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Basic Questions

1. Give an example of a prime ideal which is not maximal.

In the ring Z× Z, the ideal {(0, a)|a ∈ Z} is prime but not maximal.

2. Let R = M2(Z2), the ring of 2×2 matrices over Z2. What are the elements

of the ideal generated by

(
0 1
0 0

)
?

We need to multiply by all 16 elements of R on each side to find all the
elements of the ideal. We consider:(

a b
c d

)(
0 1
0 0

)
=

(
0 a
0 c

)
while (

0 1
0 0

)(
a b
c d

)
=

(
b d
0 0

)
so the entries of the ideal include all matrices of the forms(

0 a
0 c

)
and (

b d
0 0

)
and all sums of these matrices. Furthermore, they include all multiples of
these matrices. For example,(

0 a
0 c

)(
e f
g h

)
=

(
ag ah
cg ch

)
So we get all matrices of rank 1. Finally, the ideal must be closed under
addition, so we get all sums of matrices of rank 1. This gives all matrices
in R.

3. How many ring homomorphisms are there from Z12 to Z90?

A ring homomorphism φ from Z12 to Z90 is determined entirely by φ(1).
This φ(1) must satisfy φ(1)2 = φ(1), and 12.φ(1) = 0. In Z90, the elements
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that satisfy 12.x = 0 are multiples of 15. Now in Z90, we have that 152 =
45, so the squares of multiples of 15 are all multiples of 45, so the only
possible values for φ(1) are 0 and 45. It is straightforward to check that
these both have the required properties, so there are two homomorphisms
from Z12 to Z90.

4. What is the dimension of Q(
√

3 +
√

2) as a vector space over Q(
√

2)?

We see that (
√

3+
√

2)2 = 5+2
√

6 = 2
√

2(
√

3+
√

2)+1, so 1 and (
√

3+
√

2)
form a basis for Q(

√
3+
√

2) as a vector space over Q(
√

2), so its dimension
is 2.

5. Let α be a zero of f(x) = x2 − 2 in GF(25). Find a generator of the
multiplicative group of nonzero elements of GF(25).

We know that the multiplicative group of nonzero elements of GF(25) has
24 elements. Furthermore, we see that α2 = 2, α4 = 4 and α8 = 1, so α
has order 8 in this group. We therefore need to find a cube root of α. We
try α+ 1, and we get (α+ 1)3 = α3 + 3α2 + 3α+ 1 = 2α+ 1 + 3α+ 1 = 2
Therefore, α + 1 has order 12. This leads us to try α(α + 1) = α + 2,
where we see (α + 2)3 = α3 + α2 + 2α + 3 = 4α = α5. Since 5 and 8 are
coprime, α5 has order 8, so α+ 2 has order 24, i.e. it is a generator of the
multiplicative group.

6. Show that x3 + x+ 1 has distinct zeros in the algebraic closure of Z5.

We know by trying all elements of Z5, that x3 + x+ 1 has no zeros in Z5,
so it is irreducible over Z5. Let α be a zero of x3 + x+ 1 in the algebraic
closure of Z5. Long division gives us x3+x+1 = (x−α)(x2+αx+(α2+1)).
It is clear that α is not a zero of x2 + αx + (α2 + 1), so we just need to
show that its two zeros are not equal, i.e. that it is not the square of some
x−β. However, since (x−β)2 = x2− 2βx+β2, the only possible β is 4α,
and it is clear that this is not a zero of x2 + αx+ (α2 + 1).

[We can complete the factorisation — using the quadratic formula, the
zeros of x2+αx+(α2+1) are 3(−α±

√
2α2 + 1). The difficulty is in finding√

2α2 + 1. However, computing powers of α we see that 2α2 + 1 = α17,
and α31 = −1, so one square root of 2α2 + 1 is 2α24 = 2α2 + 2α+ 3. This
gives a zero of x2 + αx + (α2 + 1) as α2 + 3α + 4 and the other zero as
4α2 + 2α+ 2.]

7. Let α be a zero of x3 + x2 + 2 over Z3. Find Irr(α+ 1,Z3).

We know that the irreducible polynomial must be of degree 3, since Z3(α)
has degree 3 over Z3. We look at the first three powers of α+ 1, getting
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1 = 1

α+ 1 = α+ 1

(α+ 1)2 = α2 + 2α+ 1

(α+ 1)3 = 2α2 + 2

Expressing (α + 1)3 as a linear combination of the other powers of α + 1
gives (α+1)3 = 2(α+1)2 +2(α+1)+1, so Irr(α+1,Z3) = x3 +x2 +x+2.

8. Show that the set of polynomials {f ∈ Z[x]|f(0) is divisible by 3} is an
ideal in Z[x]. Is it principal?

We need to show this set of polynomials is closed under addition, and
multiplication by arbitrary polynomials. This is clear, because evaluation
at zero is a ring homomorphism, and so if f(0) and g(0) are both divisible
by 3, then so is (f + g)(0) = f(0) + g(0), and if g is any polynomial in
Z[x], then g(0) is an integer, so if f(0) is divisible by 3, then g(0)f(0) is
also divisible by 3.

It is not a principal ideal, since the only polynomial that divides both the
constant polynomial 3 and x is the constant polynomial 1, which is not in
the ideal.

9. Compute a composition series for D5 ×D4. Is D5 ×D4 solvable?

One composition series is Z5 × {e} 6 D5 × {e} 6 D5 × Z2 6 D5 × Z4 6
D5 ×D4, where the cyclic groups are all groups of rotations.

It is easy to see that the order of each factor group in this composition
series is prime, so the factor group must be abelian. Therefore, D5 ×D4

is solvable.

10. Find a basis for Q(
√

3 +
√

5) over Q.

Computing powers of
√

3 +
√

5 gives

1 = 1
√

3 +
√

5 =
√

3 +
√

5

(
√

3 +
√

5)2 = 8 + 2
√

15

(
√

3 +
√

5)3 = 18
√

3 + 14
√

5

From this it is easy to see that Q(
√

3 +
√

5) is of degree at least 4 over Q,
and contains

√
3,
√

5 and
√

15, so {1,
√

3,
√

5,
√

15} form a basis.

Alternatively, we can give the powers of (
√

3+
√

5) as a basis, i.e. {1,
√

3+√
5, 8 + 2

√
15, 18

√
3 + 14

√
5}, and we can confirm that (

√
3 +
√

5)4 =
124 + 32

√
15 is a linear combination of these elements.
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Theoretical Questions

Results from Notes

11. Show that the composite of two ring homomorphisms is a ring homomor-
phism.

Let f : R // S and g : S // T be two ring homomorphisms. We need
to show that the composite gf : R // T is a ring homomorphism. That
is, we need to show that for any x, y ∈ R, gf(x + y) = gf(x) + gf(y)
and gf(xy) = gf(x)gf(y). Now we have gf(x + y) = g(f(x) + f(y)) =
gf(x) + gf(y) and gf(xy) = g(f(x)f(y)) = gf(x)gf(y).

12. Prove that for a field F , every ideal in the polynomial ring F [x] is principal.

Let I be an ideal in F [x]. If I is the zero ideal, then the result is obvi-
ous. Let f be a non-zero polynomial of smallest degree n in I (i.e. all
polynomials in I are of degree at least n). We will show that any other
polynomial g in I is divisible by f , since by the division algorithm, we
have that g = qf + r where either r = 0 or the degree of r is less than the
degree of f . However, since g ∈ I and f ∈ I, we have that r = g− qf ∈ I,
and since n is the smallest degree of a non-zero polynomial in I, and r
has degree less than n, this means that r = 0. Therefore, g = qf . Since
g is an arbitrary element of I, we have shown that I is the principal ideal
generated by f .

13. Prove that if R is a commutative unital ring, and I is an ideal of R, then
R/I is a field if and only if I is maximal.

Let I be maximal. Then for any non-zero coset x + I ∈ R/I, we can
consider the ideal generated by this coset — that is, the ideal {xa+ I|a ∈
R}. The union of these cosets gives an ideal of R containing I. Since I is
maximal, this must be the improper ideal. In particular, it must contain
the coset 1 + I, so we have that 1 + I = xa + I for some a ∈ R. This
means that a+ I is an inverse for x+ I in R/I, so x+ I is a unit, and so
R/I is a field.

Conversely, suppose R/I is a field. Now if J is an ideal of R properly
containing I, then the set {x + I|x ∈ J} is a non-zero ideal of R/I.
However, since R/I is a field, if K is a non-zero ideal in R/I then it
contains some element y + I of R/I, and for any z + I ∈ R/I, we have
z+ I = (y+ I)(y+ I)−1(z+ I) ∈ K. Therefore the only non-zero ideal in
a field is the improper ideal. If {x+ I|x ∈ J} is the improper ideal, then
we must have that J is the improper ideal in R. Since J was an arbitrary
ideal of R properly containing I, this means that I is maximal.

14. Prove that if R is a commutative unital ring, and I is an ideal of R, then
R/I is an integral domain if and only if I is prime.
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Since R is commutative and unital, R/I is also commutative and unital,
so we just need to show that R/I has no zero divisors if and only if I is
prime. However, a zero divisor in R/I consists of a pair of cosets x + I
and y + I with the property that xy + I = I, but neither x+ I nor y + I
is the ideal I. Asserting that no such cosets exist is exactly the definition
of I being a prime ideal.

15. Prove that given a field F , and a non-constant polynomial f ∈ F [x], there
is an extension field E of F containing a zero of f .

We know that f can be written as a product of irreducible polynomials,
and that a zero of any one of these irreducible factors is a zero of f .
Therefore, it is sufficient to prove the result for an irreducible polynomial
f . In this case, we know that 〈f〉 is a maximal ideal in F [x], so F [x]/〈f〉
is a field. It is an extension field of F because the cosets of constant
polynomials form a subfield isomorphic to F . In this field, the element
x+〈f〉 is a zero of f , since evaluating f at this element gives f+〈f〉 = 〈f〉.

16. Prove that if E is a finite extension of F and K is a finite extension of
E, then K is a finite extension of F and

[K : F ] = [K : E][E : F ]

Let {α1, . . . , αn} be a basis for E over F and let {β1, . . . , βm} be a basis
for K over E. Then it is sufficient to show that {αiβj |1 6 i 6 n, 1 6
j 6 m} is a basis for K over F . Let x ∈ K. We have x = e1β1 +
· · · + emβm, for some e1, . . . , em ∈ E, since {β1, . . . , βm} is a basis for K
over E. Now since {α1, . . . , αn} is a basis for E over F , for each ei we
have ei = ai1α1 + · · · + ainαn for some ai1, . . . , ain ∈ F . Substituting
these equations gives x =

∑m
j=1

∑n
i=1 aijαiβj , so these span K. suppose

we have 0 =
∑m

j=1

∑n
i=1 aijαiβj for some aij ∈ F . For each j, we have

that
∑n

i=1 aijαi ∈ E, so we have a linear combination of the βj over E
equal to zero. Since the βj are linearly independent over E, this gives∑n

i=1 aijαi = 0. Since the αi are linearly independent over F , this means
that each aij = 0. Therefore, the products αiβj are linearly independent
over F .

17. Prove that the number of elements in a finite field is always a prime power.

Let F be a finite field. The characteristic of F is not zero, so must be
a prime p. Taking all elements of F which can be obtained by adding
1, we get a subfield isomorphic to Zp. We therefore have that F is a
finite extension of Zp. Let the dimension be n, and let {α1, . . . , αn} be
a basis for F over Zp. Every element of F can be written uniquely as
a1α1 + · · ·+ anαn for some a1, . . . , an ∈ Zp. There are p choices for each
ai, so there are pn possible choices in total. Therefore, F has pn elements,
which is a prime power.
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18. Show that a subgroup of a solvable group is solvable.

Let G be a solvable group, and let H be a subgroup of G. Let {e} 6 G1 6
· · · 6 Gn = G be a composition series for G. Now consider {e} 6 G1∩H 6
· · · 6 Gn ∩H = H. We know that this is a subnormal series for H. By
the second isomorphism theorem applied to the subgroup (Gi+1 ∩ H) of
Gi+1, and the normal subgroup Gi, we know that (Gi+1 ∩H)/(Gi ∩H) ∼=
((Gi+1 ∩ H)Gi)/Gi. Now (Gi+1 ∩ H)Gi/Gi is a subgroup of Gi+1/Gi,
which is simple (since the series is a composition series), and abelian,
since G is solvable. This means it is cyclic of prime order, so that either
(Gi+1 ∩ H)/(Gi ∩ H) ∼= Gi+1/Gi or (Gı+1 ∩ H)/(Gi ∩ H) is the trivial
group. Therefore, we see that, identifying equal elements in the series, we
get a composition series for H. Furthermore, the quotients in this series
are all quotients in the composition series for G. Therefore, they are all
abelian, so H is solvable.

19. Show that a field of characteristic p 6= 0 contains a subfield isomorphic to
Zp.

Let F be a field of characteristic p 6= 0. Consider the set of elements
{sn = 1 + · · ·+ 1︸ ︷︷ ︸

n

|n = 0, 1, . . . , p − 1}. This set is closed under addition,

and as an additive subgroup is isomorphic to Zp. This set is also closed
under multiplication, since 12 = 1, so by applying the distributive law,
we get that snsm = snm, with the remainder modulo p being taken if
necessary. This multiplication agrees with the multiplication in Zp, so
this subset is a subfield isomorphic to Zp.

20. Show that for an extension field E of F , and an element α ∈ E, algebraic
over F , there is an irreducible polynomial p ∈ F [x] such that p(α) = 0,
and that this p is unique up to multiplication by a constant.

Evaluation at α is a homomorphism, so the set of polynomials of which α
is a zero is the kernel of this homomorphism, so is an ideal in F [x]. Since
α is algebraic over F , it is a non-zero ideal. All ideals in F [x] are principal,
so this set of polynomials is 〈f〉, for some f ∈ F [x]. We want to show that
this f is irreducible. Suppose we have that f = gh, then we must have
that α is a zero of g or α is a zero of h. W. l. o. g., suppose that α is a
zero of g. This means that g ∈ 〈f〉, or f divides g. Since g divides f , this
gives that g is a constant polynomial times f , so f is irreducible. Since all
polynomials of which α is a zero are divisible by f , the only irreducible
such polynomials are constant multiples of f .

21. Show that any finite extension field E of a field F is algebraic over F .

Let the dimension of E over F be n. Let α ∈ E, and consider the set
{1, α, . . . , αn}. Since this has n+ 1 elements, it can’t be linearly indepen-
dent, so there is some linear combination a0 +a1α+ · · ·+anα

n = 0, where
a0, . . . , an ∈ F . This means that α is a zero of a0 + a1x + · · · + anx

n in
F [x], so α is algebraic over F . Therefore, E is algebraic over F .
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22. (a) Show that if K is an algebraic extension of E, and E is an algebraic
extension of F , then K is an algebraic extension of F .

Let α ∈ K. Since K is algebraic over E, α is algebraic over E. Let
Irr(α,E) = β0 + β1x + · · · + βnx

n. Since E is algebraic over F , each βi
is algebraic over F , so F (β0, β1, . . . , βn) is a finite extension of F . Since
α is a zero of β0 + β1x + · · · + βnx

n, it is algebraic over F (β0, . . . , βn),
so F (β0, . . . , βn, α) is a finite extension of F , and therefore an algebraic
extension of F . Since α is in an algebraic extension of F , it is algebraic
over F . Every α ∈ K is algebraic over F , so K is algebraic over F .

(b) Deduce that if M is a maximal algebraic extension of F (i.e. M is
not a proper subfield of any other algebraic extension of F ) then M is
algebraically closed.

Let f ∈ M [x] be a non-constant polynomial. By Kronecker’s theorem,
there is an extension field N of M containing a zero α of f . Now M(α)
is an algebraic extension of M . Since M is algebraic over F , M(α) is
also algebraic over F . Since M is a maximal algebraic extension of F , it
cannot be properly contained in M(α), so we deduce that M(α) = M , or
equivalently, α ∈ M . This means that f has a zero in M . Since every
non-constant f has a zero in M , M is algebraically closed.

23. Show that it is not possible to construct a line segment of length 3
√

2,
starting from a line segment of length 1, and using only a straight-edge
and compass.

A single construction with a straight-edge and compass produces either
an element of the current field of constructed numbers, or in an extension
field of degree 2. Therefore, the field F generated by any finite set of
constructible numbers has degree 2n over Q, for some n. Any constructible
length α lies in a subfield Q(α), which must satisfy

2n = [F : Q] = [F : Q(α)][Q(α) : Q]

so [Q(α) : Q] must divide 2n, so it must be a power of 2. However,
[Q( 3
√

2) : Q] = 3 is not a power of 2, so 3
√

2 is not a constructible length.

24. Describe how to construct a finite field with pn elements for a prime p as
a subfield of Zp, and explain what steps are needed to show that this is
indeed a field with pn elements.

Let F be a finite field with pn elements. We know that since the multi-
plicative group of non-zero elements of F has order pn − 1, every element
of this group must have order dividing pn − 1, so it must be a zero of
xp

n−1 − 1. Therefore, every element of F is a zero of xp
n − x. Therefore,

F must be the subset of zeros in Zp of xp
n −x. We need to show that this

is a field with pn elements. We need to show that for two zeros α and β of
xp

n − x, −α, α+ β, αβ and if α 6= 0, α−1 are zeros of xp
n − x. These are

all easy, except for α + β, where we use the binomial expansion and the
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fact that Zp has characteristic p to show that (α + β)p = αp + βp, then
use induction on n. We also need to show that it has pn elements. We
know that, counting multiplicities, xp

n − x has pn zeros in Zp, so we just
need to show that it has no repeated zeros. This can be done using long
division — if α is a zero, then x − α is a factor, so we divide through by
x− α, and show that α is not a zero of the quotient.

25. State and prove the second isomorphism theorem.

Theorem 1 (Second isomorphism theorem). Let G be a group, let H be
a subgroup of G, and let N be a normal subgroup of G. Then H ∩N is a
normal subgroup of H, and we have an isomorphism

HN/N ∼= H/(H ∩N)

Proof. A coset of HN/N is represented by an element x of HN . We can
write x as hn for some h ∈ H and n ∈ N . The isomorphism we are
looking for is φ : HN/N //H/(H ∩ N) that sends the coset hnN to
the coset h(H ∩N). We need to show that this is a well-defined function,
i.e. that if hnN and h′n′N are the same coset of N , then h(H ∩ N)
and h′(H ∩ N) are the same coset of H ∩ N . If hnN and h′n′N are
the same coset of N , then we have that hnn′−1h′−1 ∈ N . Since N is
normal, and nn′−1 ∈ N , we have that nn′−1h′−1 = h′−1n′′ for some
n′′ ∈ N . This gives that hh′−1 ∈ N . We also know that hh′−1 ∈ H,
since both h and h′ are. This means that hh′−1 ∈ H ∩ N , so h(H ∩ N)
and h′(H ∩ N) are the same coset of H ∩ N . Thus φ is a well-defined
function. It is easy to check that it is a group homomorphism, since
φ(h1n1Nh2n2N) = φ(h1n1h2n2N) = φ(h1h2n3n2N), for some n3 ∈ N .
By definition, φ(h1h2n3n2N) = h1h2(H ∩N) = h1(H ∩N)h2(H ∩N) =
φ(h1n1N)φ(h2n2N). Finally, we need to check that φ is one-to-one and
onto. Suppose phi(hnN) = H∩N , then we have that h(H∩N) = (H∩N),
so h ∈ H ∩ N . This means that hn ∈ N , so hnN = N . Therefore,
ker(φ) = {N}, so φ is one-to-one. Consider a coset h(H∩N) in H/(H∩N).
We know that h = he ∈ HN , and we have φ(hN) = h(H ∩ N), so φ is
onto.

26. State and prove the third isomorphism theorem.

Theorem 2 (Third isomorphism theorem). Let G be a group, let N be a
normal subgroup of G, and let K be a subgroup of N that is normal in G.
Then we have an isomorphism

G/N ∼= (G/K)/(N/K)

Proof. We define the isomorphism φ : G/N // (G/K)/(N/K) by φ(xN) =
xK(N/K). We need to show that this is a well-defined function, a homo-
morphism, and one-to-one and onto. Suppose xN = yN , we need to show
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that xK(N/K) = yK(N/K), that is, we need to show that (xK)(yK)−1 ∈
N/K. We know that (xK)(yK)−1 = xy−1K, and since xN = yN , we
know that xy−1 = n ∈ N , so since n ∈ N , we have that nK ∈ N/K, and φ
is well-defined. We also know that φ(xNyN) = φ(xyN) = xyK(N/K) =
(xK)(yK)(N/K) = (xK(N/K))(yK(N/K)) = φ(xN)φ(yN), so φ is a
homomorphism. Finally, if φ(xN) = N/K, then xK(N/K) = N/K, so
xK ∈ N/K, so xK = nK for some n ∈ N , and therefore, xn−1 ∈ K ⊆ N .
This give that x ∈ N , so xN = N . Therefore, ker(φ) = {N}, so φ is
one-to-one. Finally, let xK(N/K) ∈ (G/K)/(N/K), then we have that
φ(xN) = xK(N/K), so φ is onto.

New questions

27. Let E be an extension of F . Let α ∈ E be algebraic over F , and let β ∈ E
be transcendental over F . Must β be transcendental over F (α)? Give a
proof or a counterexample.

β must be transcendental over F (α). If it were algebraic, then [F (α, β) :
F (α)] would be finite, and since [F (α) : F ] is also finite, we would have
[F (α, β) : F ] = [F (α, β) : F (α)][F (α) : F ] is also finite, and since F (β) is
a subspace of F (α, β) over F , it would also be finite, making β algebraic
over F , contradicting the given condition.

28. Let E be algebraically closed. Let F be a subfield of E. Show that the
algebraic closure of F in E is algebraically closed.

Let K be the algebraic closure of F in E and let f ∈ K[x]. Since E is
algebraically closed, it contains a zero of f . Let α be a zero of f in E.
Then we have that K(α) is algebraic over K, and therefore, algebraic over
F . This implies that α is algebraic over F , but since K is the algebraic
closure of F in E, we must have α ∈ K. That is, any polynomial in K[x]
has a zero in K, i.e. K is algebraically closed.

29. Prove that the only irreducible polynomials in R[x] have degree at most
2. [You may assume the fundamental theorem of algebra — the complex
numbers are algebraically closed.]

Let f be an irreducible polynomial in R[x]. Since C is algebraically closed,
f factors into a product of linear polynomials in C[x]. By adjoining the
zeros of f to R, we get a subfield of C isomorphic to R[x]/〈f〉. Since
[C : R] = 2, we must have [R[x]/〈f〉 : R] 6 2, i.e. the degree of f is at
most 2.

30. Show that no finite field is algebraically closed.

Let F be an algebraically closed finite field. Suppose F has pn elements.
We know that F is isomorphic to the subfield of Zp consisting of the
zeros of xp

n − x. We also know that there is a field E with p2n elements,
consisting of all the zeros of xp

2n − x in Zp. Since pn − 1 divides p2n − 1,
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we have that xp
n−1 − 1 divides xp

2n−1 − 1, so xp
n − x divides xp

2n − x.
Therefore E is an extension of F , and since E is finite, it is a finite
extension of F , and therefore an algebraic extension. However, if F were
algebraically closed, the only algebraic extension would be F itself. This
is a contradiction, so F cannot be algebraically closed.

31. Show that for any n, and any prime p, there is an irreducible polynomial
of degree n in Zp.

We know there is a field of pn elements, and this field is an extension of
degree n of Zp. We also know that the multiplicative group of this field is
cyclic. Let α be a generator of this multiplicative group. We know that
Irr(α,Zp) is an irreducible polynomial of degree [Zp(α) : Zp] = n over Zp.

32. Show that any non-zero ring homomorphism between two fields is one-to-
one.

If φ : F //E is a non-zero ring homomorphism between two fields, then
we know that the kernel of φ is an ideal of F . Since F is a field its only
ideals are the trivial ideal and the improper ideal. If the kernel of φ were
the improper ideal, φ would be the zero homomorphism, so the kernel of
φ must be the trivial ideal, which means that φ is one-to-one.

33. Show that any algebraic extension of R is either R, or else is isomorphic
to C. [Hint: the only irreducible polynomials in R are quadratic or linear.]

34. Show that the direct product of two solvable groups is solvable.

Let G and H be solvable groups. Let {e} 6 G1 6 · · · 6 Gn = G, and
{e} 6 H1 6 · · · 6 Hm = H be composition series for G and H. G × {e}
is a normal subgroup of G×H, and for two subgroups K and L of H, if
K is a normal subgroup of L, then G×K is a normal subgroup of G×L.
Therefore

{e} 6 G1 × {e} 6 · · · 6 G× {e} 6 G×H1 6 · · · 6 G×H

is a subnormal series for G × H. (In fact it is a composition series).
Furthermore, the quotient groups are all quotient groups from either the
composition series of G, or the composition series of H, so they are abelian
and simple, so this series is a composition series, and all the groups are
abelian. Therefore, G×H is solvable.

35. Show that the set of elements x satisfying xn = 0 for some n is an ideal
in any commutative ring R.

We need to show that this set is closed under addition, additive inverses,
and multiplication by arbitrary elements of R. If xn = 0 and ym = 0 in R,
then we have (−x)n = 0 and (x+y)n+m−1 = 0 by the binomial expansion
— each term is divisible by either xn or ym. Finally, if a is any element
of R, since R commutes, we have (ax)n = anxn = 0. Therefore the set of
elements x satisfying xn = 0 for some n is an ideal.
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36. Let R be a commutative ring, and let a ∈ R. Show that the set {x ∈
R|ax = 0} is an ideal in R.

We need to show that this set is closed under addition, additive inverses,
and multiplication by arbitrary elements of R. If ax = 0 and ay = 0, then
the distributive law gives a(x + y) = ax + ay = 0 + 0 = 0 and a(−x) =
−ax = 0. Finally, for any z ∈ R, we have a(xz) = (ax)z = 0z = 0, so the
set {x ∈ R|ax = 0} is an ideal in R.

37. Let α be a primitive root of unity in GF(pn). Show that deg(α,Zp) = n.

Since α is a primitive root of unity, we have that Zp(α) ∼= GF(pn), so we
have [Zp(α) : Zp] = n, but this is deg(α,Zp).
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