC1 by |〉.

The basic operations on quantum states are unitary operations and measurements.
A unitary operation maps ann-qubit state to ann-qubit state, and is given by a unitary
2n × 2n-matrix. It is common to assume that the computational model provides a
certain set of built-in unitary operations, including for example theHadamard gateH
and thecontrolled not-gateCNOT , among others:

H =
1√
2

(

1 1
1 −1

)

, CNOT =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









.

The measurement acts as a projection. When a qubitα|0〉 + β|1〉 is measured, the
observed outcome is a classical bit. The two possible outcomes0 and1 are observed
with probabilities|α|2 and |β|2, respectively. Moreover, the state of the qubit is af-
fected by the measurement, and collapses to|0〉 if 0 was observed, and to|1〉 if 1 was
observed. More generally, given ann-qubit state|φ〉 = α0|0〉 ⊗ |ψ0〉 + α1|1〉 ⊗ |ψ1〉,
where |ψ0〉 and |ψ1〉 are normalized(n − 1)-qubit states, then measuring the left-
most qubit results in the answeri with probability |α i|2, and the resulting state will be
|i〉 ⊗ |ψi〉.

3 The untyped quantum lambda calculus

3.1 Terms

Our language uses the notation of the intuitionistic lambda calculus. For a detailed
introduction to the lambda calculus, see e.g. [2]. We start from a standard lambda
calculus with booleans and finite products. We extend this language with three special
quantum operations, which arenew , meas , and built-inn-ary gates. new maps a
classical bit to a quantum bit.meas maps a quantum bit to a classical bit by performing
a measurement operation; this is a probabilistic operation. Finally, we assume that there
is a setUn of built-in n-aryn-ary gates for eachn. We use the letterU to range over
built-in n-ary gates. Thus, the syntax of our language is as follows:

Term M,N,P ::= x |MN | λx.M | if M then N else P | 0 | 1 | meas

| new | U | ∗ | 〈M,N〉 | let 〈x, y〉 = M in N,

We follow Barendregt’s convention for identifying terms up toα-equivalence. We also
sometimes use the shorthand notations

〈M1, . . . ,Mn〉 = 〈M1, 〈M2, . . . 〉〉,
let x = M in N = (λx.N)M,

λ〈x, y〉.M = λz.(let 〈x, y〉 = z in N).

3

3.2 Programs

The reader will have noticed that we have not provided a syntax for constant quantum
states such asα|0〉 + β|1〉 in our language. One may ask why we did not allow the
insertion of quantum states into a lambda term, such asλx.(α|0〉 + β|1〉). The reason
is that, in the general case, such a syntax would be insufficient. Consider for instance
the lambda term(λy.λf.fpy)(q), wherep and q are entangled quantum bits in the
state|pq〉 = α|00〉 + β|11〉. Such a state cannot be represented locally by replacing
p andq with some constant qubit expressions. The non-local nature of quantum states
thus forces us to introduce a level of indirection into the representation of a state of a
quantum program.

Definition 3.1 A program stateis represented by a triple[Q,L,M], where

• Q is a normalized vector of⊗n−1
i=0 C2, for somen > 0

• M is a lambda term,

• L is a function fromW to {0, . . . , n− 1}, whereFV (M) ⊆ W ⊆ V term . L is
also called thelinking functionor thequbit environment.

The purpose of the linking function is to assign specific free variables ofM to
specific quantum bits inQ. The notion ofα-equivalence extends naturally to programs,
for instance, the states[|1〉, {x 7→ 0}, λy.x] and[|1〉, {z 7→ 0}, λy.z] are equivalent.
The set of program states, up toα-equivalence, is denoted byS.

Convention 3.2 In order to simplify the notation, we will often use the following
convention: we usepi to denote the free variablex such thatL(x) = i. A pro-
gram[Q,L,M] is abbreviated to[Q,M ′] with M ′ = M [pi1/x1] . . . [pin/xn], where
ik = L(xk).

3.3 Linearity

An important well-formedness property of quantum programs is that quantum bits
should always beuniquely referenced: roughly, this means that no two variable oc-
currences should refer to the same physical quantum bit. The reason for this restriction
is the well-known no-cloning property of quantum physics, which states that a quan-
tum bit cannot be duplicated: there exists no physically meaningful operation which
maps an arbitrary quantum bit|φ〉 to |φ〉 ⊗ |φ〉.

Syntactically, the requirement of unique referencing translates into alinearity con-
dition: A lambda abstractionλx.M is calledlinear if the variablex is used at most
once during the evaluation ofM . A well-formed program should be such that quantum
data is only used linearly; however, classical data, such as ordinary bits, can of course
be used non-linearly. Since the decision of which subterms must be used linearly de-
pends on type information, we will not formally enforce any linearity constraints until
we discuss a type system in Section 4; nevertheless, we will assume that all our untyped
examples are well-formed in the above sense.

4

3.4 Evaluation strategy

As is usual in defining a programming language, we need to settle on a reduction strat-
egy. The obvious candidates are call-by-name and call-by-value. Because of the prob-
abilistic nature of measurement, the choice of reduction strategy affects the behavior of
programs, not just in terms of efficiency, but in terms of the actual answer computed.
We demonstrate this in an example. Letplus be the boolean addition function, which
is definable asplus = λxy. if x then (if y then 0 else 1) else (if y then 1 else 0).
Consider the termM = (λx.plus x x)(meas(H(new 0))).

Call-by-value. Reducing this in the empty environment, using the call-by-value re-
duction strategy, we obtain the following reductions:

−→CBV [|0〉, (λx.plus x x)(meas(H p0))]

−→CBV [1√
2
(|0〉 + |1〉), (λx.plus x x)(meas p0)]

−→CBV

{

[|0〉, (λx.plus x x)(0)]
[|1〉, (λx.plus x x)(1)]

−→CBV

{

[|0〉,plus 0 0]
[|1〉,plus 1 1]

−→CBV

{

[|0〉, 0]
[|1〉, 0]

where the two branches are taken with probability1/2 each. Thus, under call-by-value
reduction, this program produces the boolean value0 with probability1. Note that we
have used Convention 3.2 for writing these program states.

Call-by-name. Reducing the same term under the call-by-name strategy, we obtain
in one step[|〉,plus (meas(H(new 0))) (meas(H(new 0))))], and then with prob-
ability 1/4, [|01〉, 1], [|10〉, 1], [|00〉, 0] or [|11〉, 0]. Therefore, the boolean output
of this function is0 or 1 with equal probability.

Mixed strategy. Moreover, if we mix the two reduction strategies, the program can
even reduce to an ill-formed term. Namely, reducing by call-by-value until[1√

2
(|0〉 +

|1〉), (λx.plus x x)(meas p0)], and then changing to call-by-name, we obtain in one
step the term[1√

2
(|0〉 + |1〉), (plus (meas p0) (meas p0)], which is not a valid

program since there are2 occurrences ofp0.
In the remainder of this paper, we will only consider the call-by-value reduction strat-
egy, which seems to us to be the most natural.

5

3.5 Probabilistic reduction systems

In order to formalize the operational semantics of the quantum lambda calculus, we
need to introduce the notion of a probabilistic reduction system.

Definition 3.3 A probabilistic reduction systemis a tuple(X,U,R, prob) whereX
is a set ofstates, U ⊆ X is a subset ofvalue states, R ⊆ (X \ U) × X is a set of
reductions, andprob : R → [0, 1] is aprobability function, where[0, 1] is the real unit
interval. Moreover, we impose the following conditions:

• For anyx ∈ X ,Rx = { x′ | (x, x′) ∈ R } is finite.

• ∑

x′∈Rx
prob(x, x′) 6 1

We callprob the one-step reduction, and denotex→p y to beprob(x, y) = p. Let
us extendprob to then-step reduction

prob0(x, y) =

{

0 if x 6= y
1 if x = y

prob1(x, y) =

{

prob(x, y) if (x, y) ∈ R
0 else

prob
n+1(x, y) =

∑

z∈Rx
prob(x, z)probn(z, y),

and the notation is extended tox→n
p y to meanprobn(x, y) = p.

We say thaty is reachable in one step with non-zero probabilityfrom x, denoted
x→>0y whenx→p y with p > 0. We say thaty is reachable with non-zero probability
from x, denotedx→∗

>0 y when there existsn > 0 such thatx→n
p y with p > 0.

We can then compute the probability to reachu ∈ U from x: It is a function from
X × U to R defined byprobU (x, u) =

∑∞
n=0 prob

n(x, u). The total probability for
reachingU from x is probU (x) =

∑∞
n=0

∑

u∈U probn(x, u).
On the other hand, there is also the probability todivergefromx, or never reaching

anything. This value isprob∞(x) = limn→∞
∑

y∈X probn(x, y).

Lemma 3.4 For all x ∈ X , probU (x) + prob∞(x) 6 1. ut

We define theerror probability ofx to be the numberprob err (x) = 1−probU (x)−
prob∞(x).

Definition 3.5 We can define a notion of equivalence inX :

x ≈ y iff ∀u ∈ U

{

probU (x, u) = probU (y, u)
prob∞(x) = prob∞(y)

Definition 3.6 In addition to the notion of reachability with non-zero probability, there
is also a weaker notion of reachability, given byR: We will say thaty is reachable in
one stepfrom x, writtenx y, if xRy. By the properties ofprob, x→>0 y implies
x y. As usual, ∗ denotes the transitive reflexive closure of , and we say thaty is
reachablefrom x if x ∗ y.

6

Definition 3.7 In a probabilistic reduction system, a statex is called anerror-stateif
x 6∈ U and

∑

x′∈X prob(x, x′) < 1. An elementx ∈ X is consistentif there is no
error-statee such thatx ∗ e.

Lemma 3.8 If x is consistent, thenproberr (x) = 0. ut

Remark 3.9 We need the weaker notion of reachabilityx ∗ y, in addition to reacha-
bility with non-zero probabilityx→>0

∗y, because a null probability of getting a certain
result is not an absolute warranty of its impossibility. In the QRAM, suppose we have
a qubit in state|0〉. Measuring it cannot theoretically yield the value1, but in practice,
this might happen with small probability, due to imprecision of the physical operations
and decoherence. Therefore, when we prove type safety (see Theorem 4.15), we will
use the stronger notion. In short: a type-safe program should not crash, even in the
event of random QRAM errors.

Remark 3.10 The converse of Lemma 3.8 is false. For instance, ifX = {a, b},U = ∅,
a→1 a, anda→0 b, thenb is an error state, andb is reachable froma, but only with
probability zero. Henceprob err (a) = 0, althougha is inconsistent.

3.6 Operational semantics

We define a probabilistic call-by-value reduction procedure for the quantum lambda
calculus. Note that, although the reduction itself is probabilistic, the choice of which
redex to reduce at each step is deterministic.

Definition 3.11 A valueis a term of the following form:

Value V,W ::= x | λx.M | 0 | 1 | meas | new | U | ∗ | 〈V,W 〉.

The set of value states isV = {[Q,L, V] ∈ S | V ∈ Value}.

The reduction rules are shown in Table 1, where we have used Convention 3.2 to
shorten the description of states. We write[Q,L,M] →p [Q′, L′,M ′] for a single-
step reduction of states which takes place with probabilityp. In the rule for reducing
the termU〈pj1 , . . . , pjn〉, U is ann-ary built-in unitary gate,j1, . . . , jn are pairwise
distinct, andQ′ is the quantum state obtained fromQ by applying this gate to qubits
j1, . . . , jn. In the rule for measurement,|Q0〉 and |Q1〉 are normalized states of the
form |Q0〉 =

∑

j αj |φ0
j 〉 ⊗ |0〉 ⊗ |ψ0

j 〉 and|Q1〉 =
∑

j βj |φ1
j〉 ⊗ |1〉 ⊗ |ψ1

j 〉, whereφ0
j

andφ1
j is ani-qubit state (so that the measured qubit is the one pointed to byp i). In the

rule for fornew ,Q is ann-qubit state, so thatQ⊗ |i〉 is an(n+ 1)-qubit state, andpn

refers to its rightmost qubit.
We define a weaker relation . This relation models the transformations that can

happen in the presence of decoherence and imprecision of physical operations. We
define [Q,M] [Q′,M ′] to be [Q,M] →p [Q′,M ′], even whenp = 0, plus the
additional rule, ifQ andQ′ are vectors of equal dimensions:[Q,M] [Q ′,M].

Lemma 3.12 Letprob be the function such that forx, y ∈ S, prob(x, y) = p if x→p y
and0 else. Then(S,V, , prob) is a probabilistic reduction system. ut

7

[Q, (λx.M)V] →1 [Q,M [V/x]]

[Q,N] →p [Q′, N ′]

[Q,MN] →p [Q′,MN ′]

[Q,M] →p [Q′,M ′]

[Q,MV] →p [Q′,M ′V]

[Q,M1] →p [Q′,M ′
1]

[Q, 〈M1,M2〉] →p [Q′, 〈M ′
1,M2〉]

[Q,M2] →p [Q′,M ′
2]

[Q, 〈V1,M2〉] →p [Q′, 〈V1,M
′
2〉]

[Q, if 0 then M else N] →1 [Q,N]

[Q, if 1 then M else N] →1 [Q,M]

[Q,U〈pj1 , . . . , pjn〉] →1 [Q′, 〈pj1 , . . . , pjn〉]

[α|Q0〉 + β|Q1〉,meas pi] →|α|2 [|Q0〉, 0]

[α|Q0〉 + β|Q1〉,meas pi] →|β|2 [|Q1〉, 1]

[Q,new 0] →1 [Q⊗ |0〉, pn]

[Q,new 1] →1 [Q⊗ |1〉, pn]

[Q,P] →p [Q′, P ′]

[Q, if P then M else N] →p [Q′, if P ′ then M else N]

[Q,M] →p [Q′,M ′]

[Q, let 〈x1, x2〉 = M in N] →p [Q′, let 〈x1, x2〉 = M ′ in N]

[Q, let 〈x1, x2〉 = 〈V1, V2〉 in N] →1 [Q,N [V1/x1, V2/x2]]

Table 1: Reductions rules of the quantum lambda calculus

This probabilistic reduction system has error states, for example,[Q,H(λx.x)] or
[Q,U〈p0, p0〉]. Such error states correspond to run-time errors. In the next section, we
introduce a type system designed to rule out such error states.

4 The typed quantum lambda calculus

We will now define a type system designed to eliminate all run-time errors arising from
the reduction system of the previous section. We need base types (such asbit andqbit),
function types, and product types. In addition, we need the type system to capture a
notion of duplicability, as discussed in Section 3.3. We follow the notation of linear
logic [7]. By default, a term of typeA is assumed to be non-duplicable, and duplicable
terms are given the type!A instead. Formally, the set of types is defined as follows,
whereα ranges over a set of type constants andX ranges over a countable set of type
variables:

qType A,B ::= α | X | !A | (A(B) | > | (A⊗B)

Note that, because all terms are assumed to be non-duplicable by default, the language
has a linear function typeA(B and a linear product typeA ⊗ B. This reflects the
fact that there is in general no canonical diagonal functionA → A⊗A. Also,> is the
linear unit type. This will be made more formal in the typing rules below. We write

8

!nA for !!! . . .!!A, withn repetitions of!. We also writeAn for then-fold tensor product
A⊗ . . .⊗A.

4.1 Subtyping

The typing rules will ensure that any value of type!A is duplicable. However, there
is no harm in using it only once; thus, such a value should also have typeA. For this
reason, we define a subtyping relation<: as follows:

α <: α (α) X <:X
(X) ><: > (>)

A<: B
!A<:B

(D)
!A<:B
!A<: !B

(!)

A1 <: B1 A2 <:B2

A1 ⊗A2 <:B1 ⊗B2
(⊗)

A<:A′ B <:B′

A′(B <:A(B′ (()

Lemma 4.1 For typesA andB, if A<: B and(m = 0) ∨ (n > 1), then!nA<: !mB.

Proof. Repeated application of(D) and(!). ut
Notice that one can rewrite types using the notation:

qType A,B ::= !nα | !nX | !n(A(B) | !n> | !n(A⊗B)

with n ∈ N. Using the overall condition onn andm that(m = 0)∨ (n > 1), the rules
can be re-written as:

!nα <: !mα
(α2)

!nX <: !mX
(X2)

!n><: !m> (>2)

A1 <:B1 A2 <:B2

!n(A1 ⊗A2)<: !m(B1 ⊗B2)
(⊗2)

A<:A′ B <:B′

!n(A′(B)<: !m(A(B′)
((2)

The two sets of rules are equivalent.

Lemma 4.2 The rules of the second set are reversible.

Proof. Note that for each possible type only one rule can be used. ut
Lemma 4.3 (qType , <:) is reflexive and transitive. If we define an equivalence relation
+ byA + B iff A<: B andB <: A, (qType/+, <:) is a poset.

Proof. Both properties are shown by induction on the second set of rules. For transitiv-
ity, note that the condition(m = 0)∨(n > 1) can be re-written as(n = 0)⇒(m = 0),
which is transitive. ut
Lemma 4.4 If A<: !B, then there existsC such thatA = !C .

Proof. A direct application of the second set of rules. ut
Remark 4.5 The subtyping rules are a syntactic device, and are not intended to catch
all plausible type isomorphisms. For instance, the types!A ⊗ !B and !(A ⊗ B) are
not subtypes of each other, although an isomorphism between these types is easily
definable in the language.

9

A<: B
∆, x:A B x : B

(var)
Ac <:B

∆ B c : B
(const)

Γ1, !∆ B P : bit Γ2, !∆ BM : A Γ2, !∆ B N : A

Γ1,Γ2, !∆ B if P then M else N : A
(if)

Γ1, !∆ BM : A(B Γ2, !∆ B N : A

Γ1,Γ2, !∆ BMN : B
(app)

x:A,∆ BM : B

∆ B λx.M : A(B
(λ1)

If FV (M) ∩ |Γ| = ∅:
Γ, !∆, x:A BM : B

Γ, !∆ B λx.M : !n+1(A(B)
(λ2)

!∆,Γ1 BM1 : !nA1 !∆,Γ2 BM2 : !nA2

!∆,Γ1,Γ2 B 〈M1,M2〉 : !n(A1 ⊗A2)
(⊗.I)

∆ B ∗ : !n> (>)

!∆,Γ1 BM : !n(A1 ⊗A2) !∆,Γ2, x1:!
nA1, x2:!

nA2 B N : A

!∆,Γ1,Γ2 B let 〈x1, x2〉 = M in N : A
(⊗.E)

Table 2: Typing rules

4.2 Typing rules

We need to define what it means for a quantum state[Q,L,M] to be well-typed. It
turns out that the typing does not depend onQ andL, but only onM . We introduce
typing judgments of the form∆ BM : B. HereM is a term,B is aqType , and∆ is a
typing context, i.e., a function from a set of variables toqType . As usual, we write|∆|
for the domain of∆, and we denote typing contexts asx 1:A1, . . . , xn:An. As usual,
we write∆, x:A for ∆ ∪ {x:A} if x 6∈ |∆|. Also, if ∆ = x1:A1, . . . , xn:An, we write
!∆ = x1:!A1, . . . , xn:!An. A typing judgment is calledvalid if it can be derived from
the rules in Table 2.

The typing rule(ax) assumes that to every constantc of the language, we have
associated a fixed typeAc. The typesAc are defined as follows:

A0 = !bit Anew = !(bit(qbit)
A1 = !bit Ameas = !(qbit(!bit) AU = !(qbitn

(qbitn)

Note that we have given the type!(bit(qbit) to the termnew . Another possible
choice would have been!(!bit(qbit), which makes sense because all classical bits
are duplicable. However, since!(bit(qbit)<: !(!bit(qbit), the second type is less
general, and can be inferred by the typing rules.

The shorthand notations have the required behavior:

!∆,Γ1, x:A B N :B !∆,Γ2 BM :A

!∆,Γ1,∆2 B let x = M in N :B ,

!∆,Γ, x:A, y:B BM :C

!∆,Γ B λ〈x, y〉.M :(A⊗B)(C,

and ifFV (M)∩ |Γ| = ∅,
!∆,Γ, x:!nA, y:!nB BM :C

!∆,Γ B λ〈x, y〉.M :!m+1(!n(A⊗B)(C)
are provable.

10

qubit 1: |φ〉 • H

(1) (2) M

(3)

x,y

��

qubit 2: |0〉 H • ⊕

qubit 3: |0〉 ⊕ED location B

location A

@A
Uxy

(4)

|φ〉

_ _�

�

�

�

�

�

�

�

�

�

�

�
_ _

Table 3: Quantum teleportation protocol

Note that, if[Q,L,M] is a program state, the termM need not be closed; however,
all of its free variables must be in the domain ofL, and thus must be of typeqbit . We
therefore define:

Definition 4.6 A program state[Q,L,M] is well-typed of typeB if ∆ B M : B is
derivable, where∆ = {x: qbit | x ∈ FV (M)}. In this case, we write[Q,L,M] : B.

Note that the type system enforces that variables holding quantum data cannot be
duplicated; thus,λx.〈x, x〉 is not a valid term of typeqbit(qbit ⊗ qbit . On the other
hand, we allow variables to be discarded freely. Other approaches are also possible,
for instance, Altenkirch and Grattage [1] propose a syntax that allows duplication but
restricts discarding of quantum values.

4.3 Example: quantum teleportation

Let us illustrate the quantum lambda calculus and the typing rules with an example. The
following is an implementation of the well-known quantum teleportation protocol (see
e.g. [9]). The purpose of the teleportation protocol is to send a qubit from locationA
to locationB, using only classical communication and a pre-existing shared entangled
quantum state. In fact, this can be achieved by communicating only the content of
two classical bits. In the usual quantum circuit formalism, the teleportation protocol is
described in Table 3.

The state|φ〉 of the first qubit is “teleported” from location A to location B. The
important point of the protocol is that the only quantum interaction between locations
A and B (shown as (1) in the illustration) can be doneahead of time, i.e., before the
state|φ〉 is prepared.

The dashed boxM (shown as (3)) represents a measurement of two qubits. The
gateUxy (shown as (4)) depends on two classical bitsx andy, which are the result of

11

this measurement. It is defined as:

U00 =

(

1 0
0 1

)

, U01 =

(

0 1
1 0

)

, U10 =

(

1 0
0 −1

)

, U11 =

(

0 1
−1 0

)

.

The teleportation protocol consists of four steps:

(1) Create an entangled state1√
2
(|00〉 + |11〉) between qubits 2 and 3.

(2) At location A, rotate qubits 1 and 2.

(3) At location A, measure qubits 1 and 2, obtaining two classical bitsx andy.

(4) At location B, apply the correct transformationUxy to qubit 3.

Proof of the correctness of the teleportation protocol. The rotation (2) has the
following effect:

CNOT H ⊗ id

|00〉 7→ |00〉 7→ 1√
2
(|00〉 + |10〉),

|01〉 7→ |01〉 7→ 1√
2
(|01〉 + |11〉),

|10〉 7→ |11〉 7→ 1√
2
(|01〉 − |11〉),

|11〉 7→ |10〉 7→ 1√
2
(|00〉 − |10〉).

If we apply it to the two first qubits of

(α|0〉 + β|1〉) ⊗ 1√
2
(|00〉 + |11〉) = 1√

2
(α|000〉 + α|011〉 + β|100〉 + β|111〉)

we get

1
2 (α(|000〉 + |100〉) + α(|011〉 + |111〉) + β(|010〉 − |110〉) + β(|001〉 − |101〉))
= 1

2 (|00〉 ⊗ (α|0〉 + β|1〉) + |01〉 ⊗ (α|1〉 + β|0〉)
+|10〉 ⊗ (α|0〉 − β|1〉) + |11〉 ⊗ (α|1〉 − β|0〉))

If we measure the two first qubits, the third qubit becomes

α|0〉 + β|1〉 if 00 was measured,
α|1〉 + β|0〉 if 01 was measured,
α|0〉 − β|1〉 if 10 was measured,
α|1〉 − β|0〉 if 11 was measured.

Finally, note that ifUxy is applied in the case wherex, y was measured, then the state
of the last qubit isα|0〉 + β|1〉 = |φ〉. ut

To express the quantum teleportation protocol in our quantum lambda calculus, we
implement each part of the protocol as a function. We define three functions

EPR : !(>((qbit ⊗ qbit))
BellMeasure : !(qbit((qbit(bit ⊗ bit))
U : !(qbit((bit ⊗ bit(qbit))

12

The functionEPR corresponds to step (1) of the protocol, and creates an entangled
2-qubit state. The functionBellMeasure corresponds to steps (2) and (3), and takes
two qubits, rotates and measures them. The functionU corresponds to step (4). It takes
a qubitq and two bitsx, y and returnsUxyq. These functions are defined as follows:

EPR = λx.CNOT 〈H(new 0),new 0〉,
BellMeasure = λq2.λq1.(let 〈p, p′〉 = CNOT 〈q1, q2〉

in 〈meas(Hp),meas p′〉),
U = λq.λ〈x, y〉. if x then (if y then U11q else U10q)

else (if y then U01q else U00q),

whereUxy are defined as above when the measured qubits werex andy.
The teleportation procedure can be seen as the creation of two non-duplicable func-

tionsf andg
f : qbit(bit ⊗ bit ,
g : bit ⊗ bit(qbit ,

such thatg◦f(q) = q for an arbitrary qubitq. We can construct such a pair of functions
by the following code:

let 〈p, p′〉 = EPR ∗
in let f = BellMeasurep
in let g = U p′

in 〈f, g〉.

Note that, sincef andg depend on the state of the qubitsp andp ′, respectively, these
functions cannot be duplicated, which is reflected in the fact that the types off andg do
not contain a top-level “!”. The detailed typing derivation of these terms, and a proof
thatg(f(q)) → q, using the reduction rules of Table 1, are given in the Appendix.

Superdense coding. As an added bonus, the two functionsf andg generated for the
quantum teleportation protocol also satisfy the dual property, namelyf ◦ g〈x, y〉 =
〈x, y〉, for an arbitrary pair of classical bits〈x, y〉. This property can be used to send
two classical bits along a channel that can hold a single quantum bit, in the presence
of a pre-existing shared entangled quantum state. This procedure is known assuper-
dense coding(see [9]), and it is dual to quantum teleportation. A detailed proof of
f ◦ g〈x, y〉 → 〈x, y〉 from the reduction rules is given in the Appendix.

Remark 4.7 The semantic interpretation off andg appears to be a bit of a mystery.
On the one hand, the typesqbit andbit ⊗ bit are clearly not isomorphic. On the other
hand, we havef : qbit(bit ⊗ bit andg : bit ⊗ bit(qbit such thatf ◦ g = id and
g ◦ f = id . The crucial fact resolving this apparent contradiction is that each of the
functionsf andg can be used only once. One could therefore describef andg as a
pair of “single-use isomorphisms”.

4.4 Properties of the type system

We derive some basic properties of the type system.

13

Definition 4.8 We extend the subtyping relation to contexts by writing∆ <: ∆ ′ if
|∆′| = |∆| and for allx in |∆′|, ∆f (x)<: ∆′

f (x).

Lemma 4.9 1. If x 6∈ FV (M) and∆, x:A BM :B, then∆ BM :B.

2. If ∆ BM :A, thenΓ,∆ BM :A.

3. If Γ<: ∆ and∆ BM : A andA<: B, thenΓ BM : B.

Proof. By structural induction on the type derivation ofM . ut

The next lemma is crucial in the proof of the substitution lemma. Note that it is
only true for a valueV , and in general fails for an arbitrary termM .

Lemma 4.10 If V is a value and∆ B V : !A, then for allx ∈ FV (V), there exists
someU ∈ qType such that∆(x) = !U .

Proof. By induction onV .

• If V is a variablex, then the last rule in the derivation was
B <: !A

∆′, x : B B x : !A
.

SinceB <: !A,B must be exponential by Lemma 4.4.

• If V is a constantc, thenFV (V) = ∅, hence the result holds vacuously.

• If V = λx.M , the only typing rule that applies is(λ2), and∆ = Γ, !∆′ with
FV (M) ∩ |∆′| = ∅. So everyy ∈ FV (M) except maybex is exponential.
SinceFV (λx.M) = (FV (M) \ {x}), this suffices.

• The remaining cases are similar. ut

Lemma 4.11 (Substitution) If V is a value such thatΓ1, !∆, x:A B M : B and
Γ2, !∆ B V : A, thenΓ1,Γ2, !∆ BM [V/x] : B.

Proof. By structural induction on the derivation ofΓ1, !∆, x:A BM : B. ut

Corollary 4.12 If Γ1, !∆, x:A B M : B andΓ2, !∆ B V : !nA, thenΓ1,Γ2, !∆ B
M [V/x] : B.

Proof. From Lemma 4.11 and Lemma 4.9(3). ut

Remark 4.13 We note that all the usual rules of affine intuitionistic linear logic are
derived rules of our type system,exceptfor the general promotion rule. Indeed,B
new 0 : qbit is valid, butB new 0 : !qbit is not. However, the promotion rule is
derivable whenV is avalue:

!Γ B V : A
!Γ B V :!A.

14

4.5 Subject reduction and progress

Theorem 4.14 (Subject Reduction)Given a well-typed program[Q,L,M]:B such
that [Q,L,M] ∗ [Q′, L′,M ′], then[Q′, L′,M ′] : B.

Proof. It suffices to show this for[Q,L,M] →p [Q′, L′,M ′], and we proceed by
induction on the rules in Table 1. The rule[Q, (λx.M)V]→1 [Q,M [V/x]] and the rule
for “let” use the substitution lemma. The remaining cases are direct applications of the
induction hypothesis. ut

Theorem 4.15 (Progress)Let[Q,L,M] : B be a well typed program. Then[Q,L,M]
is not an error state in the sense of Definition 3.7. In particular, either[Q,L,M] is a
value, or else there exist some state[Q′, L′,M ′] such that[Q,L,M] →p [Q′, L′,M ′].
Moreover, the total probability of all possible single-step reductions from[Q,L,M]
is 1.

Corollary 4.16 Every sequence of reductions of a well-typed program either converges
to a value, or diverges. ut

The proof of the Progress Theorem is similar to the usual proof, with two small
differences. The first is the presence of probabilities, and the second is the fact thatM
is not necessarily closed. However, all the free variables ofM are of typeqbit , and this
property suffices to prove the following lemma, which generalizes the usual lemma on
the shape of closed well-typed values:

Lemma 4.17 Suppose∆ = x1:qbit , . . . , xn:qbit , andV is a value. If∆ B V :A(B,
thenV isnew , meas ,U , or a lambda abstraction. If∆ B V :A⊗B, thenV = 〈V1, V2〉.
If ∆ B V :bit , thenV = 0 or V = 1.

Proof. By inspection of the typing rules. ut

Proof of the Progress Theorem.By induction onM . The claim follows immediately
in the cases whenM is a value, or whenM is a left-hand-side of one of the rules
in Table 1 that have no hypotheses. Otherwise, using Lemma 4.17,M is one of the
following: PN ,NV , 〈N,P 〉, 〈V,N〉, if N then P else Q, let 〈x, y〉 = N in P , where
N is not a value. In this case, the free variables ofN are still all of typeqbit , and by
induction hypothesis, the term[Q,L,N] has reductions with total probability1, and
the rules in Table 1 ensure that the same is true for[Q,L,M]. ut

5 Type inference algorithm

It is well-known that the simply-typed lambda calculus, as well as many programming
languages, satisfies theprincipal type property: every untyped expression has a most
general type, provided that it has any type at all. Since most principal types can usually
be determined automatically, the programmer can be relieved from the need to write
any types at all.

15

In the context of our quantum lambda calculus, it would be nice to have a type
inference algorithm; however, the principal type property fails due to the presence of
exponentials!A. Not only can an expression have several different types, but in general
none of the types is “most general”. For example, the termM = λxy.xy has possible
typesT1 = (A(B)((A(B) andT2 = !(A(B)(!(A(B), among others.
Neither ofT1 andT2 is a substitution instance of the other, and in fact the most general
type subsumingT1 andT2 isX(X , which is not a valid type forM . Also, neither of
T1 andT2 is a subtype of the other, and the most general type of which they are both
subtypes is(A(B)(!(A(B), which is not a valid type forM .

In the absence of the principal type property, we need to design a type inference
algorithm based on a different idea. The approach we follow is the one suggested by
V. Danos, J.-B. Joinet and H. Schellinx [5]. The basic idea is to view a linear type
as a “decoration” of an intuitionistic type. Our type inference algorithm is based on
the following technical fact, given below: if a given term has an intuitionistic type
derivationπ of a certain kind, then it is linearly typable if and only if there exists a
linear type derivation which is a decoration ofπ. Typability can therefore be decided
by first doing intuitionistic type inference, and then checking finitely many possible
linear decorations.

5.1 Skeletons and decorations

The class ofintuitionistic typesis

iType U, V ::= α | X | (U ⇒ V) | (U × V) | >

whereα ranges over the type constants andX over the type variables.
To eachA ∈ qType , we associate itstype skeleton†A ∈ iType, which is obtained

by removing all occurrences of “!”. Conversely, everyU ∈ iType can be lifted to some
♣U ∈ qType with no occurrences of “!”. Formally:

Definition 5.1 Define functions† : qType → iType and♣ : iType → qType by:

†!nα = α, †!nX = X, †!n> = >,
†!n(A(B) = †A⇒ †B,
†!n(A⊗B) = †A× †B,

♣α = α, ♣X = X, ♣> = >,
♣(U ⇒ V) = ♣U(♣V ,
♣(U × V) = ♣U ⊗ ♣V .

If U = †A, then we also say thatA is adecorationof U .

Lemma 5.2 If A<:B, then†A = †B. If U ∈ iType , thenU = †♣U . ut

Writing ∆ I M : U for a typing judgment of the simply-typed lambda calculus,
we can extend the notion of skeleton to contexts, typing judgments, and derivations as
follows:

†{x1:A1, . . . , xn:An} = {x1:
†A1, . . . , xn:†An}

†(∆ BM : A) = (†∆ IM : †A).

From the rules in Table 2, it is immediate that if∆ BM : A is a valid typing judgment
in the quantum lambda calculus, then†(∆ BM : A) = (†∆ I M : †A) is a valid
typing judgment in the simply-typed lambda calculus.

16

5.2 Decorating intuitionistic type derivations

The basic idea of our quantum type inference algorithm is the following: given a term
M , first find an intuitionistic typing judgment∆ IM : U , say with type derivationπ,
if such a typing exists. Then look for a quantum type derivation which is a decoration
of π. Clearly, if the termM is not quantum typable, this procedure will fail to yield
a quantum typing ofM . For the algorithm to be correct, we also need the converse
property to be true: ifM has any quantum type derivation, then it has a quantum type
derivation which is a decoration of the given intuitionistic derivationπ. We therefore
would ideally like to prove the following property:

Property 5.3 (desired) LetM be a term with an intuitionistic type derivationπ. Then
M is quantum typable if and only if there exists a quantum type derivationπ ′ of M
such that†π′ = π.

Unfortunately, this property is false, as the following example shows.

Example 5.4 Consider the termM = (λx.meas x)(new 0). Clearly this term is quan-
tum typable, for instance, it has typebit (also!bit , !!bit etc.). Consider the following
intuitionistic type derivationπ for M :

x : qbit I meas : qbit ⇒ bit x : qbit I x : qbit

x : qbit I meas x : bit

I λx.meas x : qbit ⇒ bit

I new : bit ⇒ qbit I 0 : bit

I new 0 : qbit

I (λx.meas x)(new 0) : bit

This particular intuitionistic type derivation is not the skeleton of any valid quantum
type derivation ofM . To see this, note that the variablex has been duplicated in the
typing rule formeas x. Therefore, any valid decoration ofπ has to give the type!qbit
to x. On the other hand, the only valid quantum type fornew 0 is qbit , which is not a
subtype of!qbit . Hence, there is no quantum type derivation forM whose skeleton is
π, demonstrating that Property 5.3 fails.

5.3 Normal derivations

The reason Property 5.3 fails is because an intuitionistic derivation can duplicate vari-
ables unnecessarily, as shown in Example 5.4. The duplication of a variable in a typing
rule is unnecessary if the variable does not actually occur in one of the premises. We
can avoid this problem by slightly changing the typing rules to disallow such unnec-
essary duplications. This is done by eliminating all “dummy” variables from typing
contexts.

Definition 5.5 A typing judgment∆ B M : A of the quantum lambda calculus is
callednormal if |∆| = FV (M). If ∆ B M : A is any typing judgment, then its
normal formis ∆|FV (M) B M : A. We also write∆|M for ∆|FV (M). If π is a type
derivation, then its normal form is the derivationN(π) obtained by taking the normal
form of each of its nodes.

17

Note that the normal form of a type derivation is not necessarily a type derivation
in the strict sense, because the rules of Table 2 are not invariant under taking normal
forms. However, we can define a new set of typing rules, called thenormal typing
rules, which are obtained by normalizing the rules from Table 2. For example, the new
rule for application is:

{Γ1, !∆}|FV (M) BM : A(B {Γ2, !∆}|FV (N) B N : A

{Γ1,Γ2, !∆}|FV (MN) BMN : B
(app

norm
)

We treat all the other typing rules analogously.

Lemma 5.6 Let ∆ B M : A be any typing judgment. Then∆ B M : A is derivable
from the rules in Table 2 if and only if∆|FV (M) BM : A is derivable from the normal
typing rules.

Proof. The left-to-right implication follows by normalizing the type derivation of
∆ BM : A. The right-to-left implication follows because the normal typing rules are
admissible by Lemma 4.9. ut

The normal form of intuitionistic typing judgments, rules, and derivations is defined
analogously. The counterpart of Lemma 5.6 also holds in the intuitionistic case.

Relative to the normal typing rules, the analog of Property 5.3 holds.

Theorem 5.7 LetM be a term with a normal intuitionistic type derivationπ. ThenM
is quantum typable if and only if there exists a normal quantum type derivationπ ′ of
M such that†π′ = π.

5.4 Proof of Theorem 5.7

The proof of Theorem 5.7 requires us to find a suitable decorationπ ′ of π. For this
purpose we are going to introduce the concept of the decoration of an intuitionistic
type along a quantum type. Intuitively,U # A takes the skeleton fromU and the
exponentials fromA.

Definition 5.8 GivenA ∈ qType andU ∈ iType, we define thedecorationU # A ∈
qType ofU alongA by

U # !nA = !n(U # A),
(U ⇒ V)# (A(B) = (U # A)((V # B),
(U × V)# (A⊗B) = (U # A) ⊗ (V # B),
in all other cases: U # A = ♣U.

Lemma 5.9 If U, V ∈ iType andA,B ∈ qType , then the following are true:

(a) †(U # A) = U ,

(b) If †A = U thenU # A = A,

(c) If A<: B then(U # A)<: (U # B). ut

18

Definition 5.10 Let Γ be an intuitionistic typing context, and∆ a quantum typing
context, such that|Γ| ⊆ |∆|. Then we defineΓ # ∆ := Γ ′, where|Γ′| = |Γ|, and for
all x in |Γ|, Γ′(x) = Γ(x) # ∆(x). This notation is extended to typing judgments in
the following way, provided that|Γ| ⊆ |∆|:

(Γ IM : U)# (∆ BM : A) := Γ# ∆ BM : U # A,

and to type derivations by structural induction, provided that the intuitionistic deriva-
tion is normal.

Lemma 5.11 If π is a normal intuitionistic type derivation and ifρ is any quantum
type derivation, thenπ ′ := (π # ρ) is a normal quantum type derivation.

Proof. By structural induction onρ, and by case distinction on the last typing rule
used. For instance, suppose the last rule used was the(app) rule. ThenM = NP and
the type derivationρ ends in

.... ρ1

∆1, !∆3 B N : A(B

.... ρ2

∆2, !∆3 B P : A

∆1,∆2, !∆3 B NP : B

In normal intuitionistic lambda calculus the type derivationπ is of the form:

.... π1

Γ|FV (N) I N : U ⇒ V

.... π2

Γ|FV (P) I P : U

Γ|FV (NP) I NP : V

Writing Γ|X for Γ|FV (X), the type derivationπ # ρ is

.... π1 # ρ1

Γ|N # (∆1, !∆3) B N : (U ⇒ V)# (A(B)

.... π2 # ρ2

Γ|P # (∆2, !∆3) B P : U # A

Γ|NP # (∆1,∆2, !∆3) B NP : V # B.

By induction hypothesis,π1 # ρ1 andπ2 # ρ2 are quantum normal type derivations.
If we write Γi for Γ|dom∆i # ∆i, using Lemma 5.9 and the definition of#, the last
rule of the derivation above becomes:

{Γ1, !Γ3}|N B N : (U # A)((V # B) {Γ2, !Γ3}|P B P : U # A

{Γ1,Γ2, !Γ3}|NP B NP : V # B,

which is an instance of the normal quantum(app) rule. Thusπ ′ := (π # ρ) is a
normal quantum type derivation. The other typing rules are treated similarly. ut

Proof of Theorem 5.7. For the left-to-right implication, ifρ is some quantum type
derivation ofM , we can defineπ ′ = (π # ρ) as in Lemma 5.11. Then†π

′
= π follows

from Lemma 5.9. The right-to-left implication follows trivially from Lemma 5.6.ut

19

5.5 Elimination of repeated exponentials

The type system in Section 4 allows types with repeated exponentials such as!!A.
While this is useful for compositionality, it is not very convenient for type inference.
We therefore consider a reformulation of the typing rules which only requires single
exponentials.

Definition 5.12 ForA ∈ qType , we define#A ∈ qType to be the result of erasing
multiple exponentials inA. Formally, ifσ(0) = 0 andσ(n+ 1) = 1,

#!nα = !σ(n)α, #!nX = !σ(n)X, #!n> = !σ(n)>,
#!n(A(B) = !σ(n)(#A(#B), #!n(A⊗B) = !σ(n)(#A⊗ #B),

We also extend this operation to typing contexts and judgments in the obvious way.

Lemma 5.13 The following are derived rules of the type system in Table 2, for all
τ, σ ∈ {0, 1}.

!∆,Γ1 BM1 : !A1 !∆,Γ2 BM2 : !A2

!∆,Γ1,Γ2 B 〈M1,M2〉 : !(!τA1 ⊗ !σA2)
(⊗.I ′)

!∆,Γ1 BM : !(!τA1 ⊗ !σA2) !∆,Γ2, x1:!A1, x2:!A2 B N : A

!∆,Γ1,Γ2 B let 〈x1, x2〉 = M in N : A
(⊗.E′)

Further, the normal forms of(⊗.I ′) and(⊗.E ′) are derivable in the normal type sys-
tem.

Proof. Suppose!∆,Γ1 B M1 : !A1 and !∆,Γ2 B M2 : !A2 are derivable. Since
!A1<:!!τA1 and!A2<:!!σA2, therefore!∆,Γ1 BM1 : !!τA1 and!∆,Γ2 BM2 : !!σA2

are also derivable by Lemma 4.9(3). But then!∆,Γ1,Γ2 B 〈M1,M2〉 : !(!τA1 ⊗ !σA2)
follows from rule(⊗.I). The proof of the second rule is similar. Finally, the last claim
follows from Lemma 5.6. ut

Lemma 5.14 If π is a derivation of a typing judgment∆ B M : A from the normal
quantum typing rules, then#π is a valid normal derivation of#∆ BM : #A, possibly
using the normal forms of(⊗.I ′) and(⊗.E ′) as additional rules. Moreover,†π = †#π.

Proof. By inspection of the rules. For each normal typing ruler, #r is either an
instance of the same rule, or of the normal form of(⊗.I ′) or (⊗.E′). ut

5.6 Description of the type inference algorithm

Theorem 5.7 yields a simple type inference algorithm. Given a termM , we can perform
type inference in the quantum lambda calculus in three steps:

(1) Find an intuitionistic type derivationπ of M , if any.

(2) Eliminate “dummy” variables to obtain its normal formNπ.

(3) Find a decoration ofNπ which is a valid normal quantum type derivation, if any.

20

Step (1) is known to be decidable, and step (2) is computationally trivial. By The-
orem 5.7, step (3) will succeed if and only ifM is quantum typable. Note that by
Lemma 5.14, it suffices to consider decorations ofNπ without repeated exponentials.
Since there are only finitely many such decorations, step (3) is clearly decidable. Also
note that if the algorithm succeeds, then it returns a possible type forM . However, it
does not return a description of all possible types.

Remark 5.15 (Efficiency of the algorithm) In principle, the search space of all pos-
sible decorations ofNπ is exponential in size. However, this space can be searched
efficiently by solving a system of constraints. More precisely, if we create a boolean
variable for each place in the type derivation which potentially can hold a “!”, then the
constraints imposed by the linear type system can all be written in the form of impli-
cationsx1 ∧ . . . ∧ xn ⇒ y, wheren > 0, and negations¬z. It is well-known that
such a system can be solved in polynomial time in the number of variables and clauses.
Therefore, the type inference problem can be solved in time polynomial in the size of
the type derivationπ.

Note, however, that the size of an intuitionistic type derivationπ need not be poly-
nomial in the size of the termM , because in the worst case,π can contain types that are
exponentially larger thanM . We do not presently know whether quantum typability
can be decided in time polynomial inM .

6 Conclusion and further work

In this paper, we have defined a higher-order quantum programming language based on
a linear typed lambda calculus. Compared to the quantum lambda calculus of van Ton-
der [14, 15], our language is characterized by the fact that it contains classical as well
as quantum features; for instance, we provide classical datatypes and measurements as
a primitive feature of our language. Moreover, we provide a subject reduction result
and a type inference algorithm. As the language shows, linearity constraints do not just
exist at base types, but also at higher types, due to the fact that higher-order functions
are represented as closures, which may in turns contain embedded quantum data. We
have shown that a version of affine intuitionistic linear logic provides the right type
system to deal with this situation.

There are many open problems left for further work. An interesting question is
whether the syntax of this language can be extended to include recursion. Another
question is to study extensions of the type system, for instance with additive types as
in linear logic. One may also study alternative reduction strategies. In this paper, we
have only considered the call-by-value case; it would be interesting to see if there is a
call-by-name equivalent of this language. Finally, another important open problem is to
find a good denotational semantics for a higher order quantum programming language.
One approach for finding such a semantics is to extend the framework of Selinger [12]
and to identify an appropriate higher-order version of the notion of a superoperator.

21

A Appendix

A.1 Example: Type derivation of the teleportation protocol

To illustrate the linear type system from Section 4.2, we give a complete derivation
of the type of the quantum teleportation term from Section 4.3. The notation(L.x.y)
means that Lemma.x.y is used.

Computing some subtypes:

1 α2 !nα <: α
2 α2 !mβ <: β
3 (2, 1, 2 !k(α(!mβ)<: (!nα(β)
4 (L.4.3) A<:A
5 D, 4 !A<:A

Computing the type ofEPR:

6 const , 3 B new : bit(qbit

7 const , 5 B 0: bit
8 app , 6, 7 B new 0: qbit
9 const , 3 B H : qbit(qbit

10 app , 9, 8 B H(new 0): qbit
11 ⊗.I, 10, 9 B 〈H(new 0),new 0〉 : qbit ⊗ qbit

12 const , 3 x:> B CNOT :(qbit ⊗ qbit)((qbit ⊗ qbit)
13 app , 12, 11 x:> B CNOT 〈H(new 0),new 0〉: qbit ⊗ qbit

14 λ2, 13 B λx.CNOT 〈H(new 0),new 0〉:!(>((qbit ⊗ qbit))

Computing the type ofBellMeasure:

15 var , 1 y:qbit B y:qbit
16 const , 3 B meas :qbit(bit

17 app , 16, 15 y: qbit B meas y:bit
18 var , 1 x: qbit B x:qbit
19 app , 9, 18 x:qbit B Hx:qbit
20 app , 16, 19 x: qbit B meas(Hx):bit
21 var , 1 q1: qbit B q1: qbit
22 var , 1 q2: qbit B q2: qbit
23 ⊗.I, 21, 22 q2: qbit , q1: qbit B 〈q1, q2〉: qbit ⊗ qbit

24 const , 3 B CNOT :(qbit ⊗ qbit)((qbit ⊗ qbit)
25 app , 24, 23 q2: qbit , q1: qbit B CNOT 〈q1, q2〉: qbit ⊗ qbit

26 ⊗.I, 20, 17 x: qbit , y: qbit B 〈meas(Hx),meas y〉: bit ⊗ bit

27 ⊗.E, 25, 26 q2: qbit , q1: qbit B let 〈x, y〉 = CNOT 〈q1, q2〉
in〈meas(Hx),meas y〉: bit ⊗ bit

28 λ1, 27 q2: qbit B λq1.(let 〈x, y〉 = CNOT 〈q1, q2〉
in 〈meas(Hx),meas y〉):qbit(bit ⊗ bit

29 λ2, 28 B λq2.λq1.(let 〈x, y〉 = CNOT 〈q1, q2〉
in 〈meas(Hx),meas y〉):!(qbit((qbit(bit ⊗ bit))

22

Computing the type ofU:

30 var , 1 q:qbit B q:qbit
31 const , 3 B Uij :qbit(qbit

32 app , 30, 31 q:qbit B Uijq:qbit
33 var , 1 y:bit B y:!bit
34 var , 1 x:bit B x:!bit
35 if , 33, 32, 32 q:qbit , y:bit B if y thenUi1q elseUi0q:qbit
36 if , 34, 35, 35 q:qbit , x:bit , y:bit B if x then (ify thenU11q elseU10q)

else (ify thenU01q elseU00q): qbit
37 (′

1, 36 q:qbit B λ〈x, y〉.if x then (ify thenU11q elseU10q)
else (ify thenU01q elseU00q): bit ⊗ bit(qbit

38 (2, 37 B λq.λ〈x, y〉.if x then (ify thenU11q elseU10q)
else (ify thenU01q elseU00q):!(qbit((bit ⊗ bit(qbit))

Finally, computing the type of the pair〈f, g〉:
39 > B ∗ :>
40 (L.4.9), 14, 5 B EPR:>((qbit ⊗ qbit)
41 app , 40, 39 B EPR ∗ :qbit ⊗ qbit

42 (L.4.9), 29, 5 B BellMeasure:qbit((qbit(bit ⊗ bit)
43 var , 1 x:qbit B x:qbit
44 app , 42, 43 x:qbit B BellMeasure x: qbit(bit ⊗ bit

45 var , 1 y:qbit B y:qbit
46 (L.4.9), 38, 5 B U: qbit((bit ⊗ bit(qbit)
47 app , 46, 45 y:qbit B U y: bit ⊗ bit(qbit

48 var , 1 f :qbit(bit ⊗ bit B f :qbit(bit ⊗ bit

49 var , 1 g: bit ⊗ bit(qbit B g: bit ⊗ bit(qbit

50 ⊗, 48, 49 g: bit ⊗ bit(qbit , f : qbit(bit ⊗ bit B 〈f, g〉:
(qbit(bit ⊗ bit) ⊗ (bit ⊗ bit(qbit)

51 let , 47, 50 f : qbit(bit ⊗ bit , y:qbit B let g = U y in 〈f, g〉:
(qbit(bit ⊗ bit) ⊗ (bit ⊗ bit(qbit)

52 let , 44, 51 x:qbit , y:qbit B let f = BellMeasure x in let g = U y
in〈f, g〉):(qbit(bit ⊗ bit) ⊗ (bit ⊗ bit(qbit)

53 let , 41, 52 B let 〈x, y〉 = EPR ∗ in let f = BellMeasure x
in let g = U y in 〈f, g〉)):
(qbit(bit ⊗ bit) ⊗ (bit ⊗ bit(qbit)

A.2 Example: Reduction of the teleportation term

As an illustration of the reduction rules of the quantum lambda calculus we show the
detailed reduction of the term from the teleportation example from Section 4.3. The
reduction of the teleportation term corresponds to the equalityg ◦ f = id . We use the

23

following abbreviations:

Mp,p′ := let f = BellMeasure p in let g = U p′ in g(f p0)
Bp1

:= λq1.(let 〈p, p′〉 = CNOT 〈q1, p1〉 in 〈meas(Hp),meas p′〉)
Up2

:= λ〈x, y〉. (if x then(if y thenU11p2 elseU10p2)
else(if y thenU01p2 elseU00p2))

The reduction of the term is then as follows:








α|0〉 + β|1〉,
let 〈p, p′〉 = EPR ∗

in let f = BellMeasure p
in let g = U p′

in g(f p0)









→1 [α|0〉 + β|1〉, let 〈p, p′〉 = CNOT 〈H(new 0),new 0〉 in Mp,p′]

→1 [(α|0〉 + β|1〉) ⊗ |0〉, let 〈p, p′〉 = CNOT 〈Hp1,new 0〉 in Mp,p′]

→1

[

(α|0〉 + β|1〉) ⊗ 1√
2
(|0〉 + |1〉), let 〈p, p′〉 = CNOT 〈p1,new 0〉 in Mp,p′

]

→1

[

(α|0〉 + β|1〉) ⊗ 1√
2
(|0〉 + |1〉) ⊗ |0〉, let 〈p, p′〉 = CNOT 〈p1, p2〉 in Mp,p′

]

→1

[

(α|0〉 + β|1〉) ⊗ 1√
2
(|00〉 + |11〉), let 〈p, p′〉 = 〈p1, p2〉 in Mp,p′

]

→1



(α|0〉 + β|1〉) ⊗ 1√
2
(|00〉 + |11〉),

let f = BellMeasure p1

in let g = U p2

in g(f p0)





→1
∗

[

(α|0〉 + β|1〉) ⊗ 1√
2
(|00〉 + |11〉), Up2

(Bp1
p0)

]

→1

[

(α|0〉 + β|1〉) ⊗ 1√
2
(|00〉 + |11〉), Up2

(

let 〈p, p′〉 = CNOT 〈p0, p1〉
in 〈meas(Hp),meas p′〉

)]

→1

[

1√
2

(

α|000〉 + α|011〉
+β|110〉+ β|101〉

)

, Up2

(

let 〈p, p′〉 = 〈p0, p1〉
in 〈meas(Hp),meas p′〉

)]

→1

[

1√
2

(

α|000〉 + α|011〉
+β|110〉+ β|101〉

)

, Up2
〈meas(Hp0),meas p1〉

]

→1









1
2









α|000〉 + α|011〉
+α|100〉+ α|111〉
+β|010〉+ β|001〉
−β|110〉 − β|101〉









, Up2
〈meas p0,meas p1〉



























1

2 ;;vvvvv

1

2

##HH
HH

H

[

1√
2

(

α|000〉 + α|011〉
+β|010〉+ β|001〉

)

, Up2
〈0,meas p1〉

]

[

1√
2

(

α|100〉 + α|111〉
−β|110〉 − β|101〉

)

, Up2
〈1,meas p1〉

]



















1/2 66mmmm

1/2
((QQQQ

1/2 66mmmm

1/2
((QQQQ

[(

α|000〉 + β|001〉
)

, Up2
〈0, 0〉

]

[(

α|011〉 + β|010〉
)

, Up2
〈0, 1〉

]

[(

α|100〉 − β|101〉
)

, Up2
〈1, 0〉

]

[(

α|111〉 − β|110〉
)

, Up2
〈1, 1〉

]

→1
∗ [(

α|000〉 + β|001〉
)

, U00p2

]

→1
∗ [(

α|011〉 + β|010〉
)

, U01p2

]

→1
∗ [(

α|100〉 − β|101〉
)

, U10p2

]

→1
∗ [(

α|111〉 − β|110〉
)

, U11p2

]

24



















→1

→1

→1

→1

[(α|000〉 + β|001〉), p2]
[(α|010〉 + β|011〉), p2]
[(α|100〉 + β|101〉), p2]
[(α|110〉 + β|111〉), p2]

= [|00〉 ⊗ (α|0〉 + β|1〉), p2]
= [|01〉 ⊗ (α|0〉 + β|1〉), p2]
= [|10〉 ⊗ (α|0〉 + β|1〉), p2]
= [|11〉 ⊗ (α|0〉 + β|1〉), p2]

A.3 Example: Reduction of the superdense coding term

As another example of the reduction rules, we give the reduction of the superdense
coding example from Section 4.3. This reduction shows the equalityf ◦g = id . Of the
four possible cases, we only give one case, namely(f ◦g)〈0, 1〉 = 〈0, 1〉; the remaining
cases are similar. We use the same abbreviations as above.









|〉,
let 〈p, p′〉 = EPR ∗

in let f = BellMeasure p
in let g = U p′

in f(g〈0, 1〉)









→1
∗





1√
2
(|00〉 + |11〉),

let f = BellMeasure p0

in let g = U p1

in f(g〈0, 1〉)





→1
∗

[

1√
2
(|00〉 + |11〉), Bp0

(Up1
〈0, 1〉)

]

→1
∗

[

1√
2
(|00〉 + |11〉), Bp0

(U01p1)
]

→1

[

1√
2
(|01〉 + |10〉), Bp0

p1

]

→1

[

1√
2
(|01〉 + |10〉), let 〈p, p′〉 = CNOT 〈p1, p0〉 in 〈meas(Hp),meas p′〉

]

→1

[

1√
2
(|11〉 + |10〉), let 〈p, p′〉 = 〈p1, p0〉 in 〈meas(Hp),meas p′〉

]

→1

[

1√
2
(|11〉 + |10〉), 〈meas(Hp1),meas p0〉

]

→1 [|10〉, 〈meas p1,meas p0〉]
→1

∗ [|10〉, 〈0, 1〉]

References

[1] T. Altenkirch and J. Grattage. A functional quantum programming language.
Available from arXiv:quant-ph/0409065, 2004.

[2] H. P. Barendregt.The Lambda-Calculus, its Syntax and Semantics, volume 103
of Studies in Logic and the Foundation of Mathematics. North Holland, second
edition, 1984.

25

[3] P. Benioff. The computer as a physical system: A microscopic quantum mechani-
cal Hamiltonian model of computers as represented by Turing machines.Journal
of Statistical Physics, 22:563–591, 1980.

[4] S. Bettelli, T. Calarco, and L. Serafini. Toward an architecture for quantum pro-
gramming.The European Physical Journal D, 25(2):181–200, August 2003.

[5] V. Danos, J.-B. Joinet, and H. Schellinx. On the linear decoration of intuitionistic
derivations.Archive for Mathematical Logic, 33:387–412, 1995.

[6] D. Deutsch. Quantum theory, the Church-Turing principle and the universal quan-
tum computer.Proceedings of the Royal Society of London. Series A, Mathemat-
ical and Physical Sciences, 400(1818):97–117, July 1985.

[7] J.-Y. Girard. Linear logic.Theoretical Computer Science, 50(1):1–101, 1987.

[8] E. Knill. Conventions for quantum pseudocode. Technical Report LAUR-96-
2724, Los Alamos National Laboratory, 1996.

[9] M. A. Nielsen and I. L. Chuang.Quantum Computation and Quantum Informa-
tion. Cambridge University Press, 2002.

[10] J. Preskill. Lecture notes for Physics 229, quantum computation. Available from
http://www.theory.caltech.edu/people/preskill/ph229/#lecture, 1999.

[11] J. W. Sanders and P. Zuliani. Quantum programming. In R. Backhouse and
J. N. Oliveira, editors,Mathematics of Program Construction: 5th International
Conference, volume 1837 ofLecture Notes in Computer Science, pages 80–99,
Ponte de Lima, Portugal, July 2000. Springer-Verlag.

[12] P. Selinger. Towards a quantum programming language.Mathematical Structures
in Computer Science, 14(4):527–586, 2004.

[13] Benoı̂t Valiron. A functional programming language for quantum computation
with classical control. Master’s thesis, University of Ottawa, September 2004.

[14] A. van Tonder. Quantum computation, categorical semantics and linear logic. On
arXiv: quant-ph/0312174, 2003.

[15] A. van Tonder. A lambda calculus for quantum computation.SIAM Journal of
Computing, 33(5):1109–1135, 2004. Available from arXiv:quant-ph/0307150.

26

