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Midterm Examination
Model Solutions

Answer all questions.

1 Use universal instantiation and rules of inference to show that the follow-
g argument is valid.

(Vz € A)(xz € B)
~((Fy € O)(=(y € 4)))
zel
.z €B

-((Fy € C)(~(y € A))) Premise
(Vy € C)(—=(y € A)) Logical equivalence

zeC Premise

-—(z € A) Universal instantiation
ze A Logical equivalence
(Vo € A)(z € B) Premise

z€DB Universal instantiation

2 Which of the following are true when A = {0,2,5,7} and B = {2,3,5,8,9,28} 7
Justify your answers.

(a) (Vx € A)(3y € B)(x x y is a perfect square)

This is true. We can choose the following values of y for each values of z:

x y
0] 2,3,5,89,.28
P 2.8

5 5

7 28

(b) 3y € B)(Vx € A)(z X y is a perfect square)

This is false — there is no y in B that works for every x in A (note that no
number occurs in all the rows of the table above). Given any choice for y,
we can choose the following x to make the assertion false:



X
5,7
2,5,7
2,7
5,7
2,5,7

2| 2,5

© 0o Ut W N

8 Prove or disprove the following. You may use results proved in the course
or the homework sheets, provided you state them clearly.

(a) ¥4 is irrational.

This is true.

Proof. Suppose v/4 is rational. Then there are integers p and ¢ with
q # 0 and (p,q) = 1, such that ¥/4 = %. Cubing both sides, we get 4 = g—z
or 4¢3 = p3. Thus, 2|p3. Therefore, 2|p by unique prime factorisation, so
there is an integer p’ such that p = 2p’. Therefore, 4¢> = 8p’3, so ¢> = 2p”>.
Thus, 2|¢3, so 2|q by unique prime factorisation. Therefore, p and ¢ have
the common divisor 2, contradicting the fact that (p,q) = 1. Therefore,
we can’t find integers p and ¢ with § = {/4, so {/4 is irrational. O

(b) There is a natural number n such that 6n> 4+ 12n% + 15n+ 21 is prime.
This is false.

Proof. 6n> + 12n2 + 15n + 21 = 3(2n3 + 4n? + 5n + 7), so if it is prime,
then 2n3 + 4n? + 5n + 7 must be 1 or —1. However, all its terms are
non-negative (since n is non-negative, so it is at least 7, so it can never

be 1. Therefore, 6n® — 15n% + 12n — 21 is never prime for n a natural
number. O

(¢c) There is a natural number n such that n® + 8n + 6 is prime.

This is true.
Proof. When n =5, n? +8n + 6 = 25 + 40 + 6 = 71, which is prime. [

(d) n® +5=m®+9 has no integer solutions [Hint: try modulo 7]

This is true.

Proof. Third and sixth powers modulo 7 are shown in the following table:



n? (mod 7) | n® (mod 7)

S UL W= O3
DAY= O = O
= = O

So all cubes are congruent to 0, 1, or 6 modulo 7. Therefore, n® + 5
is always congruent to one of 4, 5, or 6 modulo 7. On the other hand,
m? is always congruent to 0 or 1 modulo 7. Therefore, m® + 9 is always
congruent to 2 or 3 modulo 7. Therefore, n® +5 = m5+9 (mod 7) has no
solutions, so n® + 5 = m® + 9 can’t have any integer solutions. O

(e) For all natural numbers n, > ", i(igl) = ”("4‘1(2(”‘*‘2)

This is true.

Proof. Induction on n. When n = 0, both sides are clearly 0. Now suppose
that

i(i+1) nn+1)(n+2)
: 2 6
=1
We need to show that

n+1

Z i(i+1) (n+1)(n+2)(n+3)
~ 2 6
However,
”ii(iﬂ) 72”31'(@“) L+ Dn+2)
; 2 2 2
i=1 1=1
1 1 2 1
_n(n+1)(n+2) N (n+D(n+2) ntDm+2) (%4t
6 2 6 2
_ (n+1)(n+2)(n+3)
B 6
So by induction, the formula holds for all natural numbers n. O

(f) There are infinitely many primes congruent to 8 modulo 6.
This is false.

Proof. Let p be a prime number congruent to 3 modulo 6. This means
that 6|p — 3. Therefore, by transitivity of divisibility, 3|p — 3. This means
that p — 3 = 3k for some integer k, so p = 3(k + 1). Therefore, since p is



prime, k+ 1 must be 1, and therefore, p = 3. Thus, there are only finitely
many prime numbers congruent to 3 modulo 6 (in particular, there is only
one such prime number). O

(g) There are infinitely many prime numbers p such that there is an integer
n for which n®> = —1 (mod p). [Hint: Suppose the set of all such prime

numbers is p1,...,pr, and consider (p1pz---pr)? +1.]

This is true.

Proof. Suppose there are only finitely many prime numbers with this prop-
erty. Let them be py,...,pg. Consider m = (py ---pi)? + 1. m is divisible
by a prime number p (by unique prime factorisation). p cannot be any of
P1,- .., Pk, since these all divide m — 1. However, if we let n = py - - - pg,
then n? = —1 (mod p), so p is another prime for which there is an in-
teger n such that n? = —1 (mod p), contradicting our assumption that
P1,---,Pr were the only such primes. This means that we can’t list all
such primes, so there must be infinitely many of them. O

4 Which of the following pairs of propositions are logically equivalent? Jus-
tify your answers.

(a) (pA=q)V(=pAq) and (pV q) A=(pAq).
The truth tables are as follows:

plag|-p|-q|pA-q|gAN—p| (PA-g)V(=pAqg)
010 1 | 1 0 0 0
ol1] 1] 0 0 1 1
1ol o] 1 1 0 1
1111010 0 0 0
plalpVa|phg|-(prg | (PVe A-(pAg)
0/0] 0 0 1 0
01| 1 0 1 1
1o 1 0 1 1
111 1 1 0 0

We see that the columns for (p A =q) V (—p A ¢) and (
the same, so they are logically equivalent.

(b) pV —q and ~(=pV q).

When p is true and ¢ is true, the first proposition is true, while the second
one is false, so they are not logically equivalent.

V) A=(pAq) are

hS

5 Find 0 < n < 630 satisfying all the following congruences:

= 3 (mod 7) (1)
= 8 (mod 10) (2)
= 4 (mod 9) (3)



For the first two congruences,

3 (mod 7)
= 8 (mod 10)

n

we note that 3 x 7 = 1 (mod 10), so 3+ 5 x (3 x 7) = 8 (mod 10),
and therefore, 3 +5 x 3 x 7 = 108 satisfies 108 = 3 (mod 7) and 108 =
8 (mod 10). Also, 108 = 38 (mod 70), so 38 also satisfies 38 = 3 (mod 7)
and 38 = 8 (mod 10). Now we just need to solve the congruences

n = 38 (mod 70)
n = 4 (mod?9)

Again, we note that 70 = 7 (mod 9), so 70 x 4 = 1 (mod 9). Therefore,
384 (70 x 4) x 2 =4 (mod 9), so n = 598 satisfies all three congruences.

6 Find a boolean expression for the following logic circuit.

(=(pA@ N-T) VT

7 Use Euclid’s algorithm to find the greatest common divisor of the following
pairs of numbers. Write down all the steps involved. Use your calculations
to find integers a and b such that a times the first number plus b times the
second number is their greatest common divisor.

(a) 238 and 133

238 = 133+ 105
133 = 105428
106 = 3 x28+21
28 = 2147
21 = 3x7

So the greatest common divisor is 7. Working backwards:
7=28—-21=28—(105—3x28) =4 x28—105=4 x (133 —105) — 105
=4x133-5x105=4x%x133—-5x (238 —133) =9 x 133 — 5 x 238

So a = —5 and b = 9 works.
(b) 289 and 102



280 = 2x102+85
102 = 85417
8 = bHx17

So the greatest common divisor is 17. Working backwards:

17 =102 — 85 =102 — (289 — 2 x 102) = 3 x 102 — 289

So a = —1, b =3 works.



