
Under consideration for publication in Math. Struct. in Comp. Science

A lambda calculus for quantum computation with
classical control

P E T E R S E L I N G E R1† and B E N O I T V A L I R O N2

1 Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
2 Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario, Canada

Received 18 April 2005; Revised 15 December 2005

In this paper, we develop a functional programming language for quantum computers, by extending
the simply-typed lambda calculus with quantum types and operations. The design of this language
adheres to the “quantum data, classical control” paradigm, following the first author’s work on
quantum flow-charts. We define a call-by-value operational semantics, and we give a type system
using affine intuitionistic linear logic. The main results of this paper are the safety properties of the
language and the development of a type inference algorithm.

1. Introduction

The objective of this paper is to develop a functional programming language for quantum com-
puters. Quantum computing is a theory of computation based on the laws of quantum physics,
rather than of classical physics. While no large-scale general-purpose quantum computer has yet
been built, it is known that certain hard computational problems, such as integer factoring, can
theoretically be solved efficiently on a quantum computer (Shor 1994). For this and other rea-
sons, quantum computing has become a fast growing research area in recent years. For a good
introduction to the subject, see Nielsen and Chuang (2002) or Preskill (1999).

The laws of quantum physics dictate that there are only two kinds of elementary operations
that one can perform on a quantum state, namely unitary transformations and measurements.
Many existing formalisms for quantum computation, such as the quantum circuit model, put
an emphasis on the former, i.e., a computation is understood as the evolution of a quantum
state by means of unitary gates. In these models, measurements are usually performed at the
end of the computation, by an outside observer who is not part of the formalism proper. This
means that a quantum computer is considered as a purely quantum system, without any classical
parts. Examples of such models include the quantum Turing machine (Benioff 1980; Deutsch
1985), where the entire machine state, including the tape, the finite control, and the position of
the head, is assumed to be a quantum state. Another example is the quantum lambda calculus
of van Tonder (2004), which is a higher-order, purely quantum language without an explicit
measurement operation.

On the other hand, some models for quantum computing have been proposed that combine

† Research supported by NSERC.

Peter Selinger and Benoı̂t Valiron 2

unitary operations and measurements into a single formalism. One such example is the QRAM
model of Knill (1996), which is also described by Bettelli, Calarco and Serafini (2003). Here, a
quantum computer consists of a classical computer connected to a quantum device. The opera-
tion of the machine is controlled by a classical program that emits a sequence of instructions to
the quantum device for performing measurements and unitary operations. This situation is sum-
marized by the slogan “quantum data, classical control” (Selinger 2004). In such a model, there
is no explicit need for an outside “observer”, as measurements can be performed by the device
itself. Several programming languages have been proposed to deal with such a model (Bettelli,
Calarco, and Serafini 2003; Sanders and Zuliani 2000), and the present paper is based on the
work of Selinger (2004).

The main novelty of this paper is that we propose a higher-order quantum programming lan-
guage, i.e., one in which functions can be considered as data. A typical feature of higher-order
programming languages is that a program can take another program as an input (a situation called
a “blackbox experiment” in physical terminology), or can produce another program as an output.
There is no limit to the number of nesting levels of “programs within programs”. Higher-order
programming languages are often described in terms of the lambda calculus, a prototypical for-
malism introduced by Church and Curry in the 1930’s, and we also follow this approach.

Because our language combines classical and quantum features, it is natural to consider two
distinct basic data types: a type bit of classical bits and a type qbit of quantum bits. These
two types have very different properties. For instance, the value of a classical bit can be copied
as many times as needed. On the other hand, a quantum bit cannot be duplicated, due to the
well-known no cloning property of quantum physics (Nielsen and Chuang 2002; Preskill 1999).
We therefore introduce a type system for our language that distinguishes between types whose
elements are duplicable, and types whose elements are not. This distinction not only exists at
basic types, but also at higher-order types: for example, some functions of type qbit → qbit can
be called an unlimited number of times (such as the identity function), whereas others can only
be called once (such as the function that returns a fixed qubit φ of unknown state). Hence, the
question of whether a function is duplicable or not cannot be directly seen from the types of its
arguments or of its result, but must be determined by inspecting the types of any free variables
occurring in the function definition. As we will show, the appropriate type system for higher-
order quantum functions in our setting is a variant of affine intuitionistic linear logic (Girard
1987).

We specify the behavior of programs in our language in terms of an operational semantics
with probabilistic reduction rules. One of the main results of this paper is a set of safety prop-
erties (subject reduction and progress) of the operational semantics with respect to well-typed
programs. We also give a type inference algorithm, which can be used to determine whether a
given term is typable in the linear type system, and to find a type for it. Type inference is an in-
teresting problem for this language, because the linear type system does not satisfy the principal
type property. Our algorithm is based on the idea that linear types are decorations of intuitionistic
ones.

This work is based on the second author’s Master’s thesis (Valiron 2004). A preliminary ver-
sion of this paper appeared in TLCA 2005.

A lambda calculus for quantum computation with classical control 3

2. Quantum computing basics

We briefly recall the basic definitions of quantum computing; please see Nielsen and Chuang
(2002) or Preskill (1999) for a complete introduction to the subject. The basic unit of information
in quantum computation is a quantum bit or qubit. The state of a single qubit is described by a
normalized vector of the 2-dimensional Hilbert space C2. We denote the standard basis of C2

as {|0〉, |1〉}, so that the general state of a single qubit can be written as α|0〉 + β|1〉, where
|α|2 + |β|2 = 1. It is customary to identify any states that differ only by a global phase, i.e.,
α|0〉 + β|1〉 and α′|0〉 + β′|1〉 denote the same physical state if there is some scalar λ such that
α′ = λα and β′ = λβ.

The state of n qubits is described by a normalized vector in ⊗n
i=1C2 ∼= C2n

. We write |xy〉 =

|x〉 ⊗ |y〉, so that a standard basis vector of C2n

can be denoted |piqn〉, where piqn is the binary
representation of i in n digits, for 0 6 i < 2n. As a special case, if n = 0, we denote the unique
standard basis vector in C

1 by |〉.
The basic operations on quantum states are unitary operations and measurements. A unitary

operation maps an n-qubit state to an n-qubit state, and is given by a unitary 2n × 2n-matrix.
It is common to assume that the computational model provides a certain set of built-in unitary
operations, including for example the Hadamard gate H and the controlled not-gate CNOT ,
among others:

H =
1√
2

(

1 1

1 −1

)

, CNOT =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

.

The measurement acts as a projection. When a qubit α|0〉 + β|1〉 is measured, the observed
outcome is a classical bit. The two possible outcomes 0 and 1 are observed with probabilities
|α|2 and |β|2, respectively. Moreover, the state of the qubit is affected by the measurement, and
collapses to |0〉 if 0 was observed, and to |1〉 if 1 was observed. More generally, given an n-qubit
state |φ〉 = α0|0〉 ⊗ |ψ0〉 + α1|1〉 ⊗ |ψ1〉, where |ψ0〉 and |ψ1〉 are normalized (n − 1)-qubit
states, then measuring the leftmost qubit results in the answer i with probability |αi|2, and the
resulting state will be |i〉 ⊗ |ψi〉.

3. The untyped quantum lambda calculus

3.1. Terms

Our language uses the notation of the intuitionistic lambda calculus. For a detailed introduction
to the lambda calculus, see e.g. Barendregt (1984). We start from a standard lambda calculus
with booleans and finite products. We extend this language with three special quantum opera-
tions, which are new , meas , and built-in n-ary gates. new maps a classical bit to a quantum bit.
meas maps a quantum bit to a classical bit by performing a measurement operation; this is a
probabilistic operation. Finally, we assume that there is a set Un of built-in n-ary n-ary gates for
each n. We use the letter U to range over built-in n-ary gates. Thus, the syntax of our language

Peter Selinger and Benoı̂t Valiron 4

is as follows:

Term M,N,P ::= x |MN | λx.M | if M then N else P | 0 | 1 | meas

| new | U | ∗ | 〈M,N〉 | let 〈x, y〉 = M in N,

We follow Barendregt’s convention for identifying terms up to α-equivalence. We also sometimes
use the shorthand notations

〈M1, . . . ,Mn〉 = 〈M1, 〈M2, . . . 〉〉,
let x = M in N = (λx.N)M,

λ〈x, y〉.M = λz.(let 〈x, y〉 = z in N).

3.2. Programs

The reader will have noticed that we have not provided a syntax for constant quantum states such
as α|0〉 + β|1〉 in our language. One may ask why we did not allow the insertion of quantum
states into a lambda term, such as λx.(α|0〉 + β|1〉). The reason is that, in the general case, such
a syntax would be insufficient. Consider for instance the lambda term (λy.λf.fpy)(q), where
p and q are entangled quantum bits in the state |pq〉 = α|00〉 + β|11〉. Such a state cannot be
represented locally by replacing p and q with some constant qubit expressions. The non-local
nature of quantum states thus forces us to introduce a level of indirection into the representation
of a state of a quantum program.

Definition 1. A program state is represented by a triple [Q,L,M], where

— Q is a normalized vector of ⊗n−1
i=0 C2, for some n > 0

— M is a lambda term,
— L is a function from W to {0, . . . , n − 1}, where FV (M) ⊆ W ⊆ Vterm . L is also called

the linking function or the qubit environment.

The purpose of the linking function is to assign specific free variables ofM to specific quantum
bits in Q. The notion of α-equivalence extends naturally to programs, for instance, the states
[|1〉, {x 7→ 0}, λy.x] and [|1〉, {z 7→ 0}, λy.z] are equivalent. The set of program states, up to
α-equivalence, is denoted by S.

Convention 2. In order to simplify the notation, we will often use the following convention: we
use pi to denote the free variable x such that L(x) = i. A program [Q,L,M] is abbreviated to
[Q,M ′] with M ′ = M [pi1/x1] . . . [pin/xn], where ik = L(xk).

3.3. Linearity

An important well-formedness property of quantum programs is that quantum bits should always
be uniquely referenced: roughly, this means that no two variable occurrences should refer to
the same physical quantum bit. The reason for this restriction is the well-known no-cloning
property of quantum physics, which states that a quantum bit cannot be duplicated: there exists
no physically meaningful operation which maps an arbitrary quantum bit |φ〉 to |φ〉 ⊗ |φ〉.

Syntactically, the requirement of unique referencing translates into a linearity condition: A
lambda abstraction λx.M is called linear if the variable x is used at most once during the eval-
uation of M . A well-formed program should be such that quantum data is only used linearly;

A lambda calculus for quantum computation with classical control 5

however, classical data, such as ordinary bits, can of course be used non-linearly. Since the deci-
sion of which subterms must be used linearly depends on type information, we will not formally
enforce any linearity constraints until we discuss a type system in Section 4; nevertheless, we
will assume that all our untyped examples are well-formed in the above sense.

3.4. Evaluation strategy

As is usual in defining a programming language, we need to settle on a reduction strategy. The
obvious candidates are call-by-name and call-by-value. Because of the probabilistic nature of
measurement, the choice of reduction strategy affects the behavior of programs, not just in terms
of efficiency, but in terms of the actual answer computed. We demonstrate this in an example. Let
plus be the boolean addition function, which is definable as plus = λxy. if x then (if y then

0 else 1) else (if y then 1 else 0). Consider the term M = (λx.plus x x)(meas(H(new 0))).

Call-by-value. Reducing this in the empty environment, using the call-by-value reduction strat-
egy, we obtain the following reductions:

−→CBV [|0〉, (λx.plus x x)(meas(H p0))]

−→CBV [1√
2
(|0〉 + |1〉), (λx.plus x x)(meas p0)]

−→CBV

{

[|0〉, (λx.plus x x)(0)]

[|1〉, (λx.plus x x)(1)]

−→CBV

{

[|0〉,plus 0 0]

[|1〉,plus 1 1]

−→CBV

{

[|0〉, 0]

[|1〉, 0]

where the two branches are taken with probability 1/2 each. Thus, under call-by-value reduction,
this program produces the boolean value 0 with probability 1. Note that we have used Conven-
tion 2 for writing these program states.

Call-by-name. Reducing the same term under the call-by-name strategy, we obtain in one step
[|〉,plus (meas(H(new 0))) (meas(H(new 0)))], and then with probability 1/4, [|01〉, 1],
[|10〉, 1], [|00〉, 0] or [|11〉, 0]. Therefore, the boolean output of this function is 0 or 1 with
equal probability.

Mixed strategy. Moreover, if we mix the two reduction strategies, the program can even reduce
to an ill-formed term. Namely, reducing by call-by-value until we reach the term [1√

2
(|0〉 +

|1〉), (λx.plus x x)(meas p0)], and then changing to call-by-name, we obtain in one step the
term [1√

2
(|0〉 + |1〉),plus (meas p0) (meas p0)], which is not a valid program since there are

two occurrences of p0.

Peter Selinger and Benoı̂t Valiron 6

In the remainder of this paper, we will only consider the call-by-value reduction strategy, which
seems to us to be the most natural.

3.5. Probabilistic reduction systems

In order to formalize the operational semantics of the quantum lambda calculus, we need to
introduce the notion of a probabilistic reduction system.

Definition 3. A probabilistic reduction system is a tuple (X,U,R, prob) where X is a set of
states, U ⊆ X is a subset of value states, R ⊆ (X \ U) × X is a set of reductions, and
prob : R → [0, 1] is a probability function, where [0, 1] is the real unit interval. Moreover, we
impose the following conditions:

— For any x ∈ X , Rx = { x′ | (x, x′) ∈ R } is finite.
—

∑

x′∈Rx
prob(x, x′) 6 1

We call prob the one-step reduction, and denote x→p y to be prob(x, y) = p. Let us extend
prob to the n-step reduction

prob0(x, y) =

{

0 if x 6= y

1 if x = y

prob1(x, y) =

{

prob(x, y) if (x, y) ∈ R

0 else
prob

n+1(x, y) =
∑

z∈Rx
prob(x, z)probn(z, y),

and the notation is extended to x→n
p y to mean probn(x, y) = p.

We say that y is reachable in one step with non-zero probability from x, denoted x →>0 y

when x→p y with p > 0. We say that y is reachable with non-zero probability from x, denoted
x→∗

>0 y when there exists n > 0 such that x→n
p y with p > 0.

We can then compute the probability to reach u ∈ U from x: It is a function from X × U to
R defined by probU (x, u) =

∑∞
n=0 probn(x, u). The total probability for reaching U from x is

probU (x) =
∑∞

n=0

∑

u∈U probn(x, u).
On the other hand, there is also the probability to diverge from x, or never reaching anything.

This value is prob∞(x) = limn→∞
∑

y∈X probn(x, y).

Lemma 4. For all x ∈ X , probU (x) + prob∞(x) 6 1.

We define the error probability of x to be the number prob
err

(x) = 1−probU (x)−prob∞(x).

Definition 5. We can define a notion of equivalence in X :

x ≈ y iff ∀u ∈ U

{

probU (x, u) = probU (y, u)

prob∞(x) = prob∞(y)

Definition 6. In addition to the notion of reachability with non-zero probability, there is also a
weaker notion of reachability, given by R: We will say that y is reachable in one step from x,
written x y, if xRy. By the properties of prob, x→>0 y implies x y. As usual, ∗ denotes
the transitive reflexive closure of , and we say that y is reachable from x if x ∗ y.

A lambda calculus for quantum computation with classical control 7

Definition 7. In a probabilistic reduction system, a state x is called an error-state if x 6∈ U and
∑

x′∈X prob(x, x′) < 1. An element x ∈ X is consistent if there is no error-state e such that
x ∗ e.

Lemma 8. If x is consistent, then proberr (x) = 0.

Remark 9. We need the weaker notion of reachability x ∗ y, in addition to reachability with
non-zero probability x →>0

∗ y, because a null probability of getting a certain result is not an
absolute warranty of its impossibility. In the QRAM, suppose we have a qubit in state |0〉. Mea-
suring it cannot theoretically yield the value 1, but in practice, this might happen with small
probability, due to imprecision of the physical operations and decoherence. Therefore, when we
prove type safety (see Theorem 27), we will use the stronger notion. In short: a type-safe program
should not crash, even in the event of random QRAM errors.

Remark 10. The converse of Lemma 8 is false. For instance, ifX = {a, b},U = ∅, a→1 a, and
a→0 b, then b is an error state, and b is reachable from a, but only with probability zero. Hence
proberr (a) = 0, although a is inconsistent.

3.6. Operational semantics

We define a probabilistic call-by-value reduction procedure for the quantum lambda calculus.
Note that, although the reduction itself is probabilistic, the choice of which redex to reduce at
each step is deterministic.

Definition 11. A value is a term of the following form:

Value V,W ::= x | λx.M | 0 | 1 | meas | new | U | ∗ | 〈V,W 〉.

The set of value states is V = {[Q,L, V] ∈ S | V ∈ Value}.

The reduction rules are shown in Table 1, where we have used Convention 2 to shorten the
description of states. We write [Q,L,M] →p [Q′, L′,M ′] for a single-step reduction of states
which takes place with probability p. In the rule for reducing the term U〈pj1 , . . . , pjn〉, U is an
n-ary built-in unitary gate, j1, . . . , jn are pairwise distinct, and Q′ is the quantum state obtained
fromQ by applying this gate to qubits j1, . . . , jn. In the rule for measurement, |Q0〉 and |Q1〉 are
normalized states of the form |Q0〉 =

∑

j αj |φ0
j 〉⊗|0〉⊗|ψ0

j 〉 and |Q1〉 =
∑

j βj |φ1
j 〉⊗|1〉⊗|ψ1

j 〉,
where φ0

j and φ1
j is an i-qubit state (so that the measured qubit is the one pointed to by pi). In the

rule for new , Q is an n-qubit state, so that Q⊗ |i〉 is an (n + 1)-qubit state, and pn refers to its
rightmost qubit.

We define a weaker relation . This relation models the transformations that can happen in the
presence of decoherence and imprecision of physical operations. We define [Q,M] [Q′,M ′]

to be [Q,M] →p [Q′,M ′], even when p = 0, plus the additional rule, if Q and Q′ are vectors of
equal dimensions: [Q,M] [Q′,M].

Lemma 12. Let prob be the function such that for x, y ∈ S, prob(x, y) = p if x→p y and 0 else.
Then (S,V, , prob) is a probabilistic reduction system.

Peter Selinger and Benoı̂t Valiron 8

[Q, (λx.M)V] →1 [Q,M [V/x]]

[Q,N] →p [Q′,N ′]

[Q,MN] →p [Q′,MN ′]

[Q,M] →p [Q′,M ′]

[Q,MV] →p [Q′,M ′V]

[Q,M1] →p [Q′,M ′
1
]

[Q, 〈M1,M2〉] →p [Q′, 〈M ′
1,M2〉]

[Q,M2] →p [Q′,M ′
2]

[Q, 〈V1 ,M2〉] →p [Q′, 〈V1, M ′
2
〉]

[Q, if 0 then M else N] →1 [Q,N]

[Q, if 1 then M else N] →1 [Q,M]

[Q,U〈pj1 , . . . , pjn〉] →1 [Q′, 〈pj1 , . . . , pjn〉]

[α|Q0〉 + β|Q1〉, meas pi] →|α|2 [|Q0〉, 0]

[α|Q0〉 + β|Q1〉, meas pi] →|β|2 [|Q1〉, 1]

[Q,new 0] →1 [Q ⊗ |0〉, pn]

[Q,new 1] →1 [Q ⊗ |1〉, pn]

[Q,P] →p [Q′, P ′]

[Q, if P then M else N] →p [Q′, if P ′ then M else N]

[Q,M] →p [Q′, M ′]

[Q, let 〈x1, x2〉 = M in N] →p [Q′, let 〈x1, x2〉 = M ′ in N]

[Q, let 〈x1, x2〉 = 〈V1 , V2〉 in N] →1 [Q,N [V1/x1, V2/x2]]

Table 1. Reductions rules of the quantum lambda calculus

This probabilistic reduction system has error states, for example, the states [Q,H(λx.x)] or
[Q,U〈p0, p0〉]. Such error states correspond to run-time errors. In the next section, we introduce
a type system designed to rule out such error states.

4. The typed quantum lambda calculus

We will now define a type system designed to eliminate all run-time errors arising from the re-
duction system of the previous section. We need base types (such as bit and qbit), function types,
and product types. In addition, we need the type system to capture a notion of duplicability, as
discussed in Section 3.3. We follow the notation of linear logic (Girard 1987). By default, a term
of type A is assumed to be non-duplicable, and duplicable terms are given the type !A instead.
Formally, the set of types is defined as follows, where α ranges over a set of type constants and
X ranges over a countable set of type variables:

qType A,B ::= α | X | !A | (A(B) | > | (A⊗B)

Note that, because all terms are assumed to be non-duplicable by default, the language has a
linear function type A(B and a linear product type A ⊗ B. This reflects the fact that there is
in general no canonical diagonal function A → A⊗A. Also, > is the linear unit type. This will
be made more formal in the typing rules below. We write !nA for !!! . . .!!A, with n repetitions of
!. We also write An for the n-fold tensor productA⊗ . . .⊗A.

4.1. Subtyping

The typing rules will ensure that any value of type !A is duplicable. However, there is no harm
in using it only once; thus, such a value should also have type A. For this reason, we define a

A lambda calculus for quantum computation with classical control 9

subtyping relation <: as follows:

α <: α (α) X <:X
(X) ><: > (>)

A<:B
!A<: B

(D)
!A<:B
!A<: !B

(!)

A1 <:B1 A2 <:B2

A1 ⊗A2 <:B1 ⊗B2
(⊗)

A<:A′ B <: B′

A′(B <:A(B′ (()

Lemma 13. For types A and B, if A<:B and (m = 0) ∨ (n > 1), then !nA<: !mB.

Proof. Repeated application of (D) and (!).

Notice that one can rewrite types using the notation:

qType A,B ::= !nα | !nX | !n(A(B) | !n> | !n(A⊗B)

with n ∈ N. Using the overall condition on n and m that (m = 0) ∨ (n > 1), the rules can be
re-written as:

!nα <: !mα
(α2)

!nX <: !mX
(X2)

!n><: !m> (>2)

A1 <:B1 A2 <:B2

!n(A1 ⊗A2)<: !m(B1 ⊗B2)
(⊗2)

A<:A′ B <: B′

!n(A′(B)<: !m(A(B′)
((2)

The two sets of rules are equivalent.

Lemma 14. The rules of the second set are reversible.

Proof. Note that for each possible type only one rule can be used.

Lemma 15. (qType , <:) is reflexive and transitive. If we define an equivalence relation + by
A + B iff A<: B and B <: A, (qType/+, <:) is a poset.

Proof. Both properties are shown by induction on the second set of rules. For transitivity, note
that the condition (m = 0) ∨ (n > 1) can be re-written as (n = 0) ⇒ (m = 0), which is
transitive.

Lemma 16. If A<: !B, then there exists C such that A = !C.

Proof. A direct application of the second set of rules.

Remark 17. The subtyping rules are a syntactic device, and are not intended to catch all plausi-
ble type isomorphisms. For instance, the types !A ⊗ !B and !(A ⊗ B) are not subtypes of each
other, although an isomorphism between these types is easily definable in the language.

4.2. Typing rules

We need to define what it means for a quantum state [Q,L,M] to be well-typed. It turns out that
the typing does not depend on Q and L, but only on M . We introduce typing judgments of the
form ∆ BM : B. HereM is a term,B is a qType , and ∆ is a typing context, i.e., a function from
a set of variables to qType . As usual, we write |∆| for the domain of ∆, and we denote typing

Peter Selinger and Benoı̂t Valiron 10

A <: B

∆, x:A B x : B
(var)

Ac <: B

∆ B c : B
(const)

Γ1, !∆ B P : bit Γ2, !∆ B M : A Γ2, !∆ B N : A

Γ1,Γ2, !∆ B if P then M else N : A
(if)

Γ1, !∆ B M : A (B Γ2, !∆ B N : A

Γ1, Γ2, !∆ B MN : B
(app)

x:A,∆ B M : B

∆ B λx.M : A (B
(λ1)

If FV (M) ∩ |Γ| = ∅:
Γ, !∆, x:A B M : B

Γ, !∆ B λx.M : !n+1(A (B)
(λ2)

!∆,Γ1 B M1 : !nA1 !∆, Γ2 B M2 : !nA2

!∆,Γ1,Γ2 B 〈M1,M2〉 : !n(A1 ⊗ A2)
(⊗.I)

∆ B ∗ : !n>
(>)

!∆,Γ1 B M : !n(A1 ⊗ A2) !∆,Γ2, x1:!nA1, x2:!nA2 B N : A

!∆,Γ1,Γ2 B let 〈x1, x2〉 = M in N : A
(⊗.E)

Table 2. Typing rules

contexts as x1:A1, . . . , xn:An. As usual, we write ∆, x:A for ∆ ∪ {x:A} if x 6∈ |∆|. Also, if
∆ = x1:A1, . . . , xn:An, we write !∆ = x1:!A1, . . . , xn:!An. A typing judgment is called valid
if it can be derived from the rules in Table 2.

The typing rule (ax) assumes that to every constant c of the language, we have associated a
fixed type Ac. The types Ac are defined as follows:

A0 = !bit Anew = !(bit(qbit)

A1 = !bit Ameas = !(qbit(!bit) AU = !(qbitn
(qbitn)

Note that we have given the type !(bit(qbit) to the term new . Another possible choice
would have been !(!bit(qbit), which makes sense because all classical bits are duplicable.
However, since !(bit(qbit) <: !(!bit(qbit), the second type is less general, and can be in-
ferred by the typing rules.

The shorthand notations have the required behavior:

!∆,Γ1, x:A B N :B !∆,Γ2 BM :A

!∆,Γ1,∆2 B let x = M in N :B ,

!∆,Γ, x:A, y:B BM :C

!∆,Γ B λ〈x, y〉.M :(A⊗B)(C,

and if FV (M) ∩ |Γ| = ∅,
!∆,Γ, x:!nA, y:!nB BM :C

!∆,Γ B λ〈x, y〉.M :!m+1(!n(A⊗B)(C)
are provable.

Note that, if [Q,L,M] is a program state, the term M need not be closed; however, all of its
free variables must be in the domain of L, and thus must be of type qbit . We therefore define:

Definition 18. A program state [Q,L,M] is well-typed of type B if ∆ B M : B is derivable,
where ∆ = {x: qbit | x ∈ FV (M)}. In this case, we write [Q,L,M] : B.

Note that the type system enforces that variables holding quantum data cannot be duplicated;
thus, λx.〈x, x〉 is not a valid term of type qbit(qbit⊗qbit . On the other hand, we allow variables
to be discarded freely. Other approaches are also possible, for instance, Altenkirch and Grattage
(2004) propose a syntax that allows duplication but restricts discarding of quantum values.

A lambda calculus for quantum computation with classical control 11

qubit 1: |φ〉 • H

(1) (2) M

(3)

x,y

��

qubit 2: |0〉 H • ⊕

qubit 3: |0〉 ⊕ ED location B

location A

@A
Uxy

(4)

|φ〉

_ _�

�

�

�

�

�

�

�

�

�
_ _

Table 3. Quantum teleportation protocol

4.3. Example: quantum teleportation

Let us illustrate the quantum lambda calculus and the typing rules with an example. The follow-
ing is an implementation of the well-known quantum teleportation protocol (see e.g. Nielsen and
Chuang (2002)). The purpose of the teleportation protocol is to send a qubit from location A
to location B, using only classical communication and a pre-existing shared entangled quantum
state. In fact, this can be achieved by communicating only the content of two classical bits. In the
usual quantum circuit formalism, the teleportation protocol is described in Table 3.

The state |φ〉 of the first qubit is “teleported” from location A to location B. The important
point of the protocol is that the only quantum interaction between locations A and B (shown as
(1) in the illustration) can be done ahead of time, i.e., before the state |φ〉 is prepared.

The dashed box M (shown as (3)) represents a measurement of two qubits. The gate Uxy

(shown as (4)) depends on two classical bits x and y, which are the result of this measurement.
It is defined as:

U00 =

(

1 0

0 1

)

, U01 =

(

0 1

1 0

)

, U10 =

(

1 0

0 −1

)

, U11 =

(

0 1

−1 0

)

.

The teleportation protocol consists of four steps:

(1) Create an entangled state 1√
2
(|00〉 + |11〉) between qubits 2 and 3.

(2) At location A, rotate qubits 1 and 2.
(3) At location A, measure qubits 1 and 2, obtaining two classical bits x and y.
(4) At location B, apply the correct transformation Uxy to qubit 3.

Proof of the correctness of the teleportation protocol. The rotation (2) has the following effect:

CNOT H ⊗ id

|00〉 7→ |00〉 7→ 1√
2
(|00〉 + |10〉),

|01〉 7→ |01〉 7→ 1√
2
(|01〉 + |11〉),

|10〉 7→ |11〉 7→ 1√
2
(|01〉 − |11〉),

|11〉 7→ |10〉 7→ 1√
2
(|00〉 − |10〉).

Peter Selinger and Benoı̂t Valiron 12

If we apply it to the two first qubits of

(α|0〉 + β|1〉) ⊗ 1√
2
(|00〉 + |11〉) = 1√

2
(α|000〉 + α|011〉+ β|100〉 + β|111〉)

we get

1
2 (α(|000〉 + |100〉) + α(|011〉 + |111〉) + β(|010〉 − |110〉) + β(|001〉 − |101〉))
= 1

2 (|00〉 ⊗ (α|0〉 + β|1〉) + |01〉 ⊗ (α|1〉 + β|0〉)
+|10〉 ⊗ (α|0〉 − β|1〉) + |11〉 ⊗ (α|1〉 − β|0〉))

If we measure the two first qubits, the third qubit becomes

α|0〉 + β|1〉 if 00 was measured,

α|1〉 + β|0〉 if 01 was measured,

α|0〉 − β|1〉 if 10 was measured,

α|1〉 − β|0〉 if 11 was measured.

Finally, note that if Uxy is applied in the case where x, y was measured, then the state of the last
qubit is α|0〉 + β|1〉 = |φ〉.

To express the quantum teleportation protocol in our quantum lambda calculus, we implement
each part of the protocol as a function. We define three functions

EPR : !(>((qbit ⊗ qbit))

BellMeasure : !(qbit((qbit(bit ⊗ bit))

U : !(qbit((bit ⊗ bit(qbit))

The function EPR corresponds to step (1) of the protocol, and creates an entangled 2-qubit state.
The function BellMeasure corresponds to steps (2) and (3), and takes two qubits, rotates and
measures them. The function U corresponds to step (4). It takes a qubit q and two bits x, y and
returns Uxyq. These functions are defined as follows:

EPR = λx.CNOT 〈H(new 0),new 0〉,
BellMeasure = λq2.λq1.(let 〈p, p′〉 = CNOT 〈q1, q2〉

in 〈meas(Hp),meas p′〉),
U = λq.λ〈x, y〉. if x then (if y then U11q else U10q)

else (if y then U01q else U00q),

where Uxy are defined as above when the measured qubits were x and y.
The teleportation procedure can be seen as the creation of two non-duplicable functions f and

g

f : qbit(bit ⊗ bit ,

g : bit ⊗ bit(qbit ,

such that g ◦ f(q) = q for an arbitrary qubit q. We can construct such a pair of functions by the
following code:

let 〈p, p′〉 = EPR ∗
in let f = BellMeasurep

in let g = U p′

in 〈f, g〉.

A lambda calculus for quantum computation with classical control 13

Note that, since f and g depend on the state of the qubits p and p′, respectively, these functions
cannot be duplicated, which is reflected in the fact that the types of f and g do not contain a
top-level “!”. The detailed typing derivation of these terms, and a proof that g(f(q)) → q, using
the reduction rules of Table 1, are given in the Appendix.

Superdense coding. The two functions f and g generated for the quantum teleportation protocol
also satisfy a dual property, namely (f ◦ g)〈x, y〉 = 〈x, y〉, for an arbitrary pair of classical bits
〈x, y〉. This property can be used to send two classical bits along a channel that can hold a single
quantum bit, in the presence of a pre-existing shared entangled quantum state. This procedure
is known as superdense coding (see Nielsen and Chuang (2002)), and it is dual to quantum
teleportation. A detailed proof of (f ◦ g)〈x, y〉 → 〈x, y〉 from the reduction rules is given in the
Appendix.

Remark 19. Note that the types qbit and bit⊗bit are clearly not isomorphic. However, we have
f : qbit(bit ⊗ bit and g : bit ⊗ bit(qbit such that f ◦ g = id and g ◦ f = id . This is not
a contradiction, of course, because each of f and g can only be used once, and therefore they
are not isomorphisms in the usual sense. We might describe such a pair of functions as a pair of
“single-use isomorphisms”.

While this behavior of the functions f and g, and the corresponding properties of teleportation
and superdense coding, are well-understood in quantum mechanics, this is still something of a
mystery to us in the context of programming language semantics. We are not aware of any other
situation in programming languages that produces such single-use isomorphisms.

4.4. Properties of the type system

We derive some basic properties of the type system.

Definition 20. We extend the subtyping relation to contexts by writing ∆ <: ∆′ if |∆′| = |∆|
and for all x in |∆′|, ∆f (x) <: ∆′

f (x).

Lemma 21.

(1) If x 6∈ FV (M) and ∆, x:A BM :B, then ∆ BM :B.
(2) If ∆ BM :A, then Γ,∆ BM :A.
(3) If Γ<: ∆ and ∆ BM : A and A<:B, then Γ BM : B.

Proof. By structural induction on the type derivation of M .

The next lemma is crucial in the proof of the substitution lemma. Note that it is only true for a
value V , and in general fails for an arbitrary term M .

Lemma 22. If V is a value and ∆ B V : !A, then for all x ∈ FV (V), there exists some
U ∈ qType such that ∆(x) = !U .

Proof. By induction on V .

— If V is a variable x, then the last rule in the derivation was
B <: !A

∆′, x : B B x : !A
. Since

B <: !A, B must be exponential by Lemma 16.

Peter Selinger and Benoı̂t Valiron 14

— If V is a constant c, then FV (V) = ∅, hence the result holds vacuously.
— If V = λx.M , the only typing rule that applies is (λ2), and ∆ = Γ, !∆′ with FV (M) ∩

|∆′| = ∅. So every y ∈ FV (M) except maybe x is exponential. Since FV (λx.M) =

(FV (M) \ {x}), this suffices.
— The remaining cases are similar.

Lemma 23 (Substitution). If V is a value such that Γ1, !∆, x:A BM : B and Γ2, !∆ B V : A,
then Γ1,Γ2, !∆ BM [V/x] : B.

Proof. By structural induction on the derivation of Γ1, !∆, x:A BM : B.

Corollary 24. If Γ1, !∆, x:A BM : B and Γ2, !∆ B V : !nA, then Γ1,Γ2, !∆ BM [V/x] : B.

Proof. From Lemma 23 and Lemma 21(3).

Remark 25. We note that all the usual rules of affine intuitionistic linear logic are derived rules
of our type system, except for the general promotion rule. Indeed, B new 0 : qbit is valid, but
B new 0 : !qbit is not. However, the promotion rule is derivable when V is a value:

!Γ B V : A
!Γ B V :!A.

4.5. Subject reduction and progress

Theorem 26 (Subject Reduction). Given a well-typed program [Q,L,M]:B such that [Q,L,M] ∗

[Q′, L′,M ′], then [Q′, L′,M ′] : B.

Proof. It suffices to show this for [Q,L,M] →p [Q′, L′,M ′], and we proceed by induction
on the rules in Table 1. The rule [Q, (λx.M)V] →1 [Q,M [V/x]] and the rule for “let” use the
substitution lemma. The remaining cases are direct applications of the induction hypothesis.

Theorem 27 (Progress). Let [Q,L,M] : B be a well typed program. Then [Q,L,M] is not an
error state in the sense of Definition 7. In particular, either [Q,L,M] is a value, or else there
exist some state [Q′, L′,M ′] such that [Q,L,M]→p [Q′, L′,M ′]. Moreover, the total probability
of all possible single-step reductions from [Q,L,M] is 1.

Corollary 28. Every sequence of reductions of a well-typed program either converges to a value,
or diverges.

The proof of the Progress Theorem is similar to the usual proof, with two small differences.
The first is the presence of probabilities, and the second is the fact that M is not necessarily
closed. However, all the free variables of M are of type qbit , and this property suffices to prove
the following lemma, which generalizes the usual lemma on the shape of closed well-typed
values:

Lemma 29. Suppose ∆ = x1:qbit , . . . , xn:qbit , and V is a value. If ∆ B V :A(B, then V is
new , meas , U , or a lambda abstraction. If ∆ B V :A ⊗ B, then V = 〈V1, V2〉. If ∆ B V :bit ,
then V = 0 or V = 1.

Proof. By inspection of the typing rules.

A lambda calculus for quantum computation with classical control 15

Proof of the Progress Theorem. By induction on M . The claim follows immediately in the
cases when M is a value, or when M is a left-hand-side of one of the rules in Table 1 that
have no hypotheses. Otherwise, using Lemma 29, M is one of the following: PN , NV , 〈N,P 〉,
〈V,N〉, if N then P else Q, let 〈x, y〉 = N in P , where N is not a value. In this case, the
free variables of N are still all of type qbit , and by induction hypothesis, the term [Q,L,N]

has reductions with total probability 1, and the rules in Table 1 ensure that the same is true for
[Q,L,M].

5. Type inference algorithm

It is well-known that the simply-typed lambda calculus, as well as many programming languages,
satisfies the principal type property: every untyped expression has a most general type, provided
that it has any type at all. Since most principal types can usually be determined automatically,
the programmer can be relieved from the need to write any types at all.

In the context of our quantum lambda calculus, it would be nice to have a type inference
algorithm; however, the principal type property fails due to the presence of exponentials !A. Not
only can an expression have several different types, but in general none of the types is “most
general”. For example, the term M = λxy.xy has possible types T1 = (A(B)((A(B)

and T2 = !(A(B)(!(A(B), among others. Neither of T1 and T2 is a substitution instance
of the other, and in fact the most general type subsuming T1 and T2 is X(X , which is not a
valid type for M . Also, neither of T1 and T2 is a subtype of the other, and the most general type
of which they are both subtypes is (A(B)(!(A(B), which is not a valid type for M .

In the absence of the principal type property, we need to design a type inference algorithm
based on a different idea. The approach we follow is the one suggested by Danos, Joinet, and
Schellinx (1995). The basic idea is to view a linear type as a “decoration” of an intuitionistic
type. Our type inference algorithm is based on the following technical fact, given below: if a
given term has an intuitionistic type derivation π of a certain kind, then it is linearly typable
if and only if there exists a linear type derivation which is a decoration of π. Typability can
therefore be decided by first doing intuitionistic type inference, and then checking finitely many
possible linear decorations.

5.1. Skeletons and decorations

The class of intuitionistic types is

iType U, V ::= α | X | (U ⇒ V) | (U × V) | >

where α ranges over the type constants and X over the type variables.

To eachA ∈ qType , we associate its type skeleton †A ∈ iType , which is obtained by removing
all occurrences of “!”. Conversely, every U ∈ iType can be lifted to some ♣U ∈ qType with no
occurrences of “!”. Formally:

Peter Selinger and Benoı̂t Valiron 16

Definition 30. Define functions † : qType → iType and ♣ : iType → qType by:

†!nα = α, †!nX = X, †!n> = >,
†!n(A(B) = †A⇒ †B,
†!n(A⊗B) = †A× †B,

♣α = α, ♣X = X, ♣> = >,
♣(U ⇒ V) = ♣U (♣V ,
♣(U × V) = ♣U ⊗ ♣V .

If U = †A, then we also say that A is a decoration of U .

Lemma 31. If A<:B, then †A = †B. If U ∈ iType , then U = †♣U .

Writing ∆ I M : U for a typing judgment of the simply-typed lambda calculus, we can
extend the notion of skeleton to contexts, typing judgments, and derivations as follows:

†{x1:A1, . . . , xn:An} = {x1:
†A1, . . . , xn:†An}

†(∆ BM : A) = (†∆ IM : †A).

From the rules in Table 2, it is immediate that if ∆ B M : A is a valid typing judgment in the
quantum lambda calculus, then †(∆ BM : A) = (†∆ IM : †A) is a valid typing judgment in
the simply-typed lambda calculus.

5.2. Decorating intuitionistic type derivations

The basic idea of our quantum type inference algorithm is the following: given a term M , first
find an intuitionistic typing judgment ∆ I M : U , say with type derivation π, if such a typing
exists. Then look for a quantum type derivation which is a decoration of π. Clearly, if the term
M is not quantum typable, this procedure will fail to yield a quantum typing of M . For the
algorithm to be correct, we also need the converse property to be true: ifM has any quantum type
derivation, then it has a quantum type derivation which is a decoration of the given intuitionistic
derivation π. We therefore would ideally like to prove the following property:

Property 32 (desired). Let M be a term with an intuitionistic type derivation π. Then M is
quantum typable if and only if there exists a quantum type derivation π ′ ofM such that †π′ = π.

Unfortunately, this property is false, as the following example shows.

Example 33. Consider the term M = (λx.meas x)(new 0). Clearly this term is quantum ty-
pable, for instance, it has type bit (also !bit , !!bit etc.). Consider the following intuitionistic type
derivation π for M :

x : qbit I meas : qbit ⇒ bit x : qbit I x : qbit

x : qbit I meas x : bit

I λx.meas x : qbit ⇒ bit

I new : bit ⇒ qbit I 0 : bit

I new 0 : qbit

I (λx.meas x)(new 0) : bit

This particular intuitionistic type derivation is not the skeleton of any valid quantum type deriva-
tion of M . To see this, note that the variable x has been duplicated in the typing rule for meas x.
Therefore, any valid decoration of π has to give the type !qbit to x. On the other hand, the only
valid quantum type for new 0 is qbit , which is not a subtype of !qbit . Hence, there is no quantum
type derivation for M whose skeleton is π, demonstrating that Property 32 fails.

A lambda calculus for quantum computation with classical control 17

5.3. Normal derivations

The reason Property 32 fails is because an intuitionistic derivation can duplicate variables unnec-
essarily, as shown in Example 33. The duplication of a variable in a typing rule is unnecessary if
the variable does not actually occur in one of the premises. We can avoid this problem by slightly
changing the typing rules to disallow such unnecessary duplications. This is done by eliminating
all “dummy” variables from typing contexts.

Definition 34. A typing judgment ∆ BM : A of the quantum lambda calculus is called normal
if |∆| = FV (M). If ∆ B M : A is any typing judgment, then its normal form is ∆|FV (M) B

M : A. We also write ∆|M for ∆|FV (M). If π is a type derivation, then its normal form is the
derivation N(π) obtained by taking the normal form of each of its nodes.

Note that the normal form of a type derivation is not necessarily a type derivation in the
strict sense, because the rules of Table 2 are not invariant under taking normal forms. However,
we can define a new set of typing rules, called the normal typing rules, which are obtained by
normalizing the rules from Table 2. For example, the new rule for application is:

{Γ1, !∆}|FV (M) BM : A(B {Γ2, !∆}|FV (N) B N : A

{Γ1,Γ2, !∆}|FV (MN) BMN : B
(appnorm)

We treat all the other typing rules analogously.

Lemma 35. Let ∆ B M : A be any typing judgment. Then ∆ B M : A is derivable from the
rules in Table 2 if and only if ∆|FV (M) BM : A is derivable from the normal typing rules.

Proof. The left-to-right implication follows by normalizing the type derivation of ∆ BM : A.
The opposite implication follows because the normal typing rules are admissible by Lemma 21.

The normal form of intuitionistic typing judgments, rules, and derivations is defined analogously.
The counterpart of Lemma 35 also holds in the intuitionistic case.

Relative to the normal typing rules, the analog of Property 32 holds.

Theorem 36. LetM be a term with a normal intuitionistic type derivationπ. ThenM is quantum
typable if and only if there exists a normal quantum type derivation π′ of M such that †π′ = π.

5.4. Proof of Theorem 36

The proof of Theorem 36 requires us to find a suitable decoration π′ of π. For this purpose we
are going to introduce the concept of the decoration of an intuitionistic type along a quantum
type. Intuitively,U # A takes the skeleton from U and the exponentials from A.

Definition 37. Given A ∈ qType and U ∈ iType , we define the decoration U # A ∈ qType of
U along A by

U # !nA = !n(U # A),

(U ⇒ V)# (A(B) = (U # A)((V # B),

(U × V)# (A⊗B) = (U # A) ⊗ (V # B),

in all other cases: U # A = ♣U.

Peter Selinger and Benoı̂t Valiron 18

Lemma 38. If U, V ∈ iType and A,B ∈ qType , then the following are true:

(a) †(U # A) = U ,
(b) If †A = U then U # A = A,
(c) If A<:B then (U # A)<: (U # B).

Definition 39. Let Γ be an intuitionistic typing context, and ∆ a quantum typing context, such
that |Γ| ⊆ |∆|. Then we define Γ # ∆ := Γ′, where |Γ′| = |Γ|, and for all x in |Γ|, Γ′(x) =

Γ(x)# ∆(x). This notation is extended to typing judgments in the following way, provided that
|Γ| ⊆ |∆|:

(Γ IM : U)# (∆ BM : A) := Γ# ∆ BM : U # A,

and to type derivations by structural induction, provided that the intuitionistic derivation is nor-
mal.

Lemma 40. If π is a normal intuitionistic type derivation and if ρ is any quantum type derivation,
then π′ := (π # ρ) is a normal quantum type derivation.

Proof. By structural induction on ρ, and by case distinction on the last typing rule used. For
instance, suppose the last rule used was the (app) rule. Then M = NP and the type derivation
ρ ends in

.... ρ1

∆1, !∆3 B N : A(B

.... ρ2

∆2, !∆3 B P : A

∆1,∆2, !∆3 B NP : B

In normal intuitionistic lambda calculus the type derivation π is of the form:
.... π1

Γ|FV (N) I N : U ⇒ V

.... π2

Γ|FV (P) I P : U

Γ|FV (NP) I NP : V

Writing Γ|X for Γ|FV (X), the type derivation π # ρ is

.... π1 # ρ1

Γ|N # (∆1, !∆3) B N : (U ⇒ V)# (A(B)

.... π2 # ρ2

Γ|P # (∆2, !∆3) B P : U # A

Γ|NP # (∆1,∆2, !∆3) B NP : V # B.

By induction hypothesis,π1 # ρ1 and π2 # ρ2 are quantum normal type derivations. If we write
Γi for Γ|dom∆i # ∆i, using Lemma 38 and the definition of#, the last rule of the derivation
above becomes:

{Γ1, !Γ3}|N B N : (U # A)((V # B) {Γ2, !Γ3}|P B P : U # A

{Γ1,Γ2, !Γ3}|NP B NP : V # B,

which is an instance of the normal quantum (app) rule. Thus π′ := (π # ρ) is a normal quantum
type derivation. The other typing rules are treated similarly.

Proof of Theorem 36. For the left-to-right implication, if ρ is some quantum type derivation
of M , we can define π′ = (π # ρ) as in Lemma 40. Then †π

′
= π follows from Lemma 38.

The right-to-left implication follows trivially from Lemma 35.

A lambda calculus for quantum computation with classical control 19

5.5. Elimination of repeated exponentials

The type system in Section 4 allows types with repeated exponentials such as !!A. While this is
useful for compositionality, it is not very convenient for type inference. We therefore consider a
reformulation of the typing rules which only requires single exponentials.

Definition 41. For A ∈ qType , we define #A ∈ qType to be the result of erasing multiple
exponentials in A. Formally, if σ(0) = 0 and σ(n+ 1) = 1,

#!nα = !σ(n)α, #!nX = !σ(n)X, #!n> = !σ(n)>,
#!n(A(B) = !σ(n)(#A(#B), #!n(A⊗B) = !σ(n)(#A⊗ #B),

We also extend this operation to typing contexts and judgments in the obvious way.

Lemma 42. The following are derived rules of the type system in Table 2, for all τ, σ ∈ {0, 1}.

!∆,Γ1 BM1 : !A1 !∆,Γ2 BM2 : !A2

!∆,Γ1,Γ2 B 〈M1,M2〉 : !(!τA1 ⊗ !σA2)
(⊗.I ′)

!∆,Γ1 BM : !(!τA1 ⊗ !σA2) !∆,Γ2, x1:!A1, x2:!A2 B N : A

!∆,Γ1,Γ2 B let 〈x1, x2〉 = M in N : A
(⊗.E′)

Further, the normal forms of (⊗.I ′) and (⊗.E′) are derivable in the normal type system.

Proof. Suppose !∆,Γ1 BM1 : !A1 and !∆,Γ2 BM2 : !A2 are derivable. Since !A1 <: !!τA1

and !A2 <: !!σA2, therefore !∆,Γ1 BM1 : !!τA1 and !∆,Γ2 BM2 : !!σA2 are also derivable by
Lemma 21(3). But then !∆,Γ1,Γ2 B 〈M1,M2〉 : !(!τA1 ⊗ !σA2) follows from rule (⊗.I). The
proof of the second rule is similar. Finally, the last claim follows from Lemma 35.

Lemma 43. If π is a derivation of a typing judgment ∆ B M : A from the normal quantum
typing rules, then #π is a valid normal derivation of #∆ B M : #A, possibly using the normal
forms of (⊗.I ′) and (⊗.E′) as additional rules. Moreover, †π = †#π.

Proof. By inspection of the rules. For each normal typing rule r, #r is either an instance of
the same rule, or of the normal form of (⊗.I ′) or (⊗.E′).

5.6. Description of the type inference algorithm

Theorem 36 yields a simple type inference algorithm. Given a term M , we can perform type
inference in the quantum lambda calculus in three steps:

(1) Find an intuitionistic type derivation π of M , if any.
(2) Eliminate “dummy” variables to obtain its normal form Nπ.
(3) Find a decoration of Nπ which is a valid normal quantum type derivation, if any.

Step (1) is known to be decidable, and step (2) is computationally trivial. By Theorem 36, step
(3) will succeed if and only if M is quantum typable. Note that by Lemma 43, it suffices to
consider decorations of Nπ without repeated exponentials. Since there are only finitely many
such decorations, step (3) is clearly decidable. Also note that if the algorithm succeeds, then it
returns a possible type for M . However, it does not return a description of all possible types.

Peter Selinger and Benoı̂t Valiron 20

Remark 44 (Efficiency of the algorithm). In principle, the search space of all possible deco-
rations of Nπ is exponential in size. However, this space can be searched efficiently by solving
a system of constraints. More precisely, if we create a boolean variable for each place in the
type derivation which potentially can hold a “!”, then the constraints imposed by the linear type
system can all be written in the form of implications x1 ∧ . . .∧xn ⇒ y, where n > 0, and nega-
tions ¬z. It is well-known that such a system can be solved in polynomial time in the number of
variables and clauses. Therefore, the type inference problem can be solved in time polynomial in
the size of the type derivation π.

Note, however, that the size of an intuitionistic type derivation π need not be polynomial in
the size of the term M , because in the worst case, π can contain types that are exponentially
larger than M . We do not presently know whether quantum typability can be decided in time
polynomial in M .

6. Conclusion and further work

In this paper, we have defined a higher-order quantum programming language based on a linear
typed lambda calculus. Compared to the quantum lambda calculus of van Tonder (2004), our
language is characterized by the fact that it contains classical as well as quantum features; for
instance, we provide classical datatypes and measurements as a primitive feature of our language.
Moreover, we provide a subject reduction result and a type inference algorithm. As the language
shows, linearity constraints do not just exist at base types, but also at higher types, due to the fact
that higher-order functions are represented as closures, which may in turns contain embedded
quantum data. We have shown that a version of affine intuitionistic linear logic provides the right
type system to deal with this situation.

There are many open problems left for further work. Several interesting variations of the lan-
guage presented here need to be explored in more detail. For instance, we have not included a
syntax for recursive function definitions in this paper. We believe that this can be done, but the
details are more subtle than we first expected. Another obvious extension is to add the additive
types of linear logic to the system. One may also study alternative reduction strategies. In this
paper, we have considered the call-by-value strategy, because it conforms with our intuition of
quantum computation as being essentially value-driven. However, a call-by-name strategy is also
conceivable and would lead to a very different semantics and type system. Finally, an important
problem that we have not addressed here is how to give a denotational semantics for higher order
quantum programming languages. This appears to be a difficult problem and is the subject of
ongoing research.

Appendix A. Examples

A.1. Example: Type derivation of the teleportation protocol

To illustrate the linear type system from Section 4.2, we give a complete derivation of the type of
the quantum teleportation term from Section 4.3. The notation (L.x.y) means that Lemma.x.y is
used.

A lambda calculus for quantum computation with classical control 21

Computing some subtypes:

1 α2 !nα <: α

2 α2 !mβ <: β

3 (2, 1, 2 !k(α(!mβ)<: (!nα(β)

4 (L.15) A<:A

5 D, 4 !A<:A

Computing the type of EPR:

6 const , 3 B new : bit(qbit

7 const , 5 B 0: bit

8 app, 6, 7 B new 0: qbit

9 const , 3 B H : qbit(qbit

10 app, 9, 8 B H(new 0): qbit

11 ⊗.I, 10, 9 B 〈H(new 0),new 0〉 : qbit ⊗ qbit

12 const , 3 x:> B CNOT :(qbit ⊗ qbit)((qbit ⊗ qbit)

13 app, 12, 11 x:> B CNOT 〈H(new 0),new 0〉: qbit ⊗ qbit

14 λ2, 13 B λx.CNOT 〈H(new 0),new 0〉:!(>((qbit ⊗ qbit))

Computing the type of BellMeasure:

15 var , 1 y:qbit B y:qbit

16 const , 3 B meas :qbit(bit

17 app, 16, 15 y: qbit B meas y:bit

18 var , 1 x: qbit B x:qbit

19 app, 9, 18 x:qbit B Hx:qbit

20 app, 16, 19 x: qbit B meas(Hx):bit

21 var , 1 q1: qbit B q1: qbit

22 var , 1 q2: qbit B q2: qbit

23 ⊗.I, 21, 22 q2: qbit , q1: qbit B 〈q1, q2〉: qbit ⊗ qbit

24 const , 3 B CNOT :(qbit ⊗ qbit)((qbit ⊗ qbit)

25 app, 24, 23 q2: qbit , q1: qbit B CNOT 〈q1, q2〉: qbit ⊗ qbit

26 ⊗.I, 20, 17 x: qbit , y: qbit B 〈meas(Hx),meas y〉: bit ⊗ bit

27 ⊗.E, 25, 26 q2: qbit , q1: qbit B let 〈x, y〉 = CNOT 〈q1, q2〉
in〈meas(Hx),meas y〉: bit ⊗ bit

28 λ1, 27 q2: qbit B λq1.(let 〈x, y〉 = CNOT 〈q1, q2〉
in 〈meas(Hx),meas y〉):qbit(bit ⊗ bit

29 λ2, 28 B λq2.λq1.(let 〈x, y〉 = CNOT 〈q1, q2〉
in 〈meas(Hx),meas y〉):!(qbit((qbit(bit ⊗ bit))

Peter Selinger and Benoı̂t Valiron 22

Computing the type of U:

30 var , 1 q:qbit B q:qbit

31 const , 3 B Uij :qbit(qbit

32 app , 30, 31 q:qbit B Uijq:qbit

33 var , 1 y:bit B y:!bit

34 var , 1 x:bit B x:!bit

35 if , 33, 32, 32 q:qbit , y:bit B if y then Ui1q else Ui0q:qbit

36 if , 34, 35, 35 q:qbit , x:bit , y:bit B if x then (if y then U11q else U10q)
else (if y then U01q else U00q): qbit

37 (′
1, 36 q:qbit B λ〈x, y〉.if x then (if y then U11q else U10q)

else (if y then U01q else U00q): bit ⊗ bit(qbit

38 (2, 37 B λq.λ〈x, y〉.if x then (if y then U11q else U10q)
else (if y then U01q else U00q):!(qbit((bit ⊗ bit(qbit))

Finally, computing the type of the pair 〈f, g〉:

39 > B ∗ :>
40 (L.21), 14, 5 B EPR:>((qbit ⊗ qbit)

41 app , 40, 39 B EPR ∗ :qbit ⊗ qbit

42 (L.21), 29, 5 B BellMeasure:qbit((qbit(bit ⊗ bit)

43 var , 1 x:qbit B x:qbit

44 app , 42, 43 x:qbit B BellMeasure x: qbit(bit ⊗ bit

45 var , 1 y:qbit B y:qbit

46 (L.21), 38, 5 B U: qbit((bit ⊗ bit(qbit)

47 app , 46, 45 y:qbit B U y: bit ⊗ bit(qbit

48 var , 1 f :qbit(bit ⊗ bit B f :qbit(bit ⊗ bit

49 var , 1 g: bit ⊗ bit(qbit B g: bit ⊗ bit(qbit

50 ⊗, 48, 49 g: bit ⊗ bit(qbit , f : qbit(bit ⊗ bit B 〈f, g〉:
(qbit(bit ⊗ bit) ⊗ (bit ⊗ bit(qbit)

51 let , 47, 50 f : qbit(bit ⊗ bit , y:qbit B let g = U y in 〈f, g〉:
(qbit(bit ⊗ bit) ⊗ (bit ⊗ bit(qbit)

52 let , 44, 51 x:qbit , y:qbit B let f = BellMeasure x in let g = U y

in〈f, g〉):(qbit(bit ⊗ bit) ⊗ (bit ⊗ bit(qbit)

53 let , 41, 52 B let 〈x, y〉 = EPR ∗ in let f = BellMeasure x

in let g = U y in 〈f, g〉)):
(qbit(bit ⊗ bit) ⊗ (bit ⊗ bit(qbit)

A.2. Example: Reduction of the teleportation term

As an illustration of the reduction rules of the quantum lambda calculus we show the detailed
reduction of the term from the teleportation example from Section 4.3. The reduction of the

A lambda calculus for quantum computation with classical control 23

teleportation term corresponds to the equality g ◦ f = id . We use the following abbreviations:

Mp,p′ := let f = BellMeasure p in let g = U p′ in g(f p0)

Bp1
:= λq1.(let 〈p, p′〉 = CNOT 〈q1, p1〉 in 〈meas(Hp),meas p′〉)

Up2
:= λ〈x, y〉. (if x then (if y then U11p2 else U10p2)

else (if y then U01p2 else U00p2))

The reduction of the term is then as follows:

α|0〉 + β|1〉,

let 〈p, p′〉 = EPR ∗
in let f = BellMeasure p

in let g = U p′

in g(f p0)

→1 [α|0〉 + β|1〉, let 〈p, p′〉 = CNOT 〈H(new 0),new 0〉 in Mp,p′]

→1 [(α|0〉 + β|1〉) ⊗ |0〉, let 〈p, p′〉 = CNOT 〈Hp1,new 0〉 in Mp,p′]

→1

[

(α|0〉 + β|1〉) ⊗ 1√
2
(|0〉 + |1〉), let 〈p, p′〉 = CNOT 〈p1,new 0〉 in Mp,p′

]

→1

[

(α|0〉 + β|1〉) ⊗ 1√
2
(|0〉 + |1〉) ⊗ |0〉, let 〈p, p′〉 = CNOT 〈p1, p2〉 in Mp,p′

]

→1

[

(α|0〉 + β|1〉) ⊗ 1√
2
(|00〉 + |11〉), let 〈p, p′〉 = 〈p1, p2〉 in Mp,p′

]

→1

(α|0〉 + β|1〉) ⊗ 1√
2
(|00〉 + |11〉),

let f = BellMeasure p1

in let g = U p2

in g(f p0)

→1
∗

[

(α|0〉 + β|1〉) ⊗ 1√
2
(|00〉 + |11〉), Up2

(Bp1
p0)

]

→1

[

(α|0〉 + β|1〉) ⊗ 1√
2
(|00〉 + |11〉), Up2

(

let 〈p, p′〉 = CNOT 〈p0, p1〉
in 〈meas(Hp),meas p′〉

)]

→1

[

1√
2

(

α|000〉+ α|011〉
+β|110〉 + β|101〉

)

, Up2

(

let 〈p, p′〉 = 〈p0, p1〉
in 〈meas(Hp),meas p′〉

)]

→1

[

1√
2

(

α|000〉+ α|011〉
+β|110〉 + β|101〉

)

, Up2
〈meas(Hp0),meas p1〉

]

→1

1
2

α|000〉 + α|011〉
+α|100〉+ α|111〉
+β|010〉+ β|001〉
−β|110〉 − β|101〉

, Up2
〈meas p0,meas p1〉

1

2 ;;vvvvv

1

2

##HH
HH

H

[

1√
2

(

α|000〉+ α|011〉
+β|010〉 + β|001〉

)

, Up2
〈0,meas p1〉

]

[

1√
2

(

α|100〉+ α|111〉
−β|110〉 − β|101〉

)

, Up2
〈1,meas p1〉

]

Peter Selinger and Benoı̂t Valiron 24

1/2 66mmmm

1/2
((QQQQ

1/2 66mmmm

1/2
((QQQQ

[(

α|000〉 + β|001〉
)

, Up2
〈0, 0〉

]

[(

α|011〉 + β|010〉
)

, Up2
〈0, 1〉

]

[(

α|100〉 − β|101〉
)

, Up2
〈1, 0〉

]

[(

α|111〉 − β|110〉
)

, Up2
〈1, 1〉

]

→1
∗ [(

α|000〉+ β|001〉
)

, U00p2

]

→1
∗ [(

α|011〉+ β|010〉
)

, U01p2

]

→1
∗ [(

α|100〉 − β|101〉
)

, U10p2

]

→1
∗ [(

α|111〉 − β|110〉
)

, U11p2

]

→1

→1

→1

→1

[(α|000〉 + β|001〉), p2]

[(α|010〉 + β|011〉), p2]

[(α|100〉 + β|101〉), p2]

[(α|110〉 + β|111〉), p2]

= [|00〉 ⊗ (α|0〉 + β|1〉), p2]

= [|01〉 ⊗ (α|0〉 + β|1〉), p2]

= [|10〉 ⊗ (α|0〉 + β|1〉), p2]

= [|11〉 ⊗ (α|0〉 + β|1〉), p2]

A.3. Example: Reduction of the superdense coding term

As another example of the reduction rules, we give the reduction of the superdense coding exam-
ple from Section 4.3. This reduction shows the equality f ◦ g = id . Of the four possible cases,
we only give one case, namely (f ◦ g)〈0, 1〉 = 〈0, 1〉; the remaining cases are similar. We use the
same abbreviations as above.

|〉,

let 〈p, p′〉 = EPR ∗
in let f = BellMeasure p

in let g = U p′

in f(g〈0, 1〉)

→1
∗

1√
2
(|00〉 + |11〉),

let f = BellMeasure p0

in let g = U p1

in f(g〈0, 1〉)

→1
∗

[

1√
2
(|00〉 + |11〉), Bp0

(Up1
〈0, 1〉)

]

→1
∗

[

1√
2
(|00〉 + |11〉), Bp0

(U01p1)
]

→1

[

1√
2
(|01〉 + |10〉), Bp0

p1

]

→1

[

1√
2
(|01〉 + |10〉), let 〈p, p′〉 = CNOT 〈p1, p0〉 in 〈meas(Hp),meas p′〉

]

→1

[

1√
2
(|11〉 + |10〉), let 〈p, p′〉 = 〈p1, p0〉 in 〈meas(Hp),meas p′〉

]

→1

[

1√
2
(|11〉 + |10〉), 〈meas(Hp1),meas p0〉

]

→1 [|10〉, 〈meas p1,meas p0〉]
→1

∗ [|10〉, 〈0, 1〉]

References

T. Altenkirch and J. Grattage. A functional quantum programming language. Available from arXiv:quant-
ph/0409065, 2004.

H. P. Barendregt. The Lambda-Calculus, its Syntax and Semantics, volume 103 of Studies in Logic and the
Foundation of Mathematics. North Holland, second edition, 1984.

A lambda calculus for quantum computation with classical control 25

P. Benioff. The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of
computers as represented by Turing machines. Journal of Statistical Physics, 22:563–591, 1980.

S. Bettelli, T. Calarco, and L. Serafini. Toward an architecture for quantum programming. The European
Physical Journal D, 25(2):181–200, August 2003.

V. Danos, J.-B. Joinet, and H. Schellinx. On the linear decoration of intuitionistic derivations. Archive for
Mathematical Logic, 33:387–412, 1995.

D. Deutsch. Quantum theory, the Church-Turing principle and the universal quantum computer. Proceed-
ings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 400(1818):97–117,
July 1985.

J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987.
E. Knill. Conventions for quantum pseudocode. Technical Report LAUR-96-2724, Los Alamos National

Laboratory, 1996.
M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge University

Press, 2002.
J. Preskill. Lecture notes for Physics 229, Quantum Computation. Available from http://www.theory.

caltech.edu/people/preskill/ph229/#lecture, 1999.
J. W. Sanders and P. Zuliani. Quantum programming. In R. Backhouse and J. N. Oliveira, editors, Mathe-

matics of Program Construction: 5th International Conference, volume 1837 of Lecture Notes in Com-
puter Science, pages 80–99, Ponte de Lima, Portugal, July 2000. Springer-Verlag.

P. Selinger. Towards a quantum programming language. Mathematical Structures in Computer Science,
14(4):527–586, 2004.

P. W. Shor. Algorithms for quantum computation: Discrete log and factoring. In Proceedings of the 35th
Annual Symposium on Foundations of Computer Science, pages 124–134. Institute of Electrical and
Electronic Engineers Computer Society Press, November 1994.

B. Valiron. A functional programming language for quantum computation with classical control. Master’s
thesis, University of Ottawa, September 2004.

A. van Tonder. A lambda calculus for quantum computation. SIAM Journal of Computing, 33(5):1109–
1135, 2004. Available from arXiv:quant-ph/0307150.

