
Logic & Set Theory

Logic

Originated in ancient Greece with Aristotle. Studies the process of making
deductions. The most basic form of logic is propositional logic, which concerns
itself with ways of combining propositions using words such as “and”, “or”, “if
... then”, “not” etc., and rules for deducing new statements from old ones. A
more elaborate system of logic is predicate logic, which allows propositions that
depend on a variable, and can have different truths for different values of the
variable. Examples of such predicates are “x is a man” or “x has brown eyes”.
The power of this type of logic then comes from the introduction of quantifiers
“for all x” and “there exists some x”. These allow the use of statements such
as “all men have brown eyes”, or even “every man has a father.” (this uses two
quantifiers, and a predicate with two variables.) These sorts of statements are
common in everyday life, and even more common throughout mathematics.

In the 1840s, George Boole viewed the propositional logic of truth values
as being an algebraic structure. In fact, this algebra also has a numerical in-
terpretation, being equivalent to the usual algebra of addition, and multiplica-
tion modulo 2, with an additional operation, which corresponds to subtraction
from 1. This algebraic structure permits more general models of truth val-
ues with more than just two truth values. This later lead to generalisations
of this logic using different axioms, in particular intuitionistic logic, where the
double-negation axiom is no longer valid, so that proof by contradiction (and
important mathematical technique) can no longer be used. This is a natural
thing to consider because it eliminates most non-constructive proofs, which can
be unsatisfactory, particularly from a computer science point of view.

Logic is based on the idea that mathematics consists of the study of what
can be deduced from a fixed set of axioms and rules of deduction. In the late
1800s and early 1900s, mathematicians hoped to find a good set of axioms for
mathematics, so that all of mathematics could be reduced to use a fixed set
of axioms and logical deductions. Set theory was used as the basis for this
construction. Many of the concepts studied in mathematics can be represented
in clever ways as sets. A major work in this area is Principia Mathematica by
Bertrand Russell and Alfred North Whitehead. However, in 1931 Kurt Gödel
proved that their objective was impossible — he showed that any logical system
which is powerful enough to contain arithmetic must either be incomplete or
inconsistent. He also showed that it is not possible for a logical system to prove
its own consistency (that is, that it is not possible to both prove and disprove
something). This means that the consistency of mathematics must be taken on
faith, and there will always be things which are true, but cannot be proved.

Gödel’s proof involved coding statements in the logical system as numbers
in such a way that statements such as “n encodes a proof of the proposition
encoded by m” could be expressed as arithmetical statements. Then he was
able to construct a statement which effectively said that there was no way to
prove it.
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Despite this, set theory can still be used as a basis for all the mathematics
that is currently studied. New axioms will sometimes be introduced in restricted
contexts. The origins of set theory go back before this time: naive set theory
had an important tool for mathematics since Aristotle. A lot of this theory was
developped by Georg Cantor in the late 1800s, in particular, many of the coun-
terintuitive properties of infinite sets, such as the difference between ordinals
and cardinals, and the different infinite cardinalities.

Cardinality is a way to measure the size of a set — we say that two sets
have the same cardinality if we can pair up elements, one from each set, so that
neither set has any elements left over. [Such a pairing is called a bijection.]
For finite sets, this is a straightforward process, and any attempt to pair up
the elements either works or doesn’t work, depending whether the sets have the
same cardinality. The possible cardinalities of finite sets are the natural numbers
0, 1, 2, . . ..

For infinite sets, the situation is not straightforward, because it is possible
to have elements left over if paired up one way, but not another way — for
example, if we try to pair up the natural numbers with themselves (obviously
the same cardinality) by pairing 0 with 1, 1 with 2, 2 with 3, etc. then the
element 0 of the second set is left over.

We can show that the positive rational numbers have the same cardinality
as the natural numbers by arranging them in a grid, and filling in the diagonals.
The real numbers, however, do not have the same cardinality. To show this,
suppose we produce a pairing of the elements, 0 with a0, 1 with a1, etc. We
can construct a real number which is left unpaired as follows: We will choose a
number between 0 and 1. In the first decimal place, we will take the first decimal
place of a0, and add 2 to it (modulo 10, so that 8 becomes 0 and 9 becomes 1).
For the second decimal place, we take the second decimal digit of a1 and add 2
to it, and so on. Now our new number differs from an in the n + 1th decimal
place (possibly also in other places) so it cannot be an. This applies for any n
in the list. Therefore, our new number is not in the list. By a similar argument,
we can show that the set of subsets of any set is not of the same cardinality.
This demonstrates that there are an infinite number of possible cardinalities for
an infinite set.

Another place in which infinite sets differ from finite ones is the distinction
between cardinals and ordinals. In mathematics, a cardinal refers to the size
of a set, while an ordinal refers to the size of a set with a particular type of
ordering on its elements. In the finite case, there is a one-to-one correspondence
between these notions, because any two ways to order the elements of a finite
set are equivalent. For an infinite set, this is no longer the case. For example,
for the set of natural numbers, we could order the elements in the usual way
0, 1, 2, . . ., or we could put 0 at the end, 1, 2, 3, . . . , 0. These two orders are
essentially different — in the first one, each number occurs after only a finite
set of other numbers. In the second one, there are an infinite set of numbers
before 0. Similarly, we could put 1 at the end of this new order: 2, 3, 4, . . . , 0, 1
and this would be another order which is not equivalent. We can even order the
set so that all the odd numbers come before all the even numbers, so that there
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are infinitely many numbers that have infinitely many numbers before them.
Set theory was originally based on the intuition that a set represented any

collection of objects with a clear membership rule, and that two sets are the
same if and only if they have the same members. The trouble with this naive
approach is that it can lead to paradoxes (inconsistent statements). The most
well-known example is Russell’s paradox which considers the set of all sets which
are not members of themselves. Russell asked whether this set is a member of
itself. If it is, then by definition it should not be, but if it is not, then by
definition it should be. Another paradox is Cantor’s paradox that there is no
set of all sets, because if there were, then it must contain all its subsets as
members, but Cantor’s diagonal argument shows that any set has more subsets
than members.

A number of solutions to this paradox have been given, such as Russell’s
theory of types, where a set is assigned a type and is only allowed to contain
sets of smaller type. The solution that is most commonly used in mathematics
is an axiomatic theory known as Zermelo-Fraenkel (ZF) set-theory, which has
(among other axioms) an axiom of foundation, which effectively implements the
notion of types where the type can be any ordinal, rather than just a finite
number.

In addition to the axioms of ZF set theory, most mathematicians use an
additional axiom called the axiom of choice. This axiom asserts that given any
collection of non-empty sets, we can choose one element from each of them.
This is clearly true for finite collections, but for infinite collections, it asserts
the existence of many sets which cannot be explicitly described. For example,
it asserts the existence of a set of real numbers such that every real number
differs by a rational number from exactly one of them. It has a number of
counterintuitive consequences, including:

• There are sets of numbers with no notion of length.

• It is possible to break a sphere into 5 pieces and rotate the pieces to create
two copies of the original sphere. [Banach-Tarski paradox]

• There are two-player games where neither player has a winning strategy
(that is, no strategy exists, not just that there is no known winning strat-
egy).

The axiom of choice is different in character from other axioms, because it
asserts the existence of sets which cannot be explicitly described. For this rea-
son, some logicians reject this axiom, and study what can be deduced without it.
It is, however, fundamental to much of mathematics, and mathematics without
it is very different.

Another example of a statement which is independent of the axioms is the
continuum hypothesis, which was suggested by Cantor in 1878. It states that
there is no cardinality which is smaller than the real numbers, but larger than
the natural numbers. In 1940, Gödel showed that the continuum hypothesis
is consistent with ZF set theory with the axiom of choice (ZFC) — that is, it
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cannot be proven to be false in that set theory. In 1963, Paul Cohen proved
that the continuum hypothesis also cannot be proven in ZFC.
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