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Abstract

The objective of this paper is to develop a functional programming language for
guantum computers. We develop a lambda calculus for the classical control model,
following the first author’s work on quantum flow-charts. We define a call-by-value
operational semantics, and we give a type system using affine intuitionistic linear
logic. The main results of this paper are the safety properties of the language and
the development of a type inference algorithm.

1 Introduction

The objective of this paper is to develop a functional programming language for quan-
tum computers. Quantum computing is a theory of computation based on the laws of
quantum physics, rather than of classical physics. Quantum computing has become a
fast growing research area in recent years. For a good introduction, see e.g. [9, 10].

Due to the laws of quantum physics, there are only two kinds of basic operations
that one can perform on a quantum state, nameitary transformationsndmeasure-
ments Many existing formalisms for quantum computation put an emphasis on the
former, i.e., a computation is understood as the evolution of a quantum state by means
of unitary gates. Measurements are usually performed at the end of the computation,
and outside of the formalism. In these models, a quantum computer is considered as a
purely quantum system, i.e., without any classical parts. One example of such a model
is the quantum Turing machine [3, 6], where the entire machine state, including the
tape, the finite control, and the position of the head, is assumed to be in quantum su-
perposition. Another example is the quantum lambda calculus of van Tonder [14, 15],
which is a higher-order, purely quantum language without an explicit measurement
operation.

On the other hand, one might imagine a model of a quantum computer where uni-
tary operations and measurements can be interleaved. One example is the so-called
QRAM modebf Knill [8], which is also described by Bettelli, Calarco and Serafini [4].
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Here, a quantum computer consists of a classical computer connected to a quantum
device. In this configuration, the operation of the machine is controlled by a classical
program which emits a sequence of instructions to the quantum device for perform-
ing measurements and unitary operations. In such a model, the control structures of
the machine are classical, and only the data being operated upon is quantum. This
situation is summarized by the slogan “quantum data, classical control” [12]. Several
programming languages have been proposed to deal with such a model [4, 11]. The
present paper is based on the work of [12].

In this paper, we proposetagher-orderquantum programming language, i.e., one
in which functions can be considered as data. A program is a lambda term, possibly
with some quantum data embedded inside. The basic idea is that lambda terms encode
the control structure of a program, and thus, they would be implemented classically,
i.e., on the classical device of the QRAM machine. However, the data on which the
lambda terms act is possibly quantum, and is stored on the QRAM quantum device.

Because our language combines classical and quantum features, it is natural to
consider two distinct basic data types: a typelaksical bitsand a type ofjuantum
bits. They behave very differently. For instance, a classical bit can be copied as many
times as needed. On the other hand, a quantum bit cannot be duplicated, due to the well-
known no cloning propertyof quantum states [9, 10]. However, quantum data types
are very powerful, due to the phenomena of quantum superposition and entanglement.

The semantics described in this paper is operational; a program is an abstract ma-
chine with reductions rules. The reduction rules are probabilistic.

Some care is needed when defining a type system for higher-order quantum func-
tions. This is because the question of whether a function is duplicable or not cannot
be directly seen from the types of its arguments or of its value, but rather it depends
on the types of any free variables occurring in the function definition. As it turns out,
the appropriate type system for higher-order quantum functions in our setting is affine
intuitionistic linear logic.

We also address the question of finding a type inference algorithm. Using the re-
mark that a linear type is a decoration of an intuitionistic one, we show that the question
of deciding whether or not a program is valid can be reduced to the question of finding
an intuitionistic type for it and to explore a finite number of linear decorations for the
type.

This work is based on the second author's Master’s thesis [13]. A preliminary
version of this paper appeared in TLCA 2005.

2 Quantum computing basics

We briefly recall the basic definitions of quantum computing; please see [9, 10] for a
complete introduction to the subject. The basic unit of information in quantum com-
putation is a quantum bit aqubit The state of a single qubit is a a normalized vec-
tor of the 2-dimensional Hilbert spac€2. We denote the standard basis®t as
{]0), [1)}, so that the general state of a single qubit can be written|@s+ 3|1),
where|a|? + |52 = 1.

The state of, qubits is a normalized vector in?_,C? = C2". We write|zy) =



|z) ® |y), so that a standard basis vector@¥ can be denoteffi™"), where™i " is
the binary representation fn n digits, for0 < i < 2”. As a special case, if = 0,
we denote the unique standard basis vectdtirby |).
The basic operations on quantum states are unitary operations and measurements.
A unitary operation maps amqubit state to am-qubit state, and is given by a unitary
2" x 2"-matrix. It is common to assume that the computational model provides a
certain set of built-in unitary operations, including for examplettaglamard gateld
and thecontrolled not-gateCNOT', among others:
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The measurement acts as a projection. When a qubjt+ 3|1) is measured, the
observed outcome is a classical bit. The two possible outcomaesi1 are observed
with probabilities|«|? and |3|?, respectively. Moreover, the state of the qubit is af-
fected by the measurement, and collapsgétdf 0 was observed, and ta) if 1 was
observed. More generally, given arqubit statel¢) = ao|0) ® |o) + a1]l) @ |¢1),
where |¢)y) and|y1) are normalizedn — 1)-qubit states, then measuring the left-
most qubit results in the answéwith probability |« ;|2, and the resulting state will be

i) @ [¢hs).

3 The untyped quantum lambda calculus

3.1 Terms

Our language uses the notation of the intuitionistic lambda calculus. For a detailed
introduction to the lambda calculus, see e.g. [2]. We start from a standard lambda
calculus with booleans and finite products. We extend this language with three special
quantum operations, which areew, meas, and built-inn-ary gates. new maps a
classical bit to a quantum bitaeas maps a quantum bit to a classical bit by performing

a measurement operation; this is a probabilistic operation. Finally, we assume that there
is a sefU™ of built-in n-ary n-ary gates for each. We use the lettel/ to range over
built-in n-ary gates. Thus, the syntax of our language is as follows:

Term M,N,P := x| MN|Ax.M| if M then N else P|0|1]| meas
| new |U| x | (M,N) | let {x,y) = M in N,

We follow Barendregt’s convention for identifying terms upt@equivalence. We also
sometimes use the shorthand notations

<M11--->Mn> = <M1,<M2,...>>,
letr=MinN = (\.N)M,
Mz, y).M = Az.(let {(z,y) = zin N).



3.2 Programs

The reader will have noticed that we have not provided a syntax for constant quantum
states such as|0) + 5|1) in our language. One may ask why we did not allow the
insertion of quantum states into a lambda term, suckwagy|0) + 5|1)). The reason

is that, in the general case, such a syntax would be insufficient. Consider for instance
the lambda term{A\y.\f.fpy)(q), wherep andq are entangled quantum bits in the
state|pg) = «|00) + 5|11). Such a state cannot be represented locally by replacing
p andq with some constant qubit expressions. The non-local nature of quantum states
thus forces us to introduce a level of indirection into the representation of a state of a
guantum program.

Definition 3.1 A program states represented by a trip[€), L, M|, where
e () is a normalized vector ab?~'C2, for somen > 0
e M is alambda term,

e Lis afunction fromiW to {0,...,n — 1}, whereFV(M) CW C Vyepp,. Lis
also called thdinking functionor thequbit environment

The purpose of the linking function is to assign specific free variables! db
specific quantum bits i). The notion ofx-equivalence extends naturally to programs,
for instance, the statg$l), {z — 0}, Ay.z] and][1), {z — 0}, A\y.z] are equivalent.
The set of program states, updeequivalence, is denoted ISy

Convention 3.2 In order to simplify the notation, we will often use the following
convention: we use; to denote the free variable such thatL(z) = i. A pro-
gram|Q, L, M] is abbreviated t0Q, M'] with M’ = M|p;, /x1]...[pi, /Tx], Wwhere
ik = L(xk)

3.3 Linearity

An important well-formedness property of quantum programs is that quantum bits
should always beiniquely referencedroughly, this means that no two variable oc-
currences should refer to the same physical quantum bit. The reason for this restriction
is the well-known no-cloning property of quantum physics, which states that a quan-
tum bit cannot be duplicated: there exists no physically meaningful operation which
maps an arbitrary quantum bit) to |¢) @ |¢).

Syntactically, the requirement of unique referencing translates ilmearity con-
dition: A lambda abstractionz.M is calledlinear if the variablex is used at most
once during the evaluation af. A well-formed program should be such that quantum
data is only used linearly; however, classical data, such as ordinary bits, can of course
be used non-linearly. Since the decision of which subterms must be used linearly de-
pends on type information, we will not formally enforce any linearity constraints until
we discuss a type system in Section 4; nevertheless, we will assume that all our untyped
examples are well-formed in the above sense.



3.4 Evaluation strategy

As is usual in defining a programming language, we need to settle on a reduction strat-
egy. The obvious candidates are call-by-name and call-by-value. Because of the prob-
abilistic nature of measurement, the choice of reduction strategy affects the behavior of
programs, not just in terms of efficiency, but in terms of the actual answer computed.
We demonstrate this in an example. [pdtis be the boolean addition function, which

is definable aplus = A\ay. if © then (if y then 0 else 1) else (if y then 1 else 0).
Consider the termd/ = (Az.plus z x)(meas(H (new 0))).

Call-by-value. Reducing this in the empty environment, using the call-by-value re-
duction strategy, we obtain the following reductions:

—scpv  [|0), (A\z.plus z x)(meas(H p))]
—CBV [%(|O> + 1)), (A\z.plus z x)(meas po)]
[10
——~CBV { [|1
{ [ 10}, plus 0 0]
[11),plus 1 1]

), (Az.plus z x)(0)]
), (Az.plus z z)(1)]

3

——CBV
. [10),0]
BV [).0]

where the two branches are taken with probabiljtg each. Thus, under call-by-value
reduction, this program produces the boolean véalugth probability 1. Note that we
have used Convention 3.2 for writing these program states.

Call-by-name. Reducing the same term under the call-by-name strategy, we obtain
in one steq |), plus (meas(H (new 0))) (meas(H(new 0))))], and then with prob-
ability 1/4,[|01),1],[|10),1],[|00),0] or[|11),0]. Therefore, the boolean output

of this function is0 or 1 with equal probability.

Mixed strategy. Moreover, if we mix the two reduction strategies, the program can
even reduce to an ill-formed term. Namely, reducing by call-by-value p%|(|0> +

1)), (Az.plus x x)(meas po)], and then changing to call-by-name, we obtain in one
step the tern{%(\O) +|1)), (plus (meas po) (meas po)], which is not a valid
program since there aBeoccurrences o .

In the remainder of this paper, we will only consider the call-by-value reduction strat-
egy, which seems to us to be the most natural.



3.5 Probabilistic reduction systems

In order to formalize the operational semantics of the quantum lambda calculus, we
need to introduce the notion of a probabilistic reduction system.

Definition 3.3 A probabilistic reduction systens a tuple(X, U, R, prob) where X

is a set ofstates U C X is a subset ofalue statesR C (X \ U) x X is a set of
reductions andprob : R — [0, 1] is aprobability function where|0, 1] is the real unit
interval. Moreover, we impose the following conditions:

e Foranyr € X, R, ={ ' | (z,2") € R } is finite.
. Zm/ERI prob(z,2’) <1

We callprob the one-step reduction, and denste-, y to beprob(z,y) = p. Let
us extencbrob to then-step reduction

0 . 0 if z#y

prob” (z,y) = L oy
prob' (z,y) = pTOb(():c,y) glse(xyy) €R
pTObn"rl ({L‘7 y) = ZZERI p/,nob(x7 Z)probn(z7 y)’

and the notation is extendedo—} y to meanprob™ (z, y) = p.

We say thaty is reachable in one step with non-zero probabifitym x, denoted
r—soy Whenz —,y with p > 0. We say thay is reachable with non-zero probability
fromz, denotedr — %, y when there exista > 0 such thatr —7 y with p > 0.

We can then compute the probability to reack U from z: It is a function from
X x U to R defined byprob (z,u) = 377, prob" (z,u). The total probability for
reachingU from z is prob; (x) = Y7 o >, iy prob” (z, u).

On the other hand, there is also the probabilitditeergefrom «, or never reaching
anything. This value igrob () = limp—.cc 3 -, ¢ x prob”(z, y).

Lemma 3.4 For all z € X, proby (x) + prob(x) < 1. O

We define theerror probability ofz to be the numbeprob ... (z) = 1—proby (x)—
prob ().

Definition 3.5 We can define a notion of equivalencein

o proby (x,u) = proby (y, u)
TRy iff Yue U{ pT'Oboo(x) = proboo(y)

Definition 3.6 In addition to the notion of reachability with non-zero probability, there
is also a weaker notion of reachability, given By We will say thaty is reachable in
one steffrom z, writtenz ~ y, if zRy. By the properties oprob, z — < y implies

x ~ 1. As usual~~* denotes the transitive reflexive closure-ef and we say thaj is
reachablefrom x if & ~~* y.



Definition 3.7 In a probabilistic reduction system, a statés called arerror-stateif
x ¢ Uand) . prob(z,2’) < 1. Anelementz € X is consistenif there is no
error-statee such thate ~~* e.

Lemma 3.8 If z is consistent, theprob ,..(x) = 0. O

Remark 3.9 We need the weaker notion of reachability- * y, in addition to reacha-

bility with non-zero probabilityr — <. ¢*y, because a null probability of getting a certain
result is not an absolute warranty of its impossibility. In the QRAM, suppose we have
a qubit in statd0). Measuring it cannot theoretically yield the valugout in practice,

this might happen with small probability, due to imprecision of the physical operations
and decoherence. Therefore, when we prove type safety (see Theorem 4.15), we will
use the stronger notion. In short: a type-safe program should not crash, even in the
event of random QRAM errors.

Remark 3.10 The converse of Lemma 3.8 is false. Forinstanc¥, i {a, b}, U = (),
a —1 a, anda —¢ b, thenb is an error state, anidis reachable froma, but only with
probability zero. Hencerob ,..(a) = 0, althougha is inconsistent.

3.6 Operational semantics

We define a probabilistic call-by-value reduction procedure for the quantum lambda
calculus. Note that, although the reduction itself is probabilistic, the choice of which
redex to reduce at each step is deterministic.

Definition 3.11 A valueis a term of the following form:
Value V,W = x| Axe.M |0|1] meas | new |U | x | (V,W).
The set of value states¥6= {[Q, L, V] € S|V € Value}.

The reduction rules are shown in Table 1, where we have used Convention 3.2 to
shorten the description of states. We wif, L, M| —, [Q', L', M’] for a single-
step reduction of states which takes place with probabilityn the rule for reducing
the termU{(p;,,...,p;,), U is ann-ary built-in unitary gatej, ..., j, are pairwise
distinct, and@’ is the quantum state obtained fraghby applying this gate to qubits
Jiy---,Jn. Inthe rule for measurementy) ) and|Q;) are normalized states of the
form Qo) = 5, as16%) @ [0) @ [w9) and|@1) = 32, Bi161) @ [1) @ [1}), where!
and¢§ is ani-qubit state (so that the measured qubit is the one pointed@)byn the
rule for for new, @ is ann-qubit state, so thad ® |¢) is an(n + 1)-qubit state, ang,,
refers to its rightmost qubit.

We define a weaker relation. This relation models the transformations that can
happen in the presence of decoherence and imprecision of physical operations. We
define[@Q, M] ~ [Q’, M'] to be [Q, M] —, [Q', M'], even wherp = 0, plus the
additional rule, ifQ andQ’ are vectors of equal dimension§), M|~ [Q', M].

Lemma 3.12 Letprob be the function such that far,y € S, prob(z,y) = pifz —,y
ando else. TherfS, V, ~, prob) is a probabilistic reduction system. ad



Q. Az M)V] =1 [Q, M[V/a] [Q. if 0 then M else N] —1 [Q, N]

[Q,N] =, [Q", N'] .
[Q,MN] —, @, MN'] [Q,if 1 then M else N] —1 [Q, M]
[ ] p [Q ] [Q7U<pj17"'apjn>] -1 [Qla<pj17"'apjn>]
(Q, MV] =, [Q,M'V] [@]|Qo) + B|Q1), meas pi] — a2 [|Q0), 0]
[Q, My] —, [Q', M]] [@]|Qo) + B|Q1), meas pi] — g2 [|Q1), 1]
[Q, (M, M2)] —p [Q', (M7, M3)] [Q, new 0] —1 [Q @ |0), pn]
Q.005] —, [Q', 0} oo
[Q, (i, Mo)] =, [, (Va, M3)] Qrew o QE P
[Q, P] =, [Q', P]
[Q, if P then M else N] —, [@Q', if P’ then M else N]
[Q, M] —p [Q, M']
] —=p |

(@, let (x1,220) = M in N] —, [Q',let (z1,22) = M’ in N]|

(@, let (z1,z2) = (V1,V2) iIn N| =1 [Q, N[V1 /21, V2 /x2]|
Table 1: Reductions rules of the quantum lambda calculus

This probabilistic reduction system has error states, for exarf@|éf (\z.z)] or
[Q, U{po,po)]. Such error states correspond to run-time errors. In the next section, we
introduce a type system designed to rule out such error states.

4 The typed quantum lambda calculus

We will now define a type system designed to eliminate all run-time errors arising from
the reduction system of the previous section. We need base types (duthrdqbit),
function types, and product types. In addition, we need the type system to capture a
notion of duplicability, as discussed in Section 3.3. We follow the notation of linear
logic [7]. By default, a term of typel is assumed to be non-duplicable, and duplicable
terms are given the typel instead. Formally, the set of types is defined as follows,
wherea ranges over a set of type constants ahdanges over a countable set of type
variables:

qType A, B = a|X|!A|(A—B)|T|(A®B)

Note that, because all terms are assumed to be non-duplicable by default, the language
has a linear function typd — B and a linear product typd ® B. This reflects the

fact that there is in general no canonical diagonal funcion» A ® A. Also, T is the

linear unit type. This will be made more formal in the typing rules below. We write



" Afor .. NA, with n repetitions of. We also writeA™ for then-fold tensor product
AR...Q A.

4.1 Subtyping

The typing rules will ensure that any value of tybgis duplicable. However, there
is no harm in using it only once; thus, such a value should also havedyp®r this
reason, we define a subtyping relatiaras follows:

A< B
T<T (T) I1A< B

A< B 0

(D) 4= ¢

A< By Ay < By (®) A< A B<B (—o)
A1 ® Ay < B1 ® By A'—oB<A—-B

Lemma 4.1 For typesA and B, if A< Band(m =0) V (n > 1), then!” A < " B.

Proof. Repeated application ¢D) and(!). O
Notice that one can rewrite types using the notation:
qType A,B w= 1" | "X |1"(A— B) | !I"T | !"(A® B)

with n € N. Using the overall condition on andm that(m = 0) v (n > 1), the rules
can be re-written as:

Fa<tia () pxomx X2 gy oy (T2
A < By Ay < By
m(Al & Ag) < !m(Bl & Bg)

A< A B<B (—o3)
(A — B) <!™(A—B') * °

(®2)

The two sets of rules are equivalent.
Lemma 4.2 The rules of the second set are reversible.
Proof. Note that for each possible type only one rule can be used. O

Lemma 4.3 (¢Type, <) is reflexive and transitive. If we define an equivalence relation
=byA = Biff A< BandB < A, (¢Type/=, <) is a poset.

Proof. Both properties are shown by induction on the second set of rules. For transitiv-
ity, note that the conditiofm = 0) vV (n > 1) can be re-written ag& = 0) = (m = 0),
which is transitive. O

Lemma 4.4 If A < B, then there exist§' such thatd = !C.
Proof. A direct application of the second set of rules. ad

Remark 4.5 The subtyping rules are a syntactic device, and are not intended to catch
all plausible type isomorphisms. For instance, the types !B and!(A ® B) are

not subtypes of each other, although an isomorphism between these types is easily
definable in the language.



__A<B Ac<B
Ajz:A>x: B A>c: B
TLIAD Pibit TolAsM:A TolAnN:A
Ty, T9,!A > if Pthen M else N : A
Fl,!ADMiA—OB FQ,!ADNZA
ry,I's)'A>MN : B
If FV (M)A |T| = 0:
A A>M: B TJIAxz:A> M : B
Ac M A=B ™  TIAs M 1" (4= B)
!A,Fl > M I"Ay !A,FQ > My : ™Ay
i _
!A,Fl,l—‘g > <M1,M2> : m(Al ®A2) (® ) AD>*:I"T (T)
IA T > M: |n(A1 ®A2) IA,Tg, 1:!"Aq, 2o:!"A5 > N : A
!A,Fl,l—‘g > let <1‘1,£L‘2> =MinN:A

(var) (const)

(if)

(app)

(A2)

(®.E)

Table 2: Typing rules

4.2 Typing rules

We need to define what it means for a quantum si@@td., M| to be well-typed. It
turns out that the typing does not depend@mand L, but only on}. We introduce
typing judgments of the form > M : B. HereM is aterm,B is aqType, andA is a
typing context, i.e., a function from a set of variableg pe. As usual, we writeéA|
for the domain ofA, and we denote typing contexts as: A1, ..., x,:A,. As usual,
we write A, x: A for AU {x: A} if x € |A|. Also, if A = x1:Ay,..., 2,:A,, We write
IA = 21141, ..., 2,1 A, Atyping judgment is calledalid if it can be derived from
the rules in Table 2.

The typing rule(az) assumes that to every constantf the language, we have
associated a fixed typé.. The typesA. are defined as follows:

Ao = !bit Apew = (bit —o gbit)
Ay = bit Ammeas = (qbit —o 1bit) Ay = (gbit™ —o qbit™)

Note that we have given the typ@it — gbit) to the termnew. Another possible
choice would have beélf!bit — g¢bit), which makes sense because all classical bits
are duplicable. However, sin¢eit — gbit) <: !(1bit —o ¢bit), the second type is less
general, and can be inferred by the typing rules.

The shorthand notations have the required behavior:

IA Ty, 2:A> N:B 1A, To> M:A IA T, x:A,y:B > M:C
AT, As>letz =MinN:B |, IATD> MNa,y).M:(A® B) - C,

IA T, z:!"A,y:!"B > M:C
"IA T > Ma,y) MY (IM(A® B) — O)

andif FV(M)N|T| =0 are provable.

10



qubit 1: |¢) —0@—‘7_‘ @)
[
® @ Mo
qubit 2: |0) —{ ] L

N

N

qubit 3: |0)

\
L (Uay |- 10)

Table 3: Quantum teleportation protocol

Note that, if{@, L, M| is a program state, the terh need not be closed; however,
all of its free variables must be in the domainigfand thus must be of typgit. We
therefore define:

Definition 4.6 A program statéq, L, M] is well-typed of typeB if A > M : B is
derivable, where\ = {z: gbit |z € FV(M)}. In this case, we writ§), L, M] : B.

Note that the type system enforces that variables holding quantum data cannot be
duplicated; thus)z.({x, ) is not a valid term of typebit — gbit ® gbit. On the other
hand, we allow variables to be discarded freely. Other approaches are also possible,
for instance, Altenkirch and Grattage [1] propose a syntax that allows duplication but
restricts discarding of quantum values.

4.3 Example: quantum teleportation

Let usillustrate the quantum lambda calculus and the typing rules with an example. The
following is an implementation of the well-known quantum teleportation protocol (see
e.g. [9]). The purpose of the teleportation protocol is to send a qubit from locadtion

to locationB, using only classical communication and a pre-existing shared entangled
quantum state. In fact, this can be achieved by communicating only the content of
two classical bits. In the usual quantum circuit formalism, the teleportation protocol is
described in Table 3.

The statg¢) of the first qubit is “teleported” from location A to location B. The
important point of the protocol is that the only quantum interaction between locations
A and B (shown as (1) in the illustration) can be datead of timei.e., before the
state|¢) is prepared.

The dashed box/ (shown as (3)) represents a measurement of two qubits. The
gateU,, (shown as (4)) depends on two classical bindy, which are the result of

11



this measurement. It is defined as:

1 0 0 1 1 0 0 1
U00=<0 1>7U01=<1 0),U10=<0 _1>7U11=<_1 0>-

The teleportation protocol consists of four steps:
(1) Create an entangled sta%(\OO) + |11)) between qubits 2 and 3.
(2) Atlocation A, rotate qubits 1 and 2.
(3) Atlocation A, measure qubits 1 and 2, obtaining two classicalib#sdy.

(4) Atlocation B, apply the correct transformatibi,, to qubit 3.

Proof of the correctness of the teleportation protocol. The rotation (2) has the
following effect:

CNOT H®id
|00) — |00) — \%(\00) +(10)),
|01) — |01) — %(\01)+|11>),
1) o~ 1L e (o1 - 1)),
[11) — [10) — \%(\00) — [10)).
If we apply it to the two first qubits of
(a|0>+ﬂ|1>)®%(|00>+ 111)) = %(a|000>+a|011>+5\100>—|—ﬂ|111>)

we get

((]000) 4 [100)) + x(]011) + [111)) + 3(|010) — [110)) + B(|001) — [101)))
= 3(/00) ® (a]0) + BI1)) + |01) ® (al1) + 53|0))
+[10) @ (a]0) — B|1)) 4 [11) @ (a[1) — B]0)))
If we measure the two first qubits, the third qubit becomes

al0) 4+ B[1)  if 00 was measured,
all)y 4+ B|0) if 01 was measured,
al0) — B|1)  if 10 was measured,
ally — 3|0y if 11 was measured.

Finally, note that ifU,,, is applied in the case whefiey was measured, then the state
of the last qubit isx|0) + 5]1) = |¢). 0

To express the quantum teleportation protocol in our quantum lambda calculus, we
implement each part of the protocol as a function. We define three functions

EPR: (T —o (gbit ® gbit))
BellMeasure : !(gbit —o(gbit —o bit ® bit))
U: 1(gbit —o(bit ® bit —o gbit))
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The functionEPR corresponds to step (1) of the protocol, and creates an entangled
2-qubit state. The functioBellMeasure corresponds to steps (2) and (3), and takes
two qubits, rotates and measures them. The fundi@orresponds to step (4). It takes

a qubitq and two bitsz, y and returng/,.,¢q. These functions are defined as follows:

EPR = Ax.CNOT(H (new0), new 0),
BellMeasure = Ag2.Aq1.(let (p,p’) = CNOT{q1,q2)
in (meas(Hp), meas p')),
U = Ag. Mz, y). if © then (if y then Ur1q else U1pq)
else (if y then Upi1q else Upoq),

whereU,,, are defined as above when the measured qubits wanely.
The teleportation procedure can be seen as the creation of two non-duplicable func-
tions f andg
[+ qbit —o bit ® bit,
g : bit ® bit —o gbit,

such thayo f(¢q) = ¢ for an arbitrary qubit. We can construct such a pair of functions
by the following code:

let (p,p’) = EPR x
in let f = BellMeasure p
inletg="Uyp
in (f,g)-

Note that, sincef andg depend on the state of the quhitandp’, respectively, these
functions cannot be duplicated, which is reflected in the fact that the typgearalg do

not contain a top-level “I". The detailed typing derivation of these terms, and a proof
thatg(f(q)) — g, using the reduction rules of Table 1, are given in the Appendix.

Superdense coding. As an added bonus, the two functiofigandg generated for the
qguantum teleportation protocol also satisfy the dual property, nahely(z,y) =

(x,y), for an arbitrary pair of classical bits;, y). This property can be used to send
two classical bits along a channel that can hold a single quantum bit, in the presence
of a pre-existing shared entangled quantum state. This procedure is kn®upes
dense codingsee [9]), and it is dual to quantum teleportation. A detailed proof of
foglx,y) — (x,y) from the reduction rules is given in the Appendix.

Remark 4.7 The semantic interpretation gfandg appears to be a bit of a mystery.
On the one hand, the typesit andbit @ bit are clearly not isomorphic. On the other
hand, we havg : ¢bit — bit ® bit andg : bit ® bit —o gbit such thatf o g = id and

g o f = id. The crucial fact resolving this apparent contradiction is that each of the
functions f andg can be used only once. One could therefore desgtibadg as a

pair of “single-use isomorphisms”.

4.4 Properties of the type system

We derive some basic properties of the type system.

13



Definition 4.8 We extend the subtyping relation to contexts by writing<: A’ if
|A'| = |Al and for allz in [A"], Ay (x) < A%(x).

Lemma4.9 1. Ifz¢ FV(M)andA,z:A > M:B, thenA > M:B.
2. IfA > M:A, thenl', A > M:A.
. fr<AandA> M:AandA < B,thenl' > M : B.
Proof. By structural induction on the type derivation f. O

The next lemma is crucial in the proof of the substitution lemma. Note that it is
only true for a valud/, and in general fails for an arbitrary terid.

Lemma4.10 If V is a value andA > V : A, then for allz € FV(V), there exists
somel/ € ¢Type such thatA(x) = U.
Proof. By induction onV.

. . . - B <A
e If V is avariabler, then the last rule in the derivation WA Bl

SinceB <: 1A, B must be exponential by Lemma 4.4.
e If V is a constant, thenFV (V') = ), hence the result holds vacuously.

o If V = A\z.M, the only typing rule that applies iS\2), andA = T',!A’ with
FV(M)N|A'| = 0. Soeveryy € FV (M) except mayber is exponential.
SinceFV(Ax.M) = (FV (M) \ {z}), this suffices.

e The remaining cases are similar. a

Lemma 4.11 (Substitution) If V' is a value such that';,!A,z:A > M : B and
Iy, A >V : A thenl'y, Ty, A > M[V/z] : B.

Proof. By structural induction on the derivation bf, !A, 2:A > M : B. a

Corollary 4.12 If ', !A,2:A > M : BandI's,!A > V : 1"A, then', g, A >
M[V/z] : B.

Proof. From Lemma 4.11 and Lemma 4.9(3). ad

Remark 4.13 We note that all the usual rules of affine intuitionistic linear logic are
derived rules of our type systeraxceptfor the general promotion rule. Indeed,
new 0 : ¢bit is valid, but> new 0 : !gbit is not. However, the promotion rule is

derivable wherV is avalue
I'>V:A

T> VA

14



4.5 Subject reduction and progress

Theorem 4.14 (Subject Reduction)Given a well-typed progran, L, M]:B such
that[Q, L, M] ~* [Q', L', M'], then[Q’, L', M'] : B.

Proof. It suffices to show this fof@, L, M] —, [Q', L', M’], and we proceed by
induction on the rules in Table 1. The ri@, (Az.M)V]—1[Q, M[V/z]] and the rule

for “let” use the substitution lemma. The remaining cases are direct applications of the
induction hypothesis. a

Theorem 4.15 (Progress)Let[Q, L, M] : B be awell typed program. Thé@, L, M|
is not an error state in the sense of Definition 3.7. In particular, eifligrL, M| is a
value, or else there exist some stifg, L', M’] such thaf@, L, M| —, [Q', L', M'].
Moreover, the total probability of all possible single-step reductions ff@mL, M|
is 1.

Corollary 4.16 Every sequence of reductions of a well-typed program either converges
to a value, or diverges. O

The proof of the Progress Theorem is similar to the usual proof, with two small
differences. The first is the presence of probabilities, and the second is the fakf that
is not necessarily closed. However, all the free variabled @re of typegbit, and this
property suffices to prove the following lemma, which generalizes the usual lemma on
the shape of closed well-typed values:

Lemma 4.17 Suppose\ = x1:qbit, ..., x,:qbit,andV is avalue. IfA > V:A— B,
thenV is new, meas, U, or alambda abstraction. A > V:A® B, thenV = (V1, V3).
If A V:bit,thenV =0orV = 1.

Proof. By inspection of the typing rules. O

Proof of the Progress TheoremBy induction on}M . The claim follows immediately
in the cases wheiM/ is a value, or whenV/ is a left-hand-side of one of the rules
in Table 1 that have no hypotheses. Otherwise, using Lemma #/1ig, one of the
following: PN, NV, (N, P),(V,N), if N then P else Q, let (x,y) = N in P, where
N is not a value. In this case, the free variables\oare still all of typegbit, and by
induction hypothesis, the terfi, L, N| has reductions with total probability, and
the rules in Table 1 ensure that the same is tru¢@or., M]. O

5 Type inference algorithm

It is well-known that the simply-typed lambda calculus, as well as many programming
languages, satisfies tipgincipal type property every untyped expression has a most
general type, provided that it has any type at all. Since most principal types can usually
be determined automatically, the programmer can be relieved from the need to write
any types at all.
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In the context of our quantum lambda calculus, it would be nice to have a type
inference algorithm; however, the principal type property fails due to the presence of
exponential$A. Not only can an expression have several different types, but in general
none of the types is “most general”. For example, the t&fm= \zy.xy has possible
typesT) = (A — B) — (A — B) andT, = (A — B) — !(A — B), among others.
Neither of T} andT is a substitution instance of the other, and in fact the most general
type subsuming’; andT is X — X, which is not a valid type foM. Also, neither of
T, andT> is a subtype of the other, and the most general type of which they are both
subtypes iA — B) — !(A — B), which is not a valid type foi/.

In the absence of the principal type property, we need to design a type inference
algorithm based on a different idea. The approach we follow is the one suggested by
V. Danos, J.-B. Joinet and H. Schellinx [5]. The basic idea is to view a linear type
as a “decoration” of an intuitionistic type. Our type inference algorithm is based on
the following technical fact, given below: if a given term has an intuitionistic type
derivationr of a certain kind, then it is linearly typable if and only if there exists a
linear type derivation which is a decorationef Typability can therefore be decided
by first doing intuitionistic type inference, and then checking finitely many possible
linear decorations.

5.1 Skeletons and decorations
The class ofntuitionistic typess

iType U v = al X U=V)|(UxV)|T
wherea ranges over the type constants axidver the type variables.

To eachA € ¢Type, we associate itg/pe skeleton A € iType, which is obtained

by removing all occurrences of* Conversely, every/ € iType can be lifted to some
*U € ¢Type with no occurrences of™. Formally:

Definition 5.1 Define functions : ¢Type — iType andé : iType — qType by:

fma=q, "X=X T"T=T, *a=qa, *X=X *T=T,
fI"(A— B)=TA=TB, *U=V)=%U - *V,
"(A® B) =TAx B, QU XV)=%*U*V.

If U = ' A, then we also say that is adecorationof U.
Lemma5.2 If A< B,thenfA =TB.If U € iType, thenU = T*U. O

Writing A » M : U for a typing judgment of the simply-typed lambda calculus,
we can extend the notion of skeleton to contexts, typing judgments, and derivations as
follows:

oAy, oAy = oA 2 TALY
(A M:A) = (fAw M:TA).

From the rules in Table 2, it is immediate thatNf>> M : A is a valid typing judgment
in the quantum lambda calculus, théfA > M : A) = (TA » M : TA) is a valid
typing judgment in the simply-typed lambda calculus.
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5.2 Decorating intuitionistic type derivations

The basic idea of our quantum type inference algorithm is the following: given a term
M, first find an intuitionistic typing judgmenk » M : U, say with type derivatiom,

if such a typing exists. Then look for a quantum type derivation which is a decoration
of w. Clearly, if the term)M is not quantum typable, this procedure will fail to yield

a quantum typing of\/. For the algorithm to be correct, we also need the converse
property to be true: if\/ has any quantum type derivation, then it has a quantum type
derivation which is a decoration of the given intuitionistic derivationWe therefore
would ideally like to prove the following property:

Property 5.3 (desired) Let M be a term with an intuitionistic type derivation Then
M is quantum typable if and only if there exists a quantum type derivatioof M
such that' 7’ = .

Unfortunately, this property is false, as the following example shows.

Example 5.4 Consider the term/ = (Az. meas z)(new 0). Clearly this termis quan-
tum typable, for instance, it has typé (also!bit, !'bit etc.). Consider the following
intuitionistic type derivationr for M:

x : gbit » meas : gbit = bit x : qbit » x : gbit
x : qbit » meas x : bit » new : bit = qbit » 0: bit
» \z.meas x : qbit = bit » new 0 : gbit
> (A\z.meas x)(new0) : bit

This particular intuitionistic type derivation is not the skeleton of any valid quantum
type derivation ofd/. To see this, note that the variahtehas been duplicated in the
typing rule formeas x. Therefore, any valid decoration efhas to give the typégbit

to z. On the other hand, the only valid quantum type+ew 0 is ¢bit, which is not a
subtype ofl gbit. Hence, there is no quantum type derivation #érwhose skeleton is

m, demonstrating that Property 5.3 fails.

5.3 Normal derivations

The reason Property 5.3 fails is because an intuitionistic derivation can duplicate vari-
ables unnecessarily, as shown in Example 5.4. The duplication of a variable in a typing
rule is unnecessary if the variable does not actually occur in one of the premises. We
can avoid this problem by slightly changing the typing rules to disallow such unnec-
essary duplications. This is done by eliminating all “dummy” variables from typing
contexts.

Definition 5.5 A typing judgmentA > M : A of the quantum lambda calculus is
callednormalif |A| = FV(M). If A > M : Ais any typing judgment, then its
normal formis A|py (ary > M : A. We also writeA |y, for A|py (ary. If 7 is a type
derivation, then its normal form is the derivatidf{n) obtained by taking the normal
form of each of its nodes.
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Note that the normal form of a type derivation is not necessarily a type derivation
in the strict sense, because the rules of Table 2 are not invariant under taking normal
forms. However, we can define a new set of typing rules, callechtinmal typing
rules which are obtained by normalizing the rules from Table 2. For example, the new
rule for application is:

L, A pyuy > M2 A— B {2, !A}[py(ny > N A (a )
{1, T2, 1A} py(uny > MN = B PPnorm

We treat all the other typing rules analogously.

Lemmab5.6 Let A > M : A be any typing judgment. Thek > M : A is derivable
from the rules in Table 2 if and only &k | p 3y > M : Ais derivable from the normal
typing rules.

Proof. The left-to-right implication follows by normalizing the type derivation of
A > M : A. The right-to-left implication follows because the normal typing rules are
admissible by Lemma 4.9. O

The normal form of intuitionistic typing judgments, rules, and derivations is defined
analogously. The counterpart of Lemma 5.6 also holds in the intuitionistic case.
Relative to the normal typing rules, the analog of Property 5.3 holds.

Theorem 5.7 Let M be a term with a normal intuitionistic type derivatian Theni/
is quantum typable if and only if there exists a normal quantum type derivatiari
M such that'r’ = 7.

5.4 Proof of Theorem 5.7

The proof of Theorem 5.7 requires us to find a suitable decorationf . For this
purpose we are going to introduce the concept of the decoration of an intuitionistic
type along a quantum type. Intuitivelyi/ &~ A takes the skeleton frorfY and the
exponentials fromA.

Definition 5.8 Given A € ¢Type andU € iType, we define thelecoration/ & A €
qType of U along A by

Us1"A=1"(U9 A),

U=V)% (A—oB)=(U% A) — (V% B),
UxV)x (A®B)=(U% A)® (V% B),
in all other cases: U ¢ A = *U.

Lemmab.91If U,V € iType and A, B € ¢qType, then the following are true:
(@ "(Ux A) =U,
(b) If TA=UthenU - A = A,
(c) f A< Bthen(U » A) < (U 9 B). O
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Definition 5.10 Let I be an intuitionistic typing context, and a quantum typing
context, such thgl’| C |A|. Then we defin& - A :=T", where|l| = |T'|, and for
allz in [T}, I'(z) = T'(x) & A(z). This notation is extended to typing judgments in
the following way, provided thal’| C |A:

T M:U) (A M:A)=T+>A> M: U+ A,

and to type derivations by structural induction, provided that the intuitionistic deriva-
tion is normal.

Lemma 5.11 If 7 is a normal intuitionistic type derivation and jf is any quantum
type derivation, then’ := (7 & p) is a normal quantum type derivation.

Proof. By structural induction o, and by case distinction on the last typing rule
used. For instance, suppose the last rule used wasipipe rule. ThenM = NP and
the type derivation ends in

épl 502
ALlAs > N:A—oB Ay lAs>P:A
Al,AQ,!AngPSB

In normal intuitionistic lambda calculus the type derivatiois of the form:

1 Uy’
1—‘|FV(N)>]\/YZ[J:>VY 1—‘|F\/(p)PPZU
lpy(npy» NP:V

Writing I'| x for I'| py (x), the type derivatiomr ¢ p is

§7T1q—>p1 §7T2C1—>p2
F|Nq—>(A1,'A3)I>N(U:>V)q—>(A—OB) F|Pq—>(A2,!A3) >P:Ux A
FlNPCH(Al,AQ,!A3) >NP:V s B.

By induction hypothesisr; & p; andmy 3 p, are qguantum normal type derivations.
If we write T'; for T'| goma, & A;, using Lemma 5.9 and the definition ®f, the last
rule of the derivation above becomes:
{T1,T3}n>N: (U A)— (Ve B) {2, Ts}p>P:Ux A
{Fl,l—‘g, !F3}|Np >NP:V e B,

which is an instance of the normal quantdapp) rule. Thusr’ := (7 & p)is a
normal quantum type derivation. The other typing rules are treated similarly. O

Proof of Theorem 5.7. For the left-to-right implication, ifp is some quantum type

derivation ofM/, we can define’ = (7 & p) asin Lemma5.11. Their' =  follows
from Lemma 5.9. The right-to-left implication follows trivially from Lemma 5.6.0
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5.5 Elimination of repeated exponentials

The type system in Section 4 allows types with repeated exponentials suth. as
While this is useful for compositionality, it is not very convenient for type inference.
We therefore consider a reformulation of the typing rules which only requires single
exponentials.

Definition 5.12 For A € ¢Type, we define”A € ¢Type to be the result of erasing
multiple exponentials iM. Formally, ifo(0) = 0 ando(n + 1) = 1,

#Hrg =19Mq, #nX =10 )X #APT = 10()T,
#1 (A —o B) = 19" (#4 - #B), #"(A® B) = 17" (#4 @ #B),
We also extend this operation to typing contexts and judgments in the obvious way.

Lemma 5.13 The following are derived rules of the type system in Table 2, for all
7,0 € {0,1}.
IA Ty > My : 1A ATy > My : 1A,
!A,Fl,FQ > <M1,]\/[2> : '('TAl X !UAQ)
IA T > M: '('TAl X IUAQ) IA Ty, z1:1Aq, 20:lAs > N : A
!A,Fl,l—‘g > let <1‘1,£L‘2> =MinN:A

(®.1)

(®.E")

Further, the normal forms df®.I’) and (®.E’) are derivable in the normal type sys-
tem.

Proof. SupposéA,T'y > M; : !A; and!A, T > M : 1A, are derivable. Since
1A; <! A1 and! Ay <119 Ao, thereford A, Ty > M7 : !!'" Ay and!A, Ty > My : 1194,
are also derivable by Lemma4.9(3). ButthénT'1, 'y > (M7, Ms) : 1(I"A; ® 17 43)
follows from rule(®.1I). The proof of the second rule is similar. Finally, the last claim
follows from Lemma 5.6. |

Lemma 5.14 If 7 is a derivation of a typing judgmert > M : A from the normal
quantum typing rules, thefir is a valid normal derivation of’A > M : #A, possibly
using the normal forms @f2.1’) and(®.E’) as additional rules. Moreoveir = T#r.

Proof. By inspection of the rules. For each normal typing ruje#r is either an
instance of the same rule, or of the normal form{®f7’) or (®.E"). O

5.6 Description of the type inference algorithm

Theorem 5.7 yields a simple type inference algorithm. Given a fdrrwe can perform
type inference in the quantum lambda calculus in three steps:

(1) Find an intuitionistic type derivatiom of M, if any.
(2) Eliminate “dummy” variables to obtain its normal fof¥r.

(3) Find a decoration dN7 which is a valid normal quantum type derivation, if any.
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Step (1) is known to be decidable, and step (2) is computationally trivial. By The-
orem 5.7, step (3) will succeed if and onlyif is quantum typable. Note that by
Lemma 5.14, it suffices to consider decoration\Naf without repeated exponentials.
Since there are only finitely many such decorations, step (3) is clearly decidable. Also
note that if the algorithm succeeds, then it returns a possible typ¥ faHdowever, it

does not return a description of all possible types.

Remark 5.15 (Efficiency of the algorithm) In principle, the search space of all pos-
sible decorations dNr is exponential in size. However, this space can be searched
efficiently by solving a system of constraints. More precisely, if we create a boolean
variable for each place in the type derivation which potentially can hold a “I”, then the
constraints imposed by the linear type system can all be written in the form of impli-
cationsz; A ... A x, = y, wheren > 0, and negationsz. It is well-known that
such a system can be solved in polynomial time in the number of variables and clauses.
Therefore, the type inference problem can be solved in time polynomial in the size of
the type derivationr.

Note, however, that the size of an intuitionistic type derivatiameed not be poly-
nomial in the size of the termh/, because in the worst casecan contain types that are
exponentially larger thafi/. We do not presently know whether quantum typability
can be decided in time polynomial 1.

6 Conclusion and further work

In this paper, we have defined a higher-order quantum programming language based on
a linear typed lambda calculus. Compared to the quantum lambda calculus of van Ton-
der [14, 15], our language is characterized by the fact that it contains classical as well
as quantum features; for instance, we provide classical datatypes and measurements as
a primitive feature of our language. Moreover, we provide a subject reduction result
and a type inference algorithm. As the language shows, linearity constraints do not just
exist at base types, but also at higher types, due to the fact that higher-order functions
are represented as closures, which may in turns contain embedded quantum data. We
have shown that a version of affine intuitionistic linear logic provides the right type
system to deal with this situation.

There are many open problems left for further work. An interesting question is
whether the syntax of this language can be extended to include recursion. Another
question is to study extensions of the type system, for instance with additive types as
in linear logic. One may also study alternative reduction strategies. In this paper, we
have only considered the call-by-value case; it would be interesting to see if there is a
call-by-name equivalent of this language. Finally, another important open problemiis to
find a good denotational semantics for a higher order quantum programming language.
One approach for finding such a semantics is to extend the framework of Selinger [12]
and to identify an appropriate higher-order version of the notion of a superoperator.
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A Appendix

A.1 Example: Type derivation of the teleportation protocol

To illustrate the linear type system from Section 4.2, we give a complete derivation
of the type of the quantum teleportation term from Section 4.3. The not&fiony)
means that Lemmayy is used.

Computing some subtypes:

1 as "o <«

2 mB < B

3 —09,1,2 k(a—mB) < ("a—o )
4 (L.4.3) A< A

5 D4 A< A

Computing the type dEPR:

6 const,3 > new : bit —o gbit

7  const,d > 0: bit

8 app,6,7 > new 0: gbit

9  const,3 > H: qbit —o gbat

10 app,9,8 > H(new0): gbit

11 ®.1,10,9 > (H(new0), new0) : gbit ® ¢bit

12 const,3 x:T > CNOT:(gbit ® gbit) —o (qbit @ qbit)

13 app,12,11 T > CNOT{(H (new0), new 0): gbit ® qbit

14 A, 13 > Ax.CNOT (H (new 0), new 0):!(T —o (gbit ® gbit))

Computing the type oBellMeasure

15 war,1 y:qbit > y:qbit
16 const, 3 > meas :qbit —o bit
17 app,16,15  y: qbit > meas y:bit
18 war,1 x: gbit > x:qbit

19 app,9,18 x:qbit > Hx:qbit

20 app,16,19  x: ¢bit > meas(Hx):bit

21 war,1 q1: qbit > q1: gbat

22 war,1 q2: qbit > qo: gbit

23 ®.1,21,22  qo: qbit, q1: gbit > {q1, q2): qbit & qbit

24 const,3 > CNOT:(gbit ® gbit) —o (gbit ® gbit)

25 app,24,23  qo: qbit, q1: qbit > CNOT{q1, q2): qbit ® qbit

26 ®.1,20,17  x: qbit,y: ¢bit > ( meas(Hz), meas y): bit & bit

27 ®.E,25,26 qo: qbit, q: gbit > let {(x,y) = CNOT{q1, ¢2)
in{ meas(Hzx), meas y): bit ® bit

28  A1,27 qo: gbit > Ag1.(let (x,y) = CNOT(q1, q2)
in (meas(Hzx), meas y)):qbit —o bit ® bit
29 Xg,28 > Ag2.Aq1.(let (z,y) = CNOT (g1, g2)

in ( meas(Hx), meas y)):!(gbit —o(gbit —o bit ® bit))
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Computing the type of):

30
31
32
33
34
35
36

37

38

var, 1
const, 3
app, 30, 31
var, 1

var, 1

if , 33,32, 32
if ,34,35,35

—o1,36

_02737

q:qbit > q:qbit
> Usj;:qbit —o gbit
q:qbit > U;jq:qbit
y:bit > y:lbit
x:bit > x:1bit
q:qbit, y:bit > if y thenU;1q elseU;pq: gbit
q:qbit, x:bit, y:bit > if x then (ify thenUy1q elseU1q)
else (ify thenUy q elseUygq): qbit
q:qbit > N a,y).if 2 then (ify thenU;1q elseU10q)
else (ify thenUyp1q elseUgoq): bit ® bit —o gbit
> Ag. Az, y).if z then (ify thenU; ¢ elseU10q)
else (ify thenUy;q elseUyoq):!( gbit —o(bit ® bit —o gbit))

Finally, computing the type of the pay, g):

39
40
41
42
43
44
45
46
47
48
49
50

o1

52

93

T
(L.4.9),14,5
app, 40,39
(L.4.9),29,5
var, 1

app, 42,43
var, 1
(L.4.9),38,5
app, 46,45
var, 1

var, 1

®, 48,49
let, 47,50
let, 44,51

let, 41,52

> kT

> EPR:T —o (gbit ® gbit)

> EPR x:¢qbit ® gbit

> BellMeasure: gbit —o (gbit —o bit ® bit)

x:qbit > x:qbit

x:qbit > BellMeasure x: gbit —o bit ® bit

y:qbit > y:qbit

> U: gbit —o(bit ® bit —o gbit)

y:qbit > U y: bit ® bit —o gbit

frgbit —o bit @ bit > f:qbit —o bit ® bit

g: bit ® bit —o gbit > g: bit ® bit —o gbit

g: bit ® bit —o qbit, f: qbit —o bit ® bit > (f, g):
(gbit —o bit ® bit) ® (bit ® bit —o gbit)

11 qbit —o bit ® bit, y:qbit > let g = U yin (f, g):

(gbit —o bit @ bit) @ (bit @ bit —o gbit)

x:qbit, y:qbit > let f = BellMeasure z inletg=Uy

in(f,g)):(qbit — bit ® bit) @ (bit ® bit —o gbit)

> let (x,y) = EPR x in let f = BellMeasure z
inletg=Uyin(f, g))):
(gbit —o bit ® bit) ® (bit ® bit —o gbit)

A.2 Example: Reduction of the teleportation term

As an illustration of the reduction rules of the quantum lambda calculus we show the
detailed reduction of the term from the teleportation example from Section 4.3. The
reduction of the teleportation term corresponds to the equality = id. We use the
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following abbreviations:

My, = let f =BellMeasurepinlet g =U p' in g(f po)
By, = Agi-(let {p,p') = CNOT{q1,p1) in ( meas(Hp), measp'))
Up, = Ma,y). (if z then(if y thenUy1ps elseUiopz)

else(if y thenUp1p2 elseUyop2))
The reduction of the term is then as follows:

let (p,p’) = EPR x
in let f = BellMeasure p
mlet g=Uyp
in g(f po)
—1 [a|0) + B|1), let (p,p’) = CNOT(H(new0), new 0) in M, ]

a[0) + 5I1)) ©10), let (p, ') = CNOT (Hpi, new?0) in My,
(a0} + BI1)) @ L5(10) + (1)), et (p, ) = ONOT(py, new0) in My |
of0) + 6/1)) @

&

(
(|0) +5I1))

al0) + (1),

-1 |

—
=~

5(10) + 1) @ [0), let {p, ') = CNOT(p, p2) in My |

5100 + [11)), et (p, ') = (p1,p2) in My, |
let f = BellMeasure p; ]

sk sk ok 2

=
o

—1 | («]0) +ﬁ|1>)®%(|00>+|11>), inlet g =U po
L in g(f po)

=1 [(0l0) + 81) ® 25(100) + [11)), Uy, (Bypo)|

elhmwmm®%wmﬂmM%<%ﬁﬁ;gﬁﬁgg)]

SI

[ ( alooo) +afor1) zet<p,> oo g
bo[VE\ +40110) + pl101) n { meas(Hp), meas p')
I |000) + |011)
o 2(+ﬂ|110>+6|101> ; Up, ( meas(Hpq), meas p1)
[ @|000) + |011)
1 [ +all00) + a|111)
=12 | 4010y + gloor) | - Upe{meas po, measpy)
|\ —A[110) — pl101)

1 a/000) + a|011)
< _% +8l010) + gloon) ) »Urs{0, measpr)

100) + a[111)
3 % —%|110> §|101> Up (1, meas pr)
%:EaIOOOHﬂIOOD ’UPQ<O’O>J ) (a|000>+5001>)7UOOP2J
> [(al011) + 8]010)) , U,,(0,1)] —1* [(2]011) + 3]010)) , Up1p2
i _Ea|100> —5|101>§ LUy, (1, oq —1* [(a]100) - B[101)) ,Uwpﬂ
> [(af111) = B[110)) , Up, (1, 1)] —1* [(@[111) — B[110)) , Un1p>
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«|000) + 3|001 al0) + 6|1

[( ) )),p2]= [100) ® («|0) )):p2 ]
—1 [ (|010) + B[011)),ps = [{01) @ (a]0) + 5[1)), p2 ]
[ (a[100) + 5[101)),p2 |= [[10) © (]0) + B[1)),p2 |
—1 [(a[110) + B[111)),p2 |= [[11) © ([0} + B]1)), p2 |

A.3 Example: Reduction of the superdense coding term

As another example of the reduction rules, we give the reduction of the superdense
coding example from Section 4.3. This reduction shows the eqyality= id. Of the

four possible cases, we only give one case, naifyely;) (0, 1) = (0, 1); the remaining
cases are similar. We use the same abbreviations as above.

let (p,p’) = EPR x
in let f = BellMeasure p

12 inlet g=U p’
in f(9(0,1))

[ let f = BellMeasure pg
—1* \%(\00>—|—|11>)7 inlet g=U py

_ in f(9(0,1))
—1" [ 25100) + [11)), By (U, (0, 1))
-1 %(\oo>+|11>> By (Unip1)|
=1 [Z5001) + [10)), By

(|01) + |10)), let (p,p") = CNOT(p1, po) in { meas(Hp), measp’}]

(I11) +[10)), (meas(Hp: ), meas po)

7
L
f

—1 %(\11) +110)), let (p,p") = {p1,po) in { meas(Hp), measp’)}
(1
f

—1 [|10), { meas p1, meas po)]
—1" [[10), (0, 1)]
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