MATH 3030, Abstract Algebra Winter 2012

Toby Kenney

Sample Midterm Examination

This practice exam deliberately has more questions than the real midterm. Some of the theoretical questions are directly from the notes, and some are new, requiring a little thought. The questions from the notes are intended to provide a complete list of theorems

from the course that you might be asked to prove.

Basic Questions

- 1. Give an example of a prime ideal which is not maximal.
- 2. Let $R = M_2(\mathbb{Z}_2)$, the ring of 2×2 matrices over \mathbb{Z}_2 . What are the elements of the ideal generated by $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$?
- 3. How many ring homomorphisms are there from \mathbb{Z}_{12} to \mathbb{Z}_{90} ?
- 4. What is the dimension of $\mathbb{Q}(\sqrt{3} + \sqrt{2})$ as a vector space over $\mathbb{Q}(\sqrt{2})$?
- 5. Let α be a zero of $f(x) = x^2 2$ in GF(25). Find a generator of the multiplicative group of nonzero elements of GF(25).
- 6. Show that $x^3 + x + 1$ has distinct zeros in the algebraic closure of \mathbb{Z}_5 .
- 7. Let α be a zero of $x^3 + x^2 + 2$ over \mathbb{Z}_3 . Find $\operatorname{Irr}(\alpha + 1, \mathbb{Z}_3)$.
- 8. Show that the set of polynomials $\{f \in \mathbb{Z}[x] | f(0) \text{ is divisible by 3} \}$ is an ideal in $\mathbb{Z}[x]$. Is it principal?
- 9. Compute a composition series for $D_5 \times D_4$. Is $D_5 \times D_4$ solvable?
- 10. Find a basis for $\mathbb{Q}(\sqrt{3} + \sqrt{5})$ over \mathbb{Q} .

Theoretical Questions

Results from Notes

- 11. Show that the composite of two ring homomorphisms is a ring homomorphism.
- 12. Prove that for a field F, every ideal in the polynomial ring F[x] is principal.
- 13. Prove that if R is a commutative unital ring, and I is an ideal of R, then R/I is a field if and only if I is maximal.

- 14. Prove that if R is a commutative unital ring, and I is an ideal of R, then R/I is an integral domain if and only if I is prime.
- 15. Prove that given a field F, and a non-constant polynomial $f \in F[x]$, there is an extension field E of F containing a zero of f.
- 16. Prove that if E is a finite extension of F and K is a finite extension of E, then K is a finite extension of F and

$$[K:F] = [K:E][E:F]$$

- 17. Prove that the number of elements in a finite field is always a prime power.
- 18. Show that a subgroup of a solvable group is solvable.
- 19. Show that a field of characteristic $p \neq 0$ contains a subfield isomorphic to \mathbb{Z}_p .
- 20. Show that for an extension field E of F, and an element $\alpha \in E$, algebraic over F, there is an irreducible polynomial $p \in F[x]$ such that $p(\alpha) = 0$, and that this p is unique up to multiplication by a constant.
- 21. Show that any finite extension field E of a field F is algebraic over F.
- 22. (a) Show that if K is an algebraic extension of E, and E is an algebraic extension of F, then K is an algebraic extension of F.

(b) Deduce that if M is a maximal algebraic extension of F (i.e. M is not a proper subfield of any other algebraic extension of F) then M is algebraically closed.

- 23. Show that it is not possible to construct a line segment of length $\sqrt[3]{2}$, starting from a line segment of length 1, and using only a straight-edge and compass.
- 24. Describe how to construct a finite field with p^n elements for a prime p as a subfield of $\overline{\mathbb{Z}_p}$, and explain what steps are needed to show that this is indeed a field.
- 25. State and prove the first isomorphism theorem.
- 26. State and prove the second isomorphism theorem.
- 27. State and prove the third isomorphism theorem.

New questions

28. Let *E* be an extension of *F*. Let $\alpha \in E$ be algebraic over *F*, and let $\beta \in E$ be transcendental over *F*. Must β be transcendental over $F(\alpha)$? Give a proof or a counterexample.

- 29. Let E be algebraically closed. Let F be a subfield of E. Show that the algebraic closure of F in E is algebraically closed.
- 30. Prove that the only irreducible polynomials in $\mathbb{R}[x]$ have degree less than 2. [You may assume the fundamental theorem of algebra the complex numbers are algebraically closed.]
- 31. Show that no finite field is algebraically closed.
- 32. Show that for any n, and any prime p, there is an irreducible polynomial of degree n in \mathbb{Z}_p .
- 33. Show that any non-zero ring homomorphism between two fields is one-toone.
- 34. Show that any algebraic extension of R is either R, or else is isomorphic to C. [Hint: the only irreducible polynomials in R are quadratic or linear.]
- 35. Show that the direct product of two solvable groups is solvable.
- 36. Show that the set of elements x satisfying $x^n = 0$ for some n is an ideal in any commutative ring R.
- 37. Let R be a commutative ring, and let $a \in R$. Show that the set $\{x \in R | ax = 0\}$ is an ideal in R.
- 38. Let α be a primitive root of unity in $\operatorname{GF}(p^n)$. Show that $\operatorname{deg}(\alpha, \mathbb{Z}_p) = n$.