Theory and Implementation of a Functional
Programming Language

Ari Lamstein *

October 2000

Abstract

The goal of this research is to design and implement a small functional pro-
gramming language that incorporates some of the features that arise from the the-
oretical study of programming language semantics. We begin with the study of
the A-calculus, an idealized mathematical language. We present the language PPL,
a strongly typed, call-by-name language which supports recursion and polymor-
phism. We describe a compiler of PPL into a low-level assembly language. The
compilation is based on an abstract machine interpretation and includes a type in-
ference algorithm.

1 Introduction

The foundations of functional programming languages lie in the untyped A-calculus,
which was developed by Church in 1932. It was developed with two mathematical
goals in mind [1]:

1. To develop a general theory of functions.

2. To use that theory as a foundation for mathematics.

While the attempts at (2) were not successful, the A-calculus developed as a rich
theory of computation [1]. It is well-known that Turing’s notion of computability is
equivalent to A-definability; that is, the class of computable functions can be encoded
in the A-calculus [4]. As we will see, it is this fact coupled with its simple semantics
that leads us to use the A-calculus as a model for functional programming languages.

The principal difference between functional programming languages and their im-
perative counterparts (such as C or Java) is how programs written in them are viewed.
Programs in imperative languages are viewed as a sequence of statements that operate
by altering the content of the memory. Programs in functional languages, however, are
viewed as expressions; their evaluation corresponds to the program’s execution.

*This research was conducted under the supervision of Peter Selinger at the University of Michigan. The
author can be contacted via email at ari@lamstein.com.

An effect of this is the strength of variable bindings. In functional languages such
bindings are permanent, as they are in common mathematical notation. To say “let x
= 5;” in a functional language such as ML means that one is forbidden to later assign
another value to that variable. In an imperative language, however, variable bindings
are considered “mutable,” as updating memory is a statement, and not an expression.

In a purely functional language an expression yields the same result each time it
is evaluated. Statements in an imperative language, however, can behave differently
at different times they are executed. This is because the statements can have “side
effects”, such as reading and writing to memory.

Thus, constructs such as for and while loops are seldom used in functional lan-
guages, as the expressions in the loop body have the same result each time they are
executed. Such loops are only useful in the presence of side effects, where one can
alter a physical property of the computer, such as the screen or an address of memory.

By minimizing side effects, one uses a higher-level approach when writing algo-
rithms. Rather than concerning oneself with how the computation is carried out, we
instead consider a description of the result being computed. For example, consider
writing the factorial function in ML:

let fac x = if (x=0) then 1 else (x » (fac (x-1)));

Here we just state the definition of the function. Now consider implementing the same
function in an imperative style in C:

int fac (int x) {
int result=1;

while (x>0) {
result = resultx*x;
X =x - 1;

return result;

}

Here we concern ourselves with how the actual computation is carried out: we allocate
memory for a new variable, repeatedly change its value, and then return that final value.
In ML we leave the process of allocating and updating memory to the compiler.

The primary benefit of imperative languages is speed. By directly manipulating
memory and relying less on recursion, programs in imperative languages are often able
to perform the same task in less time. But as computers become faster, this advantage
is meaningful for a smaller number of programs. Also, compiler optimizations for
functional languages sometimes produce code which is comparable to that obtained
from imperative languages.

The primary benefits of functional languages are the clarity and small size of code
needed to write an algorithm. Clarity is achieved by freeing the programmer from
the low-level implementation of computation. One is rarely faced with the arduous

task that is common when reading and writing code which is written in imperative
languages: namely, keeping track of both the value and meaning of several variables.

Functional languages place no more restrictions on functions than on variables.
One can pass functions to other functions, store them in data structures, or return them
as the result of a function. One can even pass functions with an arbitrary number of
their parameters instantiated.

The notion of passing a function with an arbitrary number of its parameters instan-
tiated is related to curried notation. As an example, consider the function plus, which
one normally thinks of as taking a pair and returning a value; i.e. a function with the
signature

plus: (int * int) — int.

However, one can also think of addition as the application of two functions, each of
which takes one argument. This yields the signature

plus: int — (int — int).

Here, for example, the result of providing 3 to plus is a function which takes an inte-
ger and adds 3 to it. Thus, (plus 3)5 = 8 and (plus 10)5 = 15. This transformation
of a function which takes n arguments to the application of n functions, each of which
takes one argument, is called currying. It is even possible to apply plus to just one
argument, and pass the result (which is a function) as an argument to another function.
This property allows one to create very robust libraries. For example, consider the
library function map in ML. This function has the type signature

map: (& —) — (a list) — (B list).

It takes two arguments, a function f from « to 3, and a list of elements of type «. It
returns a list of elements of type /3, which is obtained by applying f to each element of
the list. Here we use « and 3 to represent the fact that the map function is polymorphic,
allowing one to substitute arbitrary types for o and 3.

The above properties make many tasks, such as those involving list manipulation,
relatively easy. As an example, suppose one wanted to increase the value of each
element in a list of integers int1ist by 3. One could do this by simply writing

let list’ = List.map (plus 3) intlist,

where plus is the curried addition function from above. This example is representative
of how algorithms in functional languages are generally written: by the application of
one or more functions to a data structure. This is a level of modularization which is not
possible without higher order functions.

2 The Untyped \-calculus

2.1 The Language

We now introduce the fundamental definitions of the A-calculus. We refer the reader to
[1, 8, 3] for a more comprehensive treatment.

Let V be a countably infinite set of variables (written x,y, z,...). The class of
A-terms consists of words constructed from the following alphabet:

e variables: x,y, z ...
e lambda abstractor: \
e parentheses: (,)
e period: .
Definition. The class A of A-terms is the least class satisfying the following:

1. if z is a variable, then z € A,
2. if M, N € A, then (MN) € A,
3. if M € A, then (\x.M) € A.

Terms of the form (M N) represent the application of the function M to the argu-
ment V. Terms of the form (A\x.M) are called A-abstractions, and denote the function
that maps x to M. From the above definition, we can see that the following are A-terms.

(z2)
(Ay.(zz))
((Ay.(z2)) (A (z2)))

We will drop unnecessary parentheses from A-terms by using the following con-
ventions. Application associates to the left, and so M N P stands for (M N)P). We
write Az1xg ... 2, M for Axy.(Aza ... Az, .M)...)

Application binds stronger than A-abstraction, and so Az.M N means \x.(MN)
and not (Az.M)N. Thus, the right-hand side of a A-abstraction extends as far to the
right as possible.

The operations which we will perform on A-terms depend on the distinction be-
tween free and bound variables. Informally, in the term Az.M the variable z is said to
be bound, and the subterm M is called the scope of the binding. A variable is called
free if it is not bound.

Definition. The set of free variables of a A-term is defined as follows:

FV(z) = x
FV(Az.M) = FV(M)\{z}
FV(MN) = FV(M)UFV(N)

Note that a variable may appear both free and bound in a term, such as z in (Az.z)z.

One can think of bound variables as local variables. The name of a bound variable
is not significant, as both Az.z and \y.y denote the same function. We will henceforth
identify A-terms which differ only by a renaming of bound variables. Such terms are
called a-equivalent.

Definition. The terms M, N € A are said to be a-equivalent, written M=,N, if M
and NN are equal except possibly for the renaming of bound variables.

Thus, Ax.xyz=,A\w.wyz but Ax.xyz #, Azx.xwz as y is not bound in \z.zyz.
Another example is Ax.xyz #, Ay.yyz. Here the second term has a bound variable
(the last) which occurs free in the first term!

2.2 Substitution

Our primary interest with A-terms will be computation, which we view as the evalua-
tion of expressions. The first notion of evaluation we consider is that of 3-reduction.

The term Az.M is an expression for the function which maps z to the term M.
Here x may occur in M. In the context of programming languages, x is called the
parameter of M. If the function Az.M is applied to the value N, then the result is M,
with all occurrences of x replaced by N.

Suppose that f is the addition operation, written in prefix form, so that f 2 3 eval-
uates to 5. Then A\z. fxz is the function which maps x to = + z, thus the “times two”
function. If we evaluate (\z. fxx)3, we obtain f 33, or 6.

We write M [z := N] for the result of replacing the free variable = by N in the
term M. This is the substitution of N for x in M, and is formally defined below.

Definition. The result of substituting IV for the free occurrences of = in M, written
Mz := NJ, is defined as follows.

2. ylx:=N]=y, ifx#y
3. (A\y.My)[z := N] = Ay.(My[z := NJ]), providedz #yandy & FV(N).

The reason for the provision in (3) is that if we were to make the following substi-
tution blindly:
Az.xyzly = x] = Az.axxz

we would “gain” a bound variable. But this goes against the spirit of substitution, as
the name of a bound variable should not affect the result of the substitution.

We solve this problem by introducing a new step in the substitution process. Be-
cause a name clash arises when we rename y as a bound variable, we first rename x
as a variable which does not occur in Azx.zyz. This new term is a-equivalent to the
original one. Thus, the above substitution can be carried out as follows:

Az.ayzly =] =4 Mk.kyzly := z] = M\k.kaz

2.3 (3-Reduction

We define [3-reduction with the idea of substitution and function application in mind.

We call a term of the form (Az.N) P a 3-redex and say that it reduces to N[z := P].
We say that a term M € A B-reduces to a term M’ in one step, written M —g M’, if
M’ is obtained from M by reducing a single redex that is a subterm of M. Formally,
— g 1s the smallest relation on terms such that

o M —p5 M
N —p N’ M —g M’
MN —3 MN' Az M —g Az M’

Definition. If M/ € A has no subterms of the form (Az.N)P, then M is said to be in
B-normal form.

Note that a normal form cannot be S-reduced any further.

We write —7 for the reflexive transitive closure of — 3. Furthermore, we say that
it M —5 M "and M’ is in normal form, then M’ is the result of B-reducing (or
evaluating) M.

Recall our premise that the A-calculus can be viewed as a prototype for functional
programming languages. We now give examples of -reduction which support this
premise.

Example 2.1 (Identity). The term Azx.x is the identity function.

Proof. This claim is only true if (Az.z)M —j M forall M € A.
Az.x)M —gzjz:=M)=M O

Example 2.2 (Boolean Values, Conditional). The A-terms Az.(Ay.z) and Az.(Ay.y)
correspond to the boolean values true and false, respectively. Let B be a boolean value.
Then BM N is the conditional, meaning “if B is true then evaluate M, else evaluate
N.77

Recall that BMN = (BM)N and means “first evaluate the application of B to
M; apply that result to N”.

Proof. We first show that (Az.(Ay.z)) M N —7 M for all terms M and N:

(Ax.(A\y.x))MN
—g (A\y.z)[z == M])N = (Ay.M)N
—p Mly:=N] =

M
We must also show that (Az.(Ay.y))M N —7 N for all terms M and N.

(Az.(Ay.y))MN
—s (Ayy)lz == MN = (Ay.y)N
—pyly:=Nl=N O

2.4 The Simply-Typed \-Calculus

There are two main reasons for introducing types into a language: efficiency and safety.
An example of efficiency occurs when one declares an array of 1,000 items. How
can the computer know how much room to allocate for each item? If each item is to
be an integer, then one would want 1,000 consecutive words; if each item is to be a
double, then one would want 2,000 consecutive words. However, allocating memory
“on the fly”, or allocating more memory than is necessary, is an inefficient solution.
One declares the type of an array as an aid to the compiler.

Safety is another reason to introduce types. As an example, consider attempting
to add anything other than two numbers. This results in undefined behavior, and so
should not be allowed. A similar situation occurs when the types of parameters given
to a function do not match those the function expects to receive. By providing a type-
checking algorithm, the compiler can ensure that no such errors occur.

We present a type system for the A-calculus which is known as the simply-typed
system. This name distinguishes it from more powerful systems, such as polymorphic
ones.

Definition. Let 7 be a countably infinite set of type variables (written «, 3, ...). The
set of type expressions (written A, B, . ..) is given by the grammar:

Types A, B ::= « | int | bool | A—B
Thus, types are built from type variables via the — constructor.

Recall that Az.M is a function which maps z to M. We recognize this by assigning
A-terms of this form the type A — B, where =z is of type A and M is of type B. We
introduce a notation to discuss types. The foundation of this notation is an assumption,
which is written z : A and read “z is of type A”.

Definition. A context is a list of assumptions =1 : Aj,...,x, : A,, such that no
variable appears more than once. We denote contexts by I'. Typing judgments are
written I' = M : A, where I is a context, M is a term and A is a type. Judgments are
read “in the context I', M is of type A.”

(From these definitions we are able to make fyping rules, which denote an if-then
relationship between judgments. For example, the rule

r:AI'FM:B
'z M:A— B

is read “if the assumption z : A and context I make M of type B, then I" makes Ax.M
of type A — B.”

The simply-typed A-calculus introduces a new restriction on function application.
Recall that in the untyped A-calculus function applications of the form M N can be
done between any M and N. However, once one takes the consideration of types into
account, such applications are only logical if M is of type A — B and N is of type A.
That is, M must be of function type and N must be of the same type as M’s domain.

Table 1: Typing rules for the simply-typed A-calculus

r:AT'HFM:B '-M:A— B 'EN:A
x: ATkFz: A 'XM:A—B I'FMN:B

The result of this application is a term of type B. Thus, we have the following judgment
regarding application:

'M:A— B T'EN:A
I'-MN:B

The complete typing rules for the simply-typed A-calculus are showing in Table 1.
A type derivation is the derivation of a typing judgment by repeated use of the
typing rules.

Definition. We say that a term M in the simply-typed A-calculus is well-typed if there
exists some typing derivation with I' = M : A as its conclusion for some I" and A.

The types that we have presented in this system are “implicit”. This means that
terms are not annotated explicitly with their types; types are instead treated as a prop-
erty of the terms, and it is possible for a term to have several types. For example, the
identity function has the type A — A for any type A. One can even consider @ — « to
be the most general type of this term, and the types A — Aand (B — C) — (B — C)
to be instances of it. As we will see in Section 3.3, these concepts provide the founda-
tion for type inference algorithms.

We now give examples of terms and their types.

Example 2.3 (The Type of A\x.(\y.x)). Recall from Example 2.2 that Az.(\y.x) rep-
resents the boolean value true. We wish to ascertain whether or not this term is well-
typed. We first apply the rule for abstractions:

z: A TF A yx:B
'+ Xe.(Ayx): A— B

Since A\z.(Ay.x) is an abstraction, it must have the type A — B for some types A
and B. But this will only hold if A\y.x has type B under the assumptions x : A and T'.
But as A\y.z is a function, and the x in Ay.x is bound to the outermost A, the type B
must in fact be C' — A for some type C.

y:Cox: ATFz: A
z: ATF Nyz:C— A
'kXz.(Ayz): A— (C— A)

Thus, Ay.x has the type C — A if, under the assumption y : C, we have x :
AT F x: A. As all of the subterms of Az.(\y.z) can be assigned a type, the term is
well-typed. O

Example 2.4 (An Untypable Term). Not all terms are well-typed; an example is the
term xzx. Recall that for applications M N the term M must have type A — B while
the term N must have type A. But for M = N = z, this is impossible, as a variable
may not have more than one type in the same expression. O

2.5 Summary

We can now list three ways in which the untyped A-calculus relates to functional pro-
gramming:

1. Functions can be passed as arguments to other functions. One example is

(Az.2y)(Nz.2) —p aylr = Az.z] = (A\z.2)y —p z[z = y| = v.

2. Functions can be the results of functions or programs. One example is
(Az.2)(Az.zy) —p 2|z == Az.zy] = Av.xy.
The result is a function which takes one argument.

3. Functions can be passed (or returned) with some of their arguments already in-
stantiated. For example, the A-term

(Arrs)(Axy.zy)z)

passes the function A\zy.ry, with the variable = already mapped to z, to the
function \r.rs.

3 The Language PPL

3.1 Definition of the Language

We now introduce the small functional language PPL. We denote PPL expressions by
M or N. Their abstract syntax is given by the following grammar:

PPL Terms M,N == x |n | true | false | \e.M | MN
| letz =M inN | letrecx = M in N
| O | (M. M) | pil, M
| in M | case M ofin} x1 = Ny | ... |in" 2, = N,
We give a brief explanation of these terms. The term x denotes a variable and the
term n denotes an integer constant. The terms true and false are the boolean values.

The term Ax.M represents the function that maps x to M. The term M N denotes
the application of the function M to the argument V.

The term (let z = M in N) is a binding, defining 2 to be an abbreviation for M
inside the term N. The term (letrec = M in N) is similar to (let z = M in N),
except it also allows x to occur recursively in M.

The term () represents the unique O-tuple. The PPL term (M7, . .., M,,) represents
an n-tuple of PPL terms, where n > 2. The term pi{l M is the j™ projection of the
n-tuple M. The term in{z M is a tagged term; it denotes the injection of M into the ;"
component of n disjoint sets.

(case M of in} z1 = Ny | ... |in” 2, = N,,) represents a case distinction on the
tag of M. If M evaluates to a tagged term inZL P, then evaluate N;, where x; is replaced
by P.

We now list the ways in which a variable occurs bound in PPL:

1. z occurs bound in the term Az.M. The scope of z is M.
2. x occurs bound in the term (let z = M in N). Here the scope of z is N.

3. x occurs bound in the term (let rec x = M in N). Here the scope of x is both

M and N.
4. In the term
case M of in}, x1 = Ny | ... |in" z,, = N,,
the variables x1, ..., x, occur bound in the terms Ny, ..., N,, respectively.

All other occurrences of variables in PPL terms are free.

We define a-equivalence and substitution for PPL terms by analogy with the A-
calculus. We omit the formal definitions here. As before, we identify terms up to
a-equivalence.

3.2 Call-by-Name Reduction

For the evaluation of PPL terms we adopt the call-by-name (CBN) strategy. The rules
for this evaluation strategy are given in Table 2.

Definition. The PPL terms z, n, true, false, \x.M, (), (M, ..., M,) and in,{b M are
in CBN normal form.

Note that a CBN normal form, like a §-normal form, does not reduce any further.
There are terms, however, which have no reduction but are not normal forms (e.g. M =
pizl true). We say that such terms cause run-time errors, and we write M —,, error.

The difference between CBN and (-reduction lies in when one reduces. In (-
reduction one reduces whenever possible. But in CBN reduction one never reduces
inside an abstraction, injection, let, let rec, tuple, or the right-hand-side of a case. Also,
in the term M N we reduce only M, and not N.

This last rule is the reason this semantics is called call-by-name (as opposed to call-
by-value). In passing IV as a parameter to A\z.M, we substitute /N as an unevaluated
term into the body of the function, rather than first ascertaining its value.

In the presence of predefined function symbols there will be additional evaluation
rules and normal forms. For instance, if we add a basic function plus we need to add
the following rules:

10

Table 2: Evaluation rules for PPL

(1) (M. M)N —,, M[z := N|
2 hme
MN —, M'N
(3) letz = Min N —, Nlz := M|
(4) letrecx = M in N —,, N[z :=letrec z = M in M]
(5) pily (M1, ..., My) —n M;
/
(6) pi;]\]\j :Z ﬁiéM’
(7) (casein’ M ofin, zy = Ny |...|in" z, = N,,) —, Nj[z; := M]
M —, M’

case M of ... —,, case M’ of ...

M —, M’ N —,, N’
plus MN —,, plus M'N plusm N —,, plusm N’ plusmn —, m+n

The meaning of these rules is as follows. Given the expression (plus M N), repeat-
edly reduce M until it is in normal form (an integer). Then reduce N until it is in
normal form (an integer). When both arguments are in normal form, add them.

We also need to add terms of the form (plus) and (plus M) to the definition of CBN
normal form, as they are functions which are both legal and should not be evaluated
further. The situation for other function symbols is analogous.

We use — to represent the reflexive transitive closure of —,,. We write M |} M’
if M —* M’ and M’ is a normal form. We write M |} error if there exists M’ such
that M —* M’ and M’ —,, error.

The reduction rules have the following interesting property:

Lemma 3.1. The evaluation rules for PPL are deterministic. That is, for all PPL terms
M there exists at most one M' such that M —,, M’.

Proof. The proof is by induction on the structure of M.

Suppose M = z, n, A\x.N, true, false, (), (M,...,M,), or infl. Then M is a
normal form and does not reduce any further. The claim follows trivially.

In all other cases, suppose M —,, M’.

11

If M = NP then M’ is determined by the structure of N. If N is a normal form
then M can only reduce by rule (1) from Table 2. Thus, M’ is uniquely determined
by N and P. If N is not a normal form, then M can only reduce by rule (2). Thus,
M’ = N'P,where N —,, N’. By the induction hypothesis, N’ is uniquely determined
by N. It follows that M’ is uniquely determined as well.

If M = (letx = N in P), then M can only reduce by rule (3). Thus, M’ is
uniquely determined. Similarly, if M = (letrec 2 = N in P) then the only rule that
applies to M is (4). In this case M’ is uniquely determined as well.

IfM = pi; N then M’ is determined by the structure of V. If N is a normal form
then M can only reduce by rule (5). Thus, M’ is uniquely determined by N. If N is
not a normal form, then M can only reduce by rule (6). Thus, M’ = pifl N’, where
N —,, N’. By the induction hypothesis, N’ is uniquely determined by N. Thus, M’
is uniquely determined as well.

If M = (case N of ...), then M’ is determined by the structure of N. If V is a
normal form then M can only reduce by rule (7). Thus, M’ is uniquely determined by
N. If N is not a normal form, then M can only reduce by rule (8). Thus, M —,, M’,
where M’ = (case N’ of ...). By the induction hypothesis, N’ is uniquely determined
by N. Thus, M’ is uniquely determined as well. O

It follows from the lemma and the above remarks that for any term M, there exists
at most one M’ € (Terms U error) such that M | M’.

3.3 Types In PPL

We introduce a type system for PPL which is analogous to the one defined for the
simply-typed A-calculus in Section 2.4.

Definition. Let 7 be a countably infinite set of type variables (written «, 3, . ..). The
set of type expressions for PPL is given by the grammar:

A,B:::a|int|bool|AHB | Arx...x A, | 1 | A1+...+An|0,
where n > 2.

The type A — B is the type of functions which map values of type A to values
of type B. The type A; * ... * A, is the product of the types A; through A,,. Its
elements are n-tuples of the form (M, ..., M,), where each M; is of type A;. The
type A1 + ...+ A, is the disjoint union of the types A; through A,,. Its elements are
tagged terms of the form inZL M, where M is of type A;. The type O is the empty type.
The type 1 is the unit type; it has the unique element ().

The typing rules for simply-typed PPL are given in Table 3.

Note that some PPL expressions are well-typed in the empty context. For example,
true is always of type bool, and similarly for false. As with the simply-typed A-calculus,
typing is implicit. This translates to programmers not needing to state the type of a
variable or function; he need only use it consistently.

12

Table 3: The typing rules for PPL

rz:ATFx: A

neN
I'kEn:int

I I true : bool

T" I false : bool

z:AT'FM:B
I'Xe.M:A— B

I'-M:A— B I'-N:A
I'-MN:B

r-mM:A z: A TFN:B
I'kletz=MinN:B

x: ATFM:A z:ATHFN:B
I'letrecx=Min N : B

'EM:A; *...x A,
TFopi, M: A

r=(:1

FFMlAl FFMnAn
Fl_(Ml,,Mn)Al**An

Phin, M : A1 +...+ A,

'-M:A +...+ A, z;: A, THN;: C (forlgign)

T Fcase Mofin,x; = Ny | ... |in" 2, = N, : C

13

In the presence of predefined function symbols, there will be additional typing rules
giving the type of each such symbol. For example,

I' - plus : int — int — int

is the typing rule for plus.

3.4 The polymorphic type system

We now extend the type system with a form of polymorphism known as ML-polymor-
phism. The polymorphic type system rests on the notion of type schemas, which are
expressions of the form

Vag ... Va,.A.

Here a4, ..., «, are type variables, n > 0, and A is a type expression. Notice that
quantifiers can occur only at the top level in a type schema; there are no quantifiers
inside A. The type variables a1, ..., a, are bound in the above type schema, and we
identify type schemas up to the renaming of bound variables. We sometimes denote
type schemas by S, T,

We write Aoy := Aq,...,ayp := A,] for the result of simultaneously substituting
the type expressions Ay, ..., A, for the type variables oy, . . ., a,, respectively, in the
type expression A. We say that the type expression B is a generic instance of the type
schema Vay ... Vo, . Aif B = Alay := Ay, ..., a, := A,] forsome Ay, ..., A,.

Before stating the polymorphic typing rules, we first generalize the definition of a
context I'. A polymorphic context is a list x1 : S1,...,z, : S, of pairs of a variable
and a type schema. The old definition of a context is a special case of this newer one,
since a simple type (in the sense of the simply-typed system) is just a type schema
with zero quantifiers. A polymorphic typing judgment is an expression of the form
' = M : A, where I is a polymorphic context, M is a PPL term, and A is a type
expression. It is important to note that quantifiers may occur in I', but not in A.

The rules for the polymorphic type system are identical to those for the simple type
system, except for the rules for variables, “let”, and “let rec”. These modified rules are
shown in Table 4. In the rules for “let” and “let rec”, a1, . . . , au, are type variables that
are not free in I

This type of polymorphism was first described for the programming language ML
by Milner and Damas [2]. An important feature of this type system is that it is decid-
able. That is, a compiler can decide whether or not a given program is typable in this
system. We describe such an algorithm for PPL programs in Section 4.

3.5 Type Soundness

We now formally state the relationship between PPL’s type system and the CBN re-
duction strategy. Before proceeding, we first prove a property about the substitution of
PPL terms.

Lemma 3.2 (Substitution). If z : Vo ...Va,.B,T' - N : Aand ' - P : B, where
at,...,an € FV(T), thenT - Nz := P] : A.

14

Table 4: The polymorphic typing rules for PPL

(1) 2 STFrz: 4 , where A is a generic instance of S
) '-M:A r:Vaq...Va, A, TFN:B whereay,...,a,
I'Hletx=MinN : B " notfreein I’
(3) z: ATFM:A r:Vay...Va, A,TFN:B whereay,...,a,
I'Fletrecx=MinN: B " notfreein I’

Proof. The proof is by induction on V.
Suppose that N = x. We have assumed that x : Va;...Va,,.B,I' - z : A.
From rule (1) in Table 4, it follows that A is a generic instance of Va . .. a,.B. Thus,

A = Blag := Ay,...,a, = A,] for some type expressions A1, ..., A,.
We have also assumed that I' = P : B. Since a4, ..., «, are not free in I', we can
replace all free occurences of a4, ..., «, by the type expressions Ay, ..., A, in the

derivation of I' - P : B. The result is a derivation of I' = P : A. Thus, I' z[z :=
P] : A as desired.

Suppose that N = n, true, false, () or y, where y is a variable and y # x. Then
x & FV(N), and so N = N[z := P]. The claim follows.

Suppose that N = Ay.M and N : Vay...Va,.B,I' - = : A. Without loss
of generality, y # x. From Table 3 we know that A = C — Dandy : C,zx :
Vai ... Va,.B,I' = M : D for some type expressions C' and D. We want to show
that T - (Ay.M)[z := P] : C — D. But (\y.M)[z := P] = \y.(M[x := P]),
and we know that y : C,T' + Mz := P] : D from the induction hypothesis. Thus,
' (A\y.M)[z := P] : C — D, as desired. The remaining cases are similar to this.
O

Lemma 3.3 (Subject Reduction). If T M : Aand M —, M', then T+ M’ : A.

Proof. The proof is by induction on the derivation of M —,, M’. There is a case for
each rule in Table 2.

Suppose that M = (Az.N)P and M’ = N[z := P|. By assumption, I +
(Ax.N)P : A. From the typing rules in Table 3, it follows that z : B, F N : A
and I' = P : B for some type expression B. It follows from Lemma 3.2 that I' -
Nz := P]: A.

Suppose that M = NP and M’ = N'P, where N —,, N’. From the rules in
Table 3, we cantell that ' - N : B — Aand ' - P : B for some type expression
B. From the induction hypothesis we know that ' = N’ : B — A. It follows that
r-M: A

Suppose that M = (letx = Pin N) and M’ = N[z := P|. By assumption,
'+ (letz = Pin N) : A. From the polymorphic typing rules in Table 4, we know

15

that ' - P: Band x : Vo ...Vo,,.B,I' b N : A, for some o, ..., qa, not free in I".
It follows from Lemma 3.2 thatT' - N[z := P] : A.

Suppose that M = (letrec z = Pin N) and M’ = N[z := (letrec x = P in P)].
By assumption, I' - (letrec 2 = P in N) : A. From the typing rules in Table 4, we
cantellthatz : B,I'F P: Bandx:Vay...Va,.B,I'F N : A, for some oy, ..., q,
not free in I. Also from Table 4, we know that I - (let rec z = P in P) : B. It follows
from Lemma 3.2 that ' - N[z := (letrec x = P in P)] : A.

The remaining cases are similar to the ones proved above. O

Lemma 3.4 (Correctness). If = M : A then M -+, error.

Proof. The proof is by induction on M.

Suppose that = M : A and M is not a normal form. We must show that M —,, M’
for some M. Since M is not a normal form, we only need to consider the cases where
M is an application, a “let” or “let rec” expression, a projection or a case distinction.

Suppose that M = NP. By assumption, - M : A. From the typing rules in
Table 3 we know that - N : B — A and - P : B for some type expression B. If N
is not a normal form, we have N —,, N’ for some N’ by the induction hypothesis. In
this case, M reduces by rule (2) in Table 2. If N is a normal form, however, it follows
from Table 3 that /N must be a variable or a A-abstraction. But since - N : B — A in
the empty context, N cannot be a variable. Thus, N = Az.() for some variable = and
term Q. It follows that M —,, Q[z := P].

Suppose that M = (let x = P in N). Then M can be reduced directly from rule 3
in Table 2. The case for M = (letrec x = P in N) is similar to this.

Suppose that M = pi; N. By assumption, - M : A. If N is not a normal form, we
have N —,, N’ for some N’ by the induction hypothesis. In this case, M reduces by
rule (6) in Table 2. If N is a normal form, however, then from the rules in Table 3 we
know that+ N : Ay x...% A, and A; = A. Table 3 also tells us that the only normal
forms of type Aj *...% A,, are variables and n-tuples. Butsince N : A;*...x A, in
the empty context, N cannot be a variable. Thus, N = (Ny,...,N,,). It follows that

Suppose that M = (case N of in} #; = Ny | ... |in” x, = N,,). Recall that -
M : A. From the rules in Table 3 we know that = N : A; + ...+ A,,. If N is not
a normal form, we have N —,, N’ for some N’ by the induction hypothesis. In this
case, M reduces by rule (8) in Table 2. If N is a normal form, however, then Table 3
tells us that NV must be a variable or injection. But since - N : A; + ...+ A, in the
empty context, /N cannot be a variable. Thus, N = in-ZL P for some j. It follows that

Proposition 3.5 (Type Soundness). If = M : A then M /7% error.

Proof. Suppose thatt- M : A and M —} M’. By repeated application of Lemma 3.3,
we know that - M’ : A. From Lemma 3.4 we have M’ -, error. Therefore M /%
error. O

16

4 Type Inference

Recall that PPL is both a polymorphic and a functional language. In Section 1 we
demonstrated that this combination allows one to create very robust higher-order func-
tions. However, these functions raise a problem of their own: explicitly annotating
their types is an error-prone endeavor.

For example, consider the exists2 function in ML. This function takes a list @ of
type « and a list b of type 3, as well as a function of type o — 3 — bool. The function
returns true if f a; b; = true for any a; and b;, where q; is the i element of list a. It
returns false otherwise. The type signature of this function is

(e —» B —bool) > alist — flist — bool.

Now consider writing a function xorexists2 which, given two lists a and b,
and two functions f; and fo, returns true if (exists2 f ab) holds for exactly one of
f = fiand f = f,. The code for this function is very succinct:

let xorexists2?2 fl f2 a b = xor (exists2 fl a b)
(exists2 f2 a b),

where xor is the exclusive or function. But this function generates the following
signature:

(e - 8 —bool) — (e — B —bool) > «alist — 3 1list — bool

The signature for this function is as long as (and more opaque than) the function itself!
Writing such signatures is something which one would like to avoid if possible.

In Section 2.4 we discussed the importance of a compiler knowing the type signa-
ture of functions. We have just shown, however, that it is not always desirable to have
the programmer explicitly declare the signature of her functions. The ideal situation
appears to involve the compiler inferring the types of the variables and functions in a
program. This would give us both the safety which type-checking algorithms provide
as well as free us from writing extensive annotations. There is also the hope that the
compiler can infer more general types than the programmer can.

4.1 Unification
We begin our discussion of polymorphic type inference with a few definitions.

Definition. A rype substitution is a function o from variables to type expressions. If
A is a type expression, then we write o(A) for the result of applying o to each type
variable in A. If o and 7 are type substitutions, we define their composition T o o to
be the type substitution which maps each type variable « to 7(o(«)). A unifier of two
type expressions A and B is a substitution o such that 0(A4) = o(B).

Here are some examples of unifiers:

1. Let A= a — fand B = 3 — +. Then a unifier for A and Bis 0 = {a —
a, f— a,v +— a}. Verify that 0(A) = 0(B) = a — «a.

17

2.Let A= (8+p3) — fand B = o« — (v *). Then a unifier for A and
Biso = {a — ((y*7)*(y*7),8 = (y*7),y — 7} Verify that
o(A) =o(B) = ((v*7) * (y*7)) = (v *7).

3. Let A= aand B = o — 3. Then A and B do not have a unifier. A proof
of this can be done by contradiction. Suppose o is a unifier of A and B. Then
o(a) = C and o(8) = D for some type expressions C' and D. But 0(A) = C
while 0(B) = C' — D. Thus, 0(A) # o(B).

4. Let A= axfand B = v — 6. Then A and B do not have a unifier. A
proof of this can be done by contradiction. Suppose ¢ is a unifier of A and B.
Theno(a) = C,0(B) = D, o(v) = E and 0(6) = F for some type expressions
C,D,Eand F. Buto(A) = CxD whileg(B) = E — F. Thus, 0(A) # o(B).

As the above examples show, not all terms can be unified.

If o and o’ are type substitutions, then we say that o is more general than ¢’ if there
exists a substitution 7 such that ¢’ = 7o 0. A unifier o of A and B is called a most
general unifier of A and B if it is more general than any other unifier of A and B.

An interesting property of most general unifiers is that if two type expression have
any unifier, then they also have a most general one. Furthermore, the most general
unifier can be computed efficiently by a unification algorithm which was originally
published by Robinson [9].

4.2 Polymorphic Type Inference

Let S be a type schema. We write o(S) for the result of applying o to each free type
variable in .S. Here we rename bound variables as necessary to avoid name clashes, as
was done for A-terms in Section 2.2. If T" is a context, we write o (T") for the application
of ¢ to each type schema in I'.

The behavior of the type inference algorithm is as follows: when given a PPL
program M, it returns the most general type A such that M : A is well-typed. If no
such type A exists, the algorithm fails.

More generally, we provide an algorithm for the following problem: given a typing
judgment I' - M : A, find a substitution o such that o(I") = M : o(A) is well-typed
according to the polymorphic typing rules. If such a substitution exists, return the most
general one. Otherwise, fail. This algorithm for polymorphic type inference was first
discovered by Milner [7] and was later refined by Damas and Milner [2].

The algorithm works by recursion on the structure of the term M. In each case,
the algorithm corresponds to a “bottom-up” reading of the typing rules in Tables 3
and 4. Given a typing judgment I' = M : A, we find the substitution o as follows.
Here we list the cases for M = true, false, n, , A\e.N, NP, (letz = N in P) and
(letrec 2 = N in P). The other cases proceed by similar reasoning. If any of the
mentioned unifiers do not exist, the algorithm fails.

1. If M = true or false, then let o be the most general unifier of A and bool.

2. If M = n,n € N, then let o be the most general unifier of A and int.

18

3. If M = xz, find the assumption « : S in I". Let B be a fresh generic instance of
the schema S, and let o be the most general unifier of A and B.

4. If M = Mx.N, let o and (be fresh type variables. Applying the algorithm
recursively, find the most general substitution 7 such that 7 makes I,z : o F
N : 8 well-typed. Let 7’ be the most general unifier of A and « — (. Let
o=1"oT.

5. If M = NP, let 8 be a fresh type variable. Applying the algorithm recursively,
find the most general substitution 7 such that 7 makes I' F N : 3 — A well-
typed. Let IV = 7([') and B’ = 7(53). Let 7’ be the most general substitution
that makes IV = P : B’ well-typed. Leto = 7/ o 7.

6. If M = (let x = N in P), let v be a fresh type variable. Applying the algorithm
recursively, find the most general substitution 7 such that 7 makes I' = N : ~
well-typed. Let I' = 7(I'), A’ = 7(4), C' = 7(v) and let 3q,...,0, be
the type variables which are free in C” but not in I, Let 7’ be the most general
substitution that makes z : V31 ... [3,.C', IV = P : A’ well-typed. Leto = 7/07.

7. If M = (letrecz = N in P), let v be a fresh type variable. Applying the
algorithm recursively, find the most general substitution 7 such that 7 makes
z:v D F N :vwell-typed. Let TV = 7(T), A’ = 7(A), C' = 7() and let
B1, ..., [n be the type variables which are free in C’ but not in I, Let 7/ be the
most general substitution that makes x : Vf3; ... 3,.C’',T" - P : A’ well-typed.
Leto=7"0o7.

S Abstract Machine Interpretation

5.1 Definition of the Abstract Machine

We now discuss a method of implementing the language PPL. As a functional lan-
guage, we wish to be able to pass functions as parameters to other functions with some
(possibly none) of their parameters instantiated. The syntax of an earlier example of
(B-reduction leads us to an idea of how to accomplish this:

(Ar.rs)(Axy.zy)z) —g rslr == (Azy.zy)z] = (A\zy.zy)z)s.

That is, when given the function Ar.rs we evaluate the term rs while also keeping track
of what its free variables map to.

Our implementation of PPL is based on the above idea. But rather than directly
keep track of what the variables map to, we instead use a level of indirection, and
keep a list of pointers (addresses) to what the variables map to. We first describe the
implementation in terms of an abstract machine, in the style of Krivine [5].

Definition. Let A be a countable set of addresses (written a1, as, . ..). A term closure
is a pair { M, o'}, where M is a PPL term, o is a partial function from variables to A,
and FV (M) C dom(c). A match closure is a pair {(in} z; = Ny | ... | in”z, =
N,,), o} with analogous definitions and provisions for o.

19

A heap is a partial function from addresses to closures. A stack is a list whose
elements are addresses, integers or labels.

A state of the abstract machine is a triple ({M, o}, h, k), where { M, o'} is a closure,
h is a heap and & is a stack.

We write nil for the empty stack and ¢ :: « for the stack with topmost element ¢ and
remaining elements k. We write o(z — a) for the partial function which is identical
to o except that it also maps x to a. We use a similar notation for heaps and write ||
for the size of the stack k.

The transition relation of the abstract machine is denoted by —,,,. We write

{M, 0o}, h,K) —m (M, 0"}, W K

if the abstract machine can go from the state ({M, o}, h, k) to the state ({M', 0"}, b, k')
in a single step.

We write ({M, o}, h, k) —,, halt(s) when the abstract machine halts with result
s. The possible results are:

su=n | true | false | “fn” | “()" | “n-tuple” | “inj/n”,

where n and j are integers.

Table 5 contains the list of the abstract machine rules for all PPL terms. Here we
explain the rules for Ax.M, M N and x.

The rules for evaluating a A-abstraction Az.M are:

({Az.M,o},h,a:: k) = ({M,0(xz — a)}, h, k).
({Ae.M, o}, hynil) s, halt(“fn”).

In order to evaluate Ax.M, the machine pops the address for a closure from the stack

and evaluates M under o plus the additional binding (x — a). Here a is the address of

x’s closure. If the stack is empty, however, the program halts. In this case the result of

the program is a function. Thus, abstractions can be thought of as pops from the stack.
The rules for evaluating an application M N are:

{MN,o},h,kK) = ({M,0},h(a — {N,0}),a:: k), where ais fresh.
{Mz,0},h, k) —=m ({M,0},h,a:: k), whereo(z)=a.

Recall that we are using the call-by-name reduction strategy. The abstract machine
implements this by not evaluating N before the function call. Since N may be eval-
uated later, however, we must save the mapping of its variables. We accomplish this
by building a closure for /N on the heap and pushing its address onto the stack. Thus,
applications can be thought of as pushes onto the stack. In the case where the argument
is a variable x, we use an optimization: instead of building a new closure for x, we use
the already existing closure o ().

The rule for evaluating a variable is:

({x,0},h, k) —m ({M,7},h,k), whereo(z)=aand h(a) ={M,7}.
Variables in PPL only have meaning in the context of a closure. Evaluating a vari-

able can be thought of as a jump to its closure.

20

Table 5: Abstract machine rules for PPL

o {z,0},h, k) = ({M, 7}, h, k), where o(z) = a, and h(a) = {M, 7}.
o ({Mz,o},h,k) —m ({M,c},h,a :: k), where o(z) = a.
e ({MN,c},h,k) —=m ({M,0},h(a — {N,o}),a :: k), where N is not a

variable and a is fresh.

{re.M,c},h,a k) —pm {(M,0(x— a)}, h, k).

({\z.M, o}, h,nil) —,, halt(“fn”).

({letx =M in N,o},h, k) —m ({N,o(x — a)},h(a — {M,0c}), k), where
a is fresh.

({letrecx = M in N,o},h,k) —n, ({N,o(z — a)},h(a — {M,o(x —
a)}), k), where a is fresh.

e ({n,o}, h,nil) —,, halt(n).

e ({true, o}, h,nil) —,, halt(true).

o ({false, o}, h,nil) —,, halt(false).

o ({(),0}, hynil) —,, halt(“0").

o ({(M,...,My),c}, h,nil) —,, halt(“n-tuple”).

o {(My,....My),0},h,j k) —=m ({Mj,0},h,k),if1<j<n.

o ({pil M,o},h,K) —m ({M,0},h,j :: K).

e ({in? M, o}, h,nil) —,, halt(“inj/n”).

o ({inl M,o},h,a = k) —n, ({Mx;.N;, 7}, h(b — {M,c}),b = k), where
h(a) = {in} z1 = Ny | ... |in" 2,, = N,, 7} and b is fresh.

e ({case M ofin, zy = Ny |...|in" x, = N,,0},h, &) —m ({M,0}, h(a
{inf 2y = Ny | ... |in"z, = N,,0}),a :: k), where a is fresh.

21

Table 6: Abstract machine rules for “plus”

1. {({plus,c}, h, k) —, halt(“fn”) , where |k| < 2.

2. ({plus,c},hya = b 2 k) —p (M, 7}, h,plus; = bt k) , where h(a) =
{M,7}.

3. ({m,o}, hyplusy 2 b 2 k) —p ({N,7},h,plus, = m k) , where h(b) =
{N, 7}

4. ({n,o},h,plusy ::m 2 K) = ({m+n,0}, b, K).

In addition to the rules shown in Table 5, there are also rules for each basic function
symbol; a list of all basic function symbols can be found in Section 7. We give the rules
for “plus” in Table 6.

Rule 1 allows “plus” and “plus M to be legal PPL programs. Both of these ex-
pression are functions and cannot be evaluated further.

One need not pass a number to “plus”; one can also pass a term which evaluates to
anumber. Rule 2 states that if {plus, o} is to be evaluated with the addresses a and b as
the topmost elements of the stack, the machine pops a from the stack, pushes the label
“plus,” onto it, and evaluates the closure which a points to. Let the result of evaluating
M be m. At this point Rule 3 applies, and the machine pops the label “plus;” and
the address b from the stack and pushes m and the label “plus,” onto it. The machine
then evaluates the closure which b points to. Let the result of evaluating N be n. At
this point Rule 4 applies. The machine then pops two elements from the stack and
computes m + n.

5.2 Properties of the Abstract Machine

The transition rules for the abstract machine given in Table 5 are deterministic. That
is, for each state there is at most one successor or “halt” state.

We write ({M,o},h,k) —,, error when ({M,c}, h,«) cannot legally halt or
move to another state. We write —-, for the reflexive transitive closure of —,,,.

Examples of terms M for which ({M, o}, h,) —7, error are M = pij false and
M = 5 true. The reader should verify that these terms result in an error, and also
that they are not well-typed. In fact, we can state the relationship between the abstract
machine and CBN-reduction more generally as follows:

Proposition 5.1. Let M be a closed PPL program, and let o and h be arbitrary. Then
1. ({M,o},h,nil) =7 halt(n) iff M —% n.
2. ({M,c}, h,nil) —7, halt(true) iff M —7 true.
3. ({M,c}, h,nil) —7 halt(false) iff M — false.

22

4. ({M,c}, h,nil) —% halt(“fn”) iff M —% Az.N, for some N (or, in the pres-
ence of basic functions, M —* M’ for some other normal form M’ of function
type, such as (plus N)).

5. ({M, o}, hunil) —* halt(“0") iff M —* ().

6. ({M,o}, h,nily —7 halt(“n-tuple”) iff M —* (Ny,..., N,) forsome Ny, ..., N,.
7. ({M, o}, hynil) —% halt(“inj/n”) iff M —* in!, N, for some j, n and N.

8. ({M, o}, h,nil) —} erroriff M — error.

Corollary 5.2. IfT'+ M : A then ({M,c}, h,nil) /5%, error.

Proof. From Proposition 3.5 we know that I' = M : A implies M /) error. From
Proposition 5.1 we know that ({ M, o}, h,nil) —7% error if and only if M — error.
Thus, ({M,o}, h, k) /5% error. O

6 A Compiler for PPL
6.1 An Idealized Assembly Language

In this section we describe an idealized assembly language which will be the target
language of the compiler. Its chief differences to actual assembly languages are that we
assume an infinite number of registers, and that we have a built-in opcode for dynamic
memory allocation. (This is usually realized by an operating system call). We denote
registers by V, C,rq, 79, Each register can hold an integer or a pointer. There is a
special register S'S which holds the current stack size.

Memory locations can also be denoted by symbolic labels, which we denote by
l1,12,. ... An l-value (assignable value) is either a register or a memory location [r, 7]
specified by a register r and an integer offset n. The expression [r, n| refers to the
memory location n words after that pointed to by the register . A symbolic value is
either an 1-value or a literal value. A literal value is either an integer constant, written
#n, or a label [.

The assembly language has the following opcodes. Here v ranges over values, [v
over l-values, and s ranges over results (as defined for the abstract machine above).

23

Opcode

Meaning

JUMP v Jump to address v

EXIT s Exit and print string s

EXITINT v Exit with integer result v

EXITBOOL v Exit with boolean result false (v = 0) or true (v # 0).
LOAD v, v Store the value v in location v

POP v Pop a value from the stack and store it in [v

PUSH v Push the value v onto the stack

ALLOClv,v Allocate v words of memory and store a pointer to the first one in (v
CMP v1, V2 Compare the two values, and remember the result

BEv If cMP results in equal, jump to location v

BGv If CMP results in greater than, jump to location v

BLv If cMP results in less than, jump to location v

BNE v If cMP results in not equal, jump to location v

BGE v If cMP results in greater than or equal jump to location v
BLEv If cMP results in less than or equal to, jump to location v

There are also opcodes to calculate basic functions, such as ADD [v, v (add v to [v)
and MULT [v, v (multiply v by v).

6.2 The Translation of PPL Terms

We now explain how PPL terms are represented in the assembly language. An address
is represented as a pointer, and integers are represented as themselves. Boolean values
are also represented as integers, where false = 0 and true = 1. The heap is represented
as allocated memory, and the stack of the abstract machine is represented by the stack
in the assembly language. A PPL term is represented as assembly code.

A closure {M, o} (where FV (M) = x1,...,xy) is represented by a data structure
that occupies k + 1 words of memory. At offset 0 is a pointer to the code for M, and at
offsets 1 through k are pointers to the values for z1, .. ., xy, respectively.

A match closure {(in} z; = Ny | ... | in" 2, = N,),0} (where the free vari-
ables of the matching are x4, ..., xj) is represented as a data structure that occupies
k + n words of memory. At offsets O through (n — 1) are pointers to the code for
Az;.N;, where 1 < i < n. At offsets n through (n + k — 1) are pointers to the values
for x1, ..., xy, respectively.

A term closure is invoked by putting a pointer to the closure into the special register
C, and then jumping to the address at offset 0. Similarly, the j™ branch of a match
closure is invoked by putting a pointer to the match closure into C' and then jumping to
the address at offset j — 1.

If an integer or a boolean value has been computed, the convention is to put the
value in the special register V' and then jump to the address on top of the stack. If the
stack is empty, then V is the final result of the program.

The translation of a PPL term M is defined relative to a symbol table s, which is
a function that maps the free variables of M to symbolic values. The notation [M]

24

means “the assembly code for the PPL expression M, where the value of each free
variable « is found in s(x).”

The definition of [M], for all PPL terms M is given in the Appendix. Compare
these definitions with the abstract machine rules for PPL terms given in Table 5. Here
we explain the definition of [Az.M]s.

[Mz.M]s =
CMP 5SS, #0
BG l
EXIT “fn”

l: POP T
HM]]é(xHI)

where [is a new label and r is a new register.

Recall that if the stack is empty then Axz.M is the result of the program, and the
program returns “fn”. If the stack is not empty, however, the machine pops the address
of a closure from the stack and evaluates M under the current symbol table plus the
mapping of x to the address just popped.

Note that all assembly code consists of a number of labeled segments, each of
which ends in a JUMP or an EXIT.

The code for the basic functions is more complex than that of the basic PPL terms.
We give the assembly code for plus in Table 7. Its relation to the abstract machine rules
is as follows.

The code for “plus” checks to see if there are less than two elements on the stack;
if so, it halts with the result “fn”. Thus, “plus” tests if rule 1 from Table 6 applies.

If rule 1 does not apply then rule 2 does; rule 2 is realized at the label plus,. Here
the machine pops the address of the closure for the first argument to the register C'. It
then pushes the label plus; onto the stack and invokes the closure pointed to by C'. The
label plus; functions as the return address of a subroutine call; the machine will jump
to the label plus; after it is done evaluating the first closure. By convention, the value
which the closure evaluates to is now stored in the register V.

Now the machine pops the address of the closure for the second argument to plus to
the register C, and saves the value of V" and the return address plus,, on the stack. Then
it invokes the closure at C'. The reader should verify that this behavior corresponds to
Rule 3.

When the second closure has been evaluated, the value of the second argument is in
the register V, and the value of the first argument is on top of the stack. The code pops
the topmost element from the stack, adds the two arguments, and puts the result in V.
This behavior corresponds to Rule 4. Finally, the code follows the standard convention
for integer results by jumping to the return address on top of the stack, or halting if the
stack is empty.

25

Table 7: The assembly code for plus

[plus], =
CMP SS, #2
BGE plus,
EXIT “fn?
plus, : POP C
PUSH plus,
JUMP [C,0]
plus, : POP C
PUSH Vv
PUSH plus,
JUMP [C,0]
plus, : POP A
ADD V, A
CMP SS, #1
BGE plus,
EXITINT V
plus; : POP T
JUMP r

7 A Guide to the Implementation

7.1 Introduction

A prototypical implementation of PPL is available on the world-wide web at [6]. It
is written in Objective Caml. The main component of the implementation is the ex-
ecutable program ppl, which reads a PPL program and outputs compiled pseudo as-
sembly code. For reasons of portability, the “assembly code” generated by ppl is
actually realized as a set of pre-processor macros in the C language; thus, the output of
ppl can be compiled by any C-compiler on the target machine.

The concrete syntax for PPL is slightly different than the syntax introduced in the
paper. For example, we write pil/2 instead of pi3, as sub- and superscripts are
not supported in ASCIIL. Our implementation reads \ as A, thus \x.x is the iden-
tity function. Our implementation also supports some syntactic sugar. For example,
\x y z.Mis interpreted as \x. (\y. (\z.M)). One can also write let fun x
y z = Minstead of let fun = \x.\y.\z.M. Both of these expressions repre-
sent the function which takes x, y and z as variables and maps them to the term M.

Our implementation is also lenient with match statements in case distinctions. We
allow cases to occur in an arbitrary order, with some cases duplicated or missing. In
such cases our compiler issues a warning, and if a missing case is encountered at run-
time, the program exits with an error message. We have also added several basic func-
tions to the language. We list them together with their type signatures in Table 8.

26

Table 8: The Basic Functions of PPL

Function Type Signature

plus int — int — int
minus int — int — int
mult int — int — int
divide int — int — int
mod int — int — int
greater int — int — bool
geq int — int — bool
less int — int — bool
leq int — int — bool
equal int — int — bool
neq int — int — bool
and bool — bool — bool
or bool — bool — bool
not bool — bool

if Va.bool - a — a — «

The implementation of “and” and “or” are lazy - the second argument is only eval-
uated if necessary. Similarly, in the term “if M N Q)”, only one of N or () is evaluated.
The other basic functions evaluate all of their arguments.

7.2 User Manual

We now present information necessary to use our PPL compiler. There are several
flags which affect the compiler’s behavior, and their behavior is summarized in Ta-
ble 9. The default behavior of the compiler is realized by typing ppl filename,
where filename is a file which contains a PPL program. The compiler will read
the program, write its most general type to the terminal, and write its assembly code
translation to a file.

The —-parse flag will cause the compiler to read and type-check a PPL program
but not compile it. The ——reduce and —-step flags cause the compiler to apply
CBN reduction to the input term. In ——reduce mode, the final normal form is printed,
whereas in ——step mode, the entire reduction sequence is printed, one term per line.
The ——-typeinfo mode flag alters the amount of type information that is displayed
to the terminal. mode must be one of none, all, top, let or an integer nesting
depth n. The compiler then gives type information on, respectively, no variables, all
variables, all variables defined on the top-level, variables defined only by let and let-
rec constructs, and variables defined up to a depth of n. The ——untyped flag causes
the compiler to not type-check the PPL program. The ——optimize flag will cause
the compiler to J-reduce certain redexes before compilation, yielding more efficient
assembly code.

The ——term, ——stdin, ——stdout, and ——output filename flags affect

27

Table 9: Command line options for the compiler

Flag

Effect

(no options)

-—-parse, -p

—-—step, -s
--reduce, -r
-—untyped, -u
——optimize, -z
——typeinfo mode,
—-i mode

——term term
-—-stdin
—-—stdout
—--output filename,
-o filename
—-—help, -h
--version, -v

The default behavior. Read input from
file, print most general type to terminal,
and write compiled program to file.

Do not compile; parse and type-check
only.

Print CBN reduction sequence.

Reduce term to CBN normal form.
Omit type-checking.

Create optimized compiled code.

Print additional type information de-
pending on mode.

Use term as input.

Read input from terminal.

Write output to terminal.

Write output to specified file.

Print help message and exit.
Print version info and exit.

28

where the compiler looks for input and where it writes the output. When using the
——term term flag one may find it useful to enclose term in quotation marks. This
will prevent shell substitutions.

The —-help flag provides a list and brief description of all PPL options. The
-—version flag gives information on which version of the compiler is in use.

There is also a graphical user interface for PPL called ppli. It is written in Tcl/Tk.
In Unix, it can be accessed by typing wish ppli at the command line. ppli pro-
vides a window to type a PPL program or load a program from a file, together with
various buttons for compiling, reducing, and stepping through the reduction sequence
of a term.

7.3 Example Programs

Our compiler for PPL comes with several example programs. The file programs. txt,
also available at [6], contains a list and description of each program.

8 Future Work

We have implemented PPL as a self-contained example of a functional programming
language. It is intended as a basis for experimenting with improved implementation
techniques, as well as new language features. Features that we would like to add in the
future include improved source level optimization, closure optimization, general recur-
sive types, non-local control features in the style of the Au-calculus, and a run-time
system with a proper garbage collector. We are also interested in extending automatic
type inference to recursive types, and the interaction of lazy evaluation and continua-
tions.

29

9 Appendix: Assembly Code For PPL Terms

[[m]]s =
LOAD C, s(x)
JUMP [C,0]
[Me.M]s =
CMP SS, #1
BGE l
EXIT “fn”
l: POP T
HM]]é(J'—)I)

(where [is a new label and r is a new
register.)

[Mz]s =
PUSH s(x)
[M]s

[[MN]]S =
; build closure for NV
ALLOC 7, #(n+1)
LOAD [r,0],1
LOAD [r, 1], s(z1)
LOAD [r,n], s(xy)
PUSH r
[M]

l: [N)(@i=[Ca],....on—[C,n))

(where [is a new label, r is a new regis-
ter, IV is not a variable, and F'V(N) =

{z1,...,2,}.)
[let x = M in N5 =

; build closure for M
ALLOC 7, #(n+1)
LOAD [r,0],1
LOAD [r, 1], s(z1)
LOAD [r,n], s(xy)
[[N]]s(m»—w)

L: M) (zymic], one[Con])

(where [is a new label, r is a new regis-
ter, and FV (M) = {z1,...,2,}.)

30

[letrec z = M in N], =

; build closure for M
ALLOC 7, #(n+1)
LOAD [r,0],1
LOAD [r, 1], s'(21)
LOAD [r,n], s (zn)
[N

l: IM](aymi0],zn—[Con])

(where [is a new label, r is a new regis-

ter, FV(M) = {x1,...,2,},and s’ =
s(x—r))
[[n]]s =
LOAD V,#n
CMP SS, #1
BGE l
EXITINT V
l: PoOP r
JUMP r

(where [is a new label and r is a new
register.)

[true]s =
LOAD V, #1
CMP SS, #1
BGE l
EXITBOOL V'

l: POP r
JUMP r

(where [is a new label and r is a new
register.)

[false]s =
LOAD V,#0
CMP SS, #1
BGE l
EXITBOOL V'

l: POP r
JUMP r

(where [is a new label and r is a new
register.)

[01s = [in}, M =

EXIT “0” CMP SS, #1
BGE Il
[[(Ml, ey Mn)]]s = EXIT “inj/n”
CMP SS, #1 l1 : ; build closure for M
BGE Iy ALLOC 7,#(n+1)
EXIT “n-tuple” LOAD [r,0], 12
Iy : POP r LOAD [r, 1], s(x1)
CMP r, #1 .
BNE la LOAD [r,n], s(xy)
[Mi]s POP C
lo : CMP T, #2 PUSH T
BNE l3 ; invoke jth branch of match closure
[M]s JUMP [C,j —1]
I: ... ly + [M](zy-(0,1),..c.0n[Cn])
L [[M] (where [, l5 are new labels, r is a new
o Rmas register, and FV (M) = {z1,...,2,}.)
(wheren > 2,14, ...,1, are new labels,
and r is a new register.)
[[piZL M]; =
PUSH #j
[M],
[case M of inj, y1 = Ny | ... |inf yp = Np]s =

; build match closure
ALLOC 1, #(k+n)

LOAD [r,0], 11

LOAD [r,k—1], 1

LOAD [r, k], s(x1)

LOAD [r,k+n—1],s(x,)
PUSH r

[M]

ls Py Nil @m0, zn = [C ok n—1])

I o IR Nil @y =[Ok — [Cok4n—1])

(wherely, ..., are new labels, r is a new register,
and FV(infy; = Ny | ... | infy, = Ni) =
{xl,...,xn}.)

31

References

[1] H. P. Barendregt. The Lambda Calculus, its Syntax and Semantics. North Holland,
2nd edition, 1984.

[2] L. Damas and R. Milner. Principal type-schemes for functional programs. In 9t
Symposium on Principles of Programming Languages, pages 207-212, 1982.

[3] C.Hankin. Lambda Calculi: A Guide For Computer Scientists. Oxford University
Press, 1994.

[4] S. C. Kleene. A\-definability and recursiveness. Duke Mathematical Journal,
2:340-353, 1936.

[5] J.-L. Krivine. Un interpreteur du lambda-calcul. Draft, available from
ftp://ftp.logique.jussieu.fr/pub/distrib/interprt.dvi, 1996.

[6] A.Lamstein and P. Selinger. Implementation of the programming language PPL,
Oct. 2000. Available from http://theory.stanford.edu/"selinger/ppl/.

[7] R. Milner. A theory of type polymorphism in programming. Journal of Computer
and System Sciences, 17:348-375, 1978.

[8] G. E. Revesz. Lambda-Calculus, Combinators, and Functional Programming.
Tracts in Theoretical Computer Science 4. Cambridge University Press, 1998.

[9] J. A. Robinson. A machine-oriented logic based on the resolution principle. Jour-
nal of the Association for Computing Machinery, 12:23-41, 1965.

32

