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Toby Kenney
Make-up Midterm Examination

Model Solutions

Answer all questions.

1 Which of the following are true when A = {1, 3, 7} and B = {0, 4, 6, 10, 12, 34}?
Justify your answers.

(a) (∃x ∈ A)(∀y ∈ B)(x + y is prime)

This is true. When x = 7 the values of x + y are as follows:

y 7 + y

0 7
4 11
6 13
10 17
12 19
34 41

These are all prime.

(b) (∀x ∈ A)(∃y ∈ B)(x + y is prime)

This is also true. The following choices for y all work:

x y

1 4,6,10,12
3 0,4,10,34
7 0,4,6,10,12,34

2 Use Euclid’s algorithm to find the greatest common divisor of 193 and 114.
Write down all the steps involved. Use your calculations to find integers
a and b such that 193a + 114b is the greatest common divisor of 193 and
114.

193 = 114 + 79

114 = 79 + 35

79 = 35× 2 + 9

35 = 3 × 9 + 8

9 = 8 + 1

8 = 8 × 1
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So the greatest common divisor is 1. Working backwards:

1 = 9 − 8 = 9 − (35 − 3 × 9) = 4 × 9 − 35

= 4 × (79 − 2 × 35)− 35 = 4 × 79 − 9 × 35

= 4 × 79− 9 × (114 − 79) = 13× 79 − 9 × 114

= 13× (193 − 114)− 9 × 114 = 13 × 193− 22× 114

So a = 13, b = −22 works.

3 Use universal instantiation and rules of inference to show that the follow-
ing argument is valid.

(∀x)(x ∈ A → (¬(x ∈ B)))

(y ∈ A ∨ y ∈ C) ∧ (¬(y ∈ B) → y ∈ C)

∴ y ∈ C

(∀x)(x ∈ A → (¬(x ∈ B))) Premise
y ∈ A → (¬(y ∈ B)) Universal instantiation
(y ∈ A ∨ y ∈ C) ∧ (¬(y ∈ B) → y ∈ C) Premise
¬(y ∈ B) → y ∈ C Specialisation
y ∈ A → y ∈ C Transitivity
y ∈ A ∨ y ∈ C Specialisation from line 3
y ∈ C → y ∈ C Tautology
y ∈ C Division into cases

4 Which of the following pairs of propositions are logically equivalent? Jus-
tify your answers.

(a) (p ∨ q) → r and (p → r) ∨ (q → r).

These are not logically equivalent – When p is true but q and r are both
false, the first proposition is false, while the second one is true.

(b) p ∨ (¬q → r) and q ∨ (¬p → r).

The truth tables are:
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p q r ¬q ¬q → r p ∨ (¬q → r)
0 0 0 1 0 0
0 0 1 1 1 1
0 1 0 0 1 1
0 1 1 0 1 1
1 0 0 1 0 1
1 0 1 1 1 1
1 1 0 0 1 1
1 1 1 0 1 1

and

p q r ¬p ¬p → r q ∨ (¬p → r)
0 0 0 1 0 0
0 0 1 1 1 1
0 1 0 1 0 1
0 1 1 1 1 1
1 0 0 0 1 1
1 0 1 0 1 1
1 1 0 0 1 1
1 1 1 0 1 1

The columns for p ∨ (¬q → r) and q ∨ (¬p → r) are the same. Therefore,
they are logically equivalent.

5 Use a Venn diagram to show the following argument is invalid:

(∀x ∈ A)(x ∈ B)

(∃x ∈ B)(x ∈ C)

∴ (∃x ∈ A)(x ∈ C)

CA B
x
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6 Prove or disprove the following. You may use results proved in the course
or the homework sheets, provided you state them clearly.

(a) There are infinitely many primes congruent to either 2 or 3 modulo 5.
[You may assume that any integer that is congruent to 2 or 3 modulo 5 is
divisible by a prime number congruent to 2 or 3 modulo 5. You may also
assume that if n is not divisible by 5, then n4 ≡ 1 (mod 5).]

This is true.

Proof. Suppose there are only finitely many such primes. Call them
p1, p2, . . . , pk. Now consider N = (p1p2 · · · pk)4 + 1. N is congruent to
2 modulo 5, since p1p2 · · · pk is not divisible by 5, so (p1p2 · · · pk)4 ≡
1 (mod 5), so N has a prime factor congruent to 2 or 3 modulo 5. This
prime factor can’t be any of p1, p2, . . . , pk, since they all divide N − 1.
Therefore, there must be a prime congruent to 2 or 3 modulo 5 that
is not one of p1, p2, . . . , pk. This is a contradiction since we said that
p1, p2, . . . , pk were all such primes. Therefore, our assumption that there
were only finitely many such primes must be false. Therefore, there must
be infinitely many such primes.

(b) 3
√

16 is irrational.

This is true.

Proof. Suppose that 3
√

16 is rational. Then it can be written as a
b

for

a, b ∈ Z, b 6= 0. Let a′ = a
(a,b) and b′ = b

(a,b) . Then (a′, b′) = 0, since if

d|a′ and d|b′, then d(a, b)|a and d(a, b)|b, so d(a, b) 6 (a, b), and therefore,

d 6 1. Also, a′

b′
= 3

√
16, and b′ 6= 0.

Now, cubing the equation, we get:

a′3

b′3
= 16

a′3 = 16b′3

Therefore, 2|a′3, so by unique prime factorisation, 2|a′. Therefore, there
is some integer k such that a′ = 2k. This gives 8k3 = 16b′3. Therefore,
k3 = 2b′3. Thus, 2|k. Let k = 2l. Hence, 2b′3 = 8l3. Therefore, b′3 = 4l3,
so 2|b′3, and therefore, 2|b′. This contradicts the fact that (a′, b′) = 1.
Therefore, our assumption that 3

√
16 was rational must be false, so it

must be irrational.
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(c) There is a natural number n such that 2n2 + 3n + 1 is prime.

This is false.

Proof. 2n2 + 3n + 1 = (2n + 1)(n + 1). If n = 0, then 2n2 + 3n + 1 = 1
which is not prime. If n > 1, then n + 1 and 2n + 1 must both be greater
than 1, so we have expressed 2n2 + 3n + 1 as a product of two integers
that are both more than 1. Therefore, it is not prime.

(d) There is a natural number n such that n2 + 4n − 6 is prime.

This is true. When n = 7, n2 +4n− 6 = 49+28− 6 = 71, which is prime.

(e) 212 + 326 + 529 is divisible by 11.

This is false.

Proof. Calculate some powers of 2,3, and 5 modulo 11:

n 2n (mod 11) 3n (mod 11) 5n (mod 11)
2 4 9 3
4 5 4 9
5 10 1 1
10 1 1 1

We have that 210 ≡ 1 (mod 11), so 212 ≡ 22 ≡ 4 (mod 11). Similarly,
35 ≡ 1 (mod 11), so 326 ≡ 31 ≡ 3 (mod 11). Finally, 55 ≡ 1 (mod 11), so
529 ≡ 54 ≡ 9 (mod 11). Therefore, 212+326+529 ≡ 4+3+9 ≡ 5 (mod 11).
Therefore, it is not divisible by 11.

(f) For all natural numbers n, n3+5n+6
3 = 2n+1.

This is false. When n = 4, n3+5n+6
3 = 64+20+6

3 = 90
3 = 30 6= 24+1 = 32.

7 Find an integer k, such that for all natural numbers n,
∑n

i=1
i(i+1)(2i+1)

6 =
n(n+1)2(n+2)

k
. Prove that the formula works for your value of k. [Hint: try

to prove the result by induction. The proof will only work for one value of
k.]

The value of k is 12. So we have

n∑

i=1

i(i + 1)(2i + 1)

6
=

n(n + 1)2(n + 2)

12
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Proof. Induction on n. Base case: when n = 0, the sum is empty, so is 0,

and n(n+1)2(n+2)
12 is also 0.

Now assume
∑n

i=1
i(i+1)(2i+1)

6 = n(n+1)2(n+2)
12 . We want to prove that

∑n+1
i=1

i(i+1)(2i+1)
6 = (n+1)(n+2)2(n+3)

12 .

n+1∑

i=1

i(i + 1)(2i + 1)

6
=

n∑

i=1

i(i + 1)(2i + 1)

6
+

(n + 1)(n + 2)(2n + 3)

6

=
n(n + 1)2(n + 2)

12
+

(n + 1)(n + 2)(2n + 3)

6

=
(n + 1)(n + 2)

12
(n(n + 1) + 2(2n + 3))

=
(n + 1)(n + 2)

12
(n2 + 5n + 6)

=
(n + 1)(n + 2)2(n + 3)

12

So by induction, the formula works for all n ∈ N.

8 Find 0 6 n < 840 satisfying all the following congruences:

n ≡ 5 (mod 8) (1)

n ≡ 4 (mod 15) (2)

n ≡ 6 (mod 7) (3)

Consider the first two congruences: The first one gives n = 5+8k for some
k ∈ Z. From the second, we have 5+8k ≡ 4 (mod 15), or equivalently 8k ≡
−1 (mod 15). Note that 8 × 2 ≡ 1 (mod 15), so 8 × −2 ≡ −1 (mod 15).
Therefore, 5 + 8 × 13 = 109 satisfies the first two congruences.

We now need to solve:

n ≡ 109 (mod 120) (4)

n ≡ 6 (mod 7) (5)

The first congruence gives n = 109 + 120l. Substituting into the second
congruence, we get 4 + l ≡ 6 (mod 7) (109 ≡ 4 (mod 7) and 120 ≡
1 (mod 7)). This gives l ≡ 2 (mod 7), so n = 109+120× 2 = 349 satisfies
all three congruences.

9 Find a boolean expression for the following logic circuit.

¬((p ∨ ¬q) ∨ (¬p ∧ r))
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