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Midterm Examination
Model Solutions

Answer all questions.

1 Use universal instantiation and rules of inference to show that the follow-
ing argument is valid.

(∀x ∈ A)(x ∈ B)
¬((∃y ∈ C)(¬(y ∈ A)))

z ∈ C

∴ z ∈ B

¬((∃y ∈ C)(¬(y ∈ A))) Premise
(∀y ∈ C)(¬¬(y ∈ A)) Logical equivalence
z ∈ C Premise
¬¬(z ∈ A) Universal instantiation
z ∈ A Logical equivalence
(∀x ∈ A)(x ∈ B) Premise
z ∈ B Universal instantiation

2 Which of the following are true when A = {0, 2, 5, 7} and B = {2, 3, 5, 8, 9, 28}?
Justify your answers.

(a) (∀x ∈ A)(∃y ∈ B)(x× y is a perfect square)

This is true. We can choose the following values of y for each values of x:

x y
0 2,3,5,8,9,28
2 2,8
5 5
7 28

(b) (∃y ∈ B)(∀x ∈ A)(x× y is a perfect square)

This is false – there is no y in B that works for every x in A (note that no
number occurs in all the rows of the table above). Given any choice for y,
we can choose the following x to make the assertion false:

1



y x
2 5,7
3 2,5,7
5 2,7
8 5,7
9 2,5,7
28 2,5

3 Prove or disprove the following. You may use results proved in the course
or the homework sheets, provided you state them clearly.

(a) 3
√

4 is irrational.

This is true.

Proof. Suppose 3
√

4 is rational. Then there are integers p and q with
q 6= 0 and (p, q) = 1, such that 3

√
4 = p

q . Cubing both sides, we get 4 = p3

q3

or 4q3 = p3. Thus, 2|p3. Therefore, 2|p by unique prime factorisation, so
there is an integer p′ such that p = 2p′. Therefore, 4q3 = 8p′3, so q3 = 2p′3.
Thus, 2|q3, so 2|q by unique prime factorisation. Therefore, p and q have
the common divisor 2, contradicting the fact that (p, q) = 1. Therefore,
we can’t find integers p and q with p

q = 3
√

4, so 3
√

4 is irrational.

(b) There is a natural number n such that 6n3 +12n2 +15n+21 is prime.

This is false.

Proof. 6n3 + 12n2 + 15n + 21 = 3(2n3 + 4n2 + 5n + 7), so if it is prime,
then 2n3 + 4n2 + 5n + 7 must be 1 or −1. However, all its terms are
non-negative (since n is non-negative, so it is at least 7, so it can never
be 1. Therefore, 6n3 − 15n2 + 12n − 21 is never prime for n a natural
number.

(c) There is a natural number n such that n2 + 8n + 6 is prime.

This is true.

Proof. When n = 5, n2 + 8n + 6 = 25 + 40 + 6 = 71, which is prime.

(d) n3 + 5 = m6 + 9 has no integer solutions [Hint: try modulo 7]

This is true.

Proof. Third and sixth powers modulo 7 are shown in the following table:
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n n3 (mod 7) n6 (mod 7)
0 0 0
1 1 1
2 1 1
3 6 1
4 1 1
5 6 1
6 6 1

So all cubes are congruent to 0, 1, or 6 modulo 7. Therefore, n3 + 5
is always congruent to one of 4, 5, or 6 modulo 7. On the other hand,
m6 is always congruent to 0 or 1 modulo 7. Therefore, m6 + 9 is always
congruent to 2 or 3 modulo 7. Therefore, n3 +5 ≡ m6 +9 (mod 7) has no
solutions, so n3 + 5 = m6 + 9 can’t have any integer solutions.

(e) For all natural numbers n,
∑n

i=1
i(i+1)

2 = n(n+1)(n+2)
6

This is true.

Proof. Induction on n. When n = 0, both sides are clearly 0. Now suppose
that

n∑
i=1

i(i + 1)
2

=
n(n + 1)(n + 2)

6

We need to show that

n+1∑
i=1

i(i + 1)
2

=
(n + 1)(n + 2)(n + 3)

6

However,

n+1∑
i=1

i(i + 1)
2

=
n∑

i=1

i(i + 1)
2

+
(n + 1)(n + 2)

2

=
n(n + 1)(n + 2)

6
+

(n + 1)(n + 2)
2

= (n + 1)(n + 2)
(

n

6
+

1
2

)
=

(n + 1)(n + 2)(n + 3)
6

So by induction, the formula holds for all natural numbers n.

(f) There are infinitely many primes congruent to 3 modulo 6.

This is false.

Proof. Let p be a prime number congruent to 3 modulo 6. This means
that 6|p− 3. Therefore, by transitivity of divisibility, 3|p− 3. This means
that p− 3 = 3k for some integer k, so p = 3(k + 1). Therefore, since p is
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prime, k +1 must be 1, and therefore, p = 3. Thus, there are only finitely
many prime numbers congruent to 3 modulo 6 (in particular, there is only
one such prime number).

(g) There are infinitely many prime numbers p such that there is an integer
n for which n2 ≡ −1 (mod p). [Hint: Suppose the set of all such prime
numbers is p1, . . . , pk, and consider (p1p2 · · · pk)2 + 1.]

This is true.

Proof. Suppose there are only finitely many prime numbers with this prop-
erty. Let them be p1, . . . , pk. Consider m = (p1 · · · pk)2 + 1. m is divisible
by a prime number p (by unique prime factorisation). p cannot be any of
p1, . . . , pk, since these all divide m − 1. However, if we let n = p1 · · · pk,
then n2 ≡ −1 (mod p), so p is another prime for which there is an in-
teger n such that n2 ≡ −1 (mod p), contradicting our assumption that
p1, . . . , pk were the only such primes. This means that we can’t list all
such primes, so there must be infinitely many of them.

4 Which of the following pairs of propositions are logically equivalent? Jus-
tify your answers.

(a) (p ∧ ¬q) ∨ (¬p ∧ q) and (p ∨ q) ∧ ¬(p ∧ q).

The truth tables are as follows:
p q ¬p ¬q p ∧ ¬q q ∧ ¬p (p ∧ ¬q) ∨ (¬p ∧ q)
0 0 1 1 0 0 0
0 1 1 0 0 1 1
1 0 0 1 1 0 1
1 1 0 0 0 0 0

p q p ∨ q p ∧ q ¬(p ∧ q) (p ∨ q) ∧ ¬(p ∧ q)
0 0 0 0 1 0
0 1 1 0 1 1
1 0 1 0 1 1
1 1 1 1 0 0

We see that the columns for (p ∧ ¬q) ∨ (¬p ∧ q) and (p ∨ q) ∧ ¬(p ∧ q) are
the same, so they are logically equivalent.

(b) p ∨ ¬q and ¬(¬p ∨ q).

When p is true and q is true, the first proposition is true, while the second
one is false, so they are not logically equivalent.

5 Find 0 6 n < 630 satisfying all the following congruences:

n ≡ 3 (mod 7) (1)
n ≡ 8 (mod 10) (2)
n ≡ 4 (mod 9) (3)
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For the first two congruences,

n ≡ 3 (mod 7)
n ≡ 8 (mod 10)

we note that 3 × 7 ≡ 1 (mod 10), so 3 + 5 × (3 × 7) ≡ 8 (mod 10),
and therefore, 3 + 5 × 3 × 7 = 108 satisfies 108 ≡ 3 (mod 7) and 108 ≡
8 (mod 10). Also, 108 ≡ 38 (mod 70), so 38 also satisfies 38 ≡ 3 (mod 7)
and 38 ≡ 8 (mod 10). Now we just need to solve the congruences

n ≡ 38 (mod 70)
n ≡ 4 (mod 9)

Again, we note that 70 ≡ 7 (mod 9), so 70 × 4 ≡ 1 (mod 9). Therefore,
38 + (70× 4)× 2 ≡ 4 (mod 9), so n = 598 satisfies all three congruences.

6 Find a boolean expression for the following logic circuit.

(¬(p ∧ q) ∧ ¬r) ∨ r

7 Use Euclid’s algorithm to find the greatest common divisor of the following
pairs of numbers. Write down all the steps involved. Use your calculations
to find integers a and b such that a times the first number plus b times the
second number is their greatest common divisor.

(a) 238 and 133

238 = 133 + 105
133 = 105 + 28
105 = 3× 28 + 21
28 = 21 + 7
21 = 3× 7

So the greatest common divisor is 7. Working backwards:

7 = 28− 21 = 28− (105− 3× 28) = 4× 28− 105 = 4× (133− 105)− 105
= 4× 133− 5× 105 = 4× 133− 5× (238− 133) = 9× 133− 5× 238

So a = −5 and b = 9 works.

(b) 289 and 102
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289 = 2× 102 + 85
102 = 85 + 17
85 = 5× 17

So the greatest common divisor is 17. Working backwards:

17 = 102− 85 = 102− (289− 2× 102) = 3× 102− 289

So a = −1, b = 3 works.
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