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Homework Sheet 14
Model Solutions

Basic Questions

. Which of the following pairs of numbers are conjugate over Q?

(a) V2 and V6.

These are not conjugate, since Irr(v/2.Q) = 22 — 2, while Trr(v/6.Q) =
x? — 6.

(b) 1++/2 and 1 — /2.

These are conjugate, since Irr(1 4+ v/2.Q) = 22 — 2z — 1 = Irr(1 — v/2.Q).
(c) V2 and /2.

These are not conjugate, since Irr(v/2.Q) = 22 — 2, while Irr(+v/2.Q) =
rt—2.

. In Q(v2 + V/3), compute UJ\/§+\/§,\/§_\/§(2 +v2 - 6).

We have that (ﬁJr \/§)3 = 11v/2 + 9v/3, so that %(\/iJr \/§)3 - %(\@+
V3 = V2, s0 that ¥ 5, 5 5 5(V2) = 3(V2—V3)? = 3(vV2 - V3 =
\ﬁ. This means that 1/)\/§+\/§m/§7\/§(\£) = 1/)\/§+\/§7\/§7\/§(\/§ + \/g) -
¢\/§+\/§,\/§7\/§(\/§) = —\/g This giVeS ’1#\/54»\/5)’\/57\/5(2"' \/i_ \/6) =
24 V2 (V2 x —VB) =24 V3 + 6.

. In Q(v2 +V/3), compute the fived field of {1/}\/5_“[,_\/5_\/5}.

We know that d)\/§+\/§’7\/§7\/§(\/§) = 7\/5 and 1/}\/§+\/§)7\/§7\/§(\/§) =
—v/3, and z/)\/@ﬂ/g’ﬂ/iﬂ/g(\/é) = /6, and we know that Q(+/6) is fixed,
but /3 is not. Since there are no extensions between Q(v/6) and Q(v/2 +
V/3), the fixed field must be Q(+/6).

. Let a be a zero of 2° + 2® + z + 3 in GF(125).

(a) Compute the Frobenius automorphism os(«). [Express os(a) in the
basis {1, a, a?}.]

Since « is a zero of 23 + 22 + 2 + 3, we have that a® = —a? —a — 3 =
402 + 4o + 2. We know that o5(a) = o® = a?(4a? + 4a + 2) = 4a* +
403 + 202 = 4a(4a? + 4a + 2) 4 4a® 4 2a% = 3a? + 3a.

(b) Describe the fized field of {o5} in terms of this basis.

From part (a), we deduce o5(a?) = (3a? + 3a)? = 4a* + 303 + 4a? =
4(40+402+2a)+3a3+4a? = 403 +3a = 4(4a’ +4a+2)+3a = a?+4a+3.
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From this it is easy to see that no non-trivial linear combination of a and
a? is fixed, so the fixed field is just Zs.

. Let w = _H'T‘/gl (so that w® = 1.) Consider the isomorphism V5,3
from Q (\3@) to Q (\?/iw) Compute all ways to extend this isomorphism
to an isomorphism mapping Q(\Sﬁ,wxs'/ﬁ) to a subfield of Q.

We have that Irr(V/2,Q) = 2 — 2. The zeros of this polynomial are
V2, wi/2 and w?¥/2. Any isomorphism from Q(4/2,w+/2) to a subfield
of Q must send zeros of this polynomial to zeros of this polynomial. An
extension o of V5,3 18 entirely determined by its value on w+/2 (or

equivalently by its value on w). This must be either V2 or w22 (corre-
sponding to o(w) = w? and o(w) = w respectively). It is straightforward
to check that these both lead to automorphisms of Q(v/2,w+/2).

Theoretical Questions

. Let F(a,...,ay) be an extension field of F'. Show that any automorphism
o of F(aa,...,an,) leaving F fized is completely determined by the values
o(a;).

Let 01 and o9 be two automorphisms that leave F' fixed, such that for
each i, o1(a;) = o2(a;). We need to show that o1 = 09. Let S = {x €
F(ag,...,an)|o1(x) = o2(x)}. We need to show that S = F(aq,...,an).
We know that S contains F,aq,...,q,, so we just need to show that S
is a subfield. Since o7 and o9 are homomorphisms, S must be closed
under addition and multiplication. Furthermore, since —1 € F C S,
S is closed under additive inverse. We need to show that S is closed
under multiplicative inverses. Let o1(z) = o2(x). We need to show that
o1(x7!) = oa(x™!). However, we know that o1(x)o1(z7!) = o1(1) =
1 = 09(1) = oa(x)oa(x™) = o1(x)or(z~1). Therefore, multiplying by
(o1(x))~t (which exists because o is an isomorphism, so its kernel is
trivial, so o1(x) # 0) we get that o1(271) = oo(x~1). Therefore S is a
subfield of F(ay,...,a,) containing F and {aq, ..., a,}, so it must be the
whole of F(ay,...,an,).

. Let E be an extension field of F. Let S be a set of automorphisms of E
fixzing F. Let H be the subgroup of G(E/F) generated by S. Show that
Es = Eg.

Clearly S C H, so Fy C Eg. We need to show the converse inclusion
that if x € Eg, then z € Ey. Let G, = {0 € G(E/F)|o(z) = x}. We
know that S C G, for any = € Eg, so we just need to show that G, is a
subgroup of G(E/F). It is clear that the identity automorphism fixes z,
since it fixes every element of E. Suppose o(z) = x and 7(x) = z. Clearly
oY (z) =z, and (o7)(x) = o(r(z)) = o(x) = x, so we have that G, is a
subgroup of G(E/F). Since H is the subgroup generated by S, we have
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that H C G, for all x € E5. This is equivalent to saying x € Fy, so we
have Eg C Ey as required.

(a) Show that if F is an algebraically closed field, then any isomorphism o
of F to a subfield of F such that F is algebraic over o(F), is an automor-
phism of F. [Hint, since o(F) is isomorphic to F, it must be algebraically
closed.]

Since o(F) is isomorphic to F', it must be algebraically closed. [We can
extend o to an isomorphism o[z] : Flz] —— (o(F))[z], and it is straight-
forward to see that for any f € F[z], any o € F is a zero of f if and
only if () is a zero of o[z](f).] We have that F is algebraic over the
algebraically closed field o(F). This means that for any o € F, we have
Irr(a, 0(F)) € o(F)[z]. However, we know that all zeros of Irr(«, o(F))
are in o(F) (since o(F) is algebraically closed), so we must have « € o(F).
Thus we have F' C o(F'), so o is an automorphism of F'.

(b) Let E be an algebraic extension of F. Show that any isomorphism of
E onto a subfield of F that fixes F' can be extended to an automorphism
of F.

We know that any isomorphism of E onto a subfield of F that fixes F'
extends to an isomorphism 7 from F to a subfield of F. However, 7 fixes
F,so F C 7(F). Since F is algebraic over F), it is algebraic over 7(F).
Therefore, by part (a), 7 is an automorphism of F.

Let E be an algebraic extension of F'. Show that there is an isomorphism
of F' to E fixing all elements of F.

The inclusion from F to E is an isomorphism from F' to a subfield of F.
By the extension theorem, we can extend it to an isomorphism o from F
to a subfield of E. The image o(F) is algebraically closed, and contains F),
over which F is algebraic. Therefore, F is algebraic over the algebraically
closed field o(F). Therefore, o(F) = E, so ¢ is an isomorphism from F'
to E.

Let E be a finite extension of F. Show that {E : F} < [E : F|. [You may
assume the result for simple extensions.]

We know that any finite extension can be expressed as a tower of simple
extensions:



This gives

{EF} = {E:F(Oél,...,Oén_l)}{F(Oél,...,O[n_l),F(Oll,...,Oén_Q)}"'{F(Oél) . F}
<[E:F(at,...,an-1)][F(at,...,an-1), F(a,...,an—2)] - [F(a1) : F]
=[E:F]

Bonus Questions

. Show that if a and B are both transcendental over F, then there is an
isomorphism of F(«) and F(B) sending « to B.

We define the isomorphism in the obvious way — elements of F'(«) are of
the form % for f,g € Flx], with no common divisor, such that ¢ is monic

(coefficient of the largest power of x is 1). We define o : F(«) £, (8)

by o (%) = %. We need to show that this is an isomorphism. It

is straightforward to see that it is a homomorphism (assuming it is well-
defined), so we just need to show that it is well-defined, that its kernel is
zero, and that it is onto. To show that it is well-defined, we need to show
that we can’t represent the same element of F'(«) in more than one way
subject to the condition that g is monic, and f and g have no non-trivial
common divisor. Suppose we have % = % Multiplying through gives
fla)k(a) — g(a)h(a) = 0. Since « is transcendental over F, this means
that fk — gh is the zero polynomial, i.e. fk = gh. Now since f and g
have no common factor, this means we must have that g is a divisor of
k, and similarly, h is a divisor of f. Furthermore, since g and k are both

monic, this must give g = k and f = h. We also need to show that %

is an expression of the required form in F(j3), i.e. that f and g have no
non-trivial common factor, and g is monic, but this is true. Next we need

to check that o is onto: given v = % € F(B), we see that v = o (%)
f(o)
g

is in the image of ¢, so ¢ is onto. Finally, if (o) is in the kernel of o, then
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we have % = 0, and therefore, f(f) = 0. Since S is transcendental over
F, this means that f is the zero polynomial, so that % = 0. Therefore,

o is an isomorphism between F'(«) and F(3).

Show that the only automorphism of R is the identity. [Hint: show that
any automorphism preserves positive numbers (since these are the squares
of real numbers) and therefore preserves the order on real numbers.]

Let o be an automorphism of R. Any non-negative real number x satisfies
x = y? for some y € R, so we must have o(x) = o(y)?. Therefore, o(x) is
also non-negative. Now for any = < y € R, we have y — x is non-negative,
so o(y) —o(z) is also non-negative. Therefore, o(z) < o(y). We also know
that ¢ must preserve the prime field Q. Now for any = € R, we consider
L={¢eQlg<z}and U = {¢ € Qz < q}. We know that o fixes all
elements of L and U. However, we also know that o(z) < o(u) = u for all
uw e U and [ =o(l) < o(x) for all I € L. The only possible value of o(x)
satisfying these constraints is x, so o is the identity automorphism.



