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Basic Questions

1. Let f be an irreducible quartic (degree 4) polynomial over a perfect field
F . Let K be a splitting field for f over F . Let the zeros of f in K be α,
β, γ and δ.

(a) What is the orbit of αβ + γδ under G(K/F )?

G(K/F ) induces permutations on {α, β, γ, δ}. Under the symmetric group
on this set, the orbit of αβ + γδ is {αβ + γδ, αγ + βδ, αδ + βγ}.
(b) [bonus] If f(x) = x4 + ax3 + bx2 + cx+ d, what is Irr(αβ + γδ, F )?

Since F is perfect, Irr(θ, F ) is the product Πθ′(x − θ′) over all conjugate
θ′ of θ. In this case, this product is:

(x− (αβ + γδ))(x− (αγ + βδ))(x− (αδ + βγ))

= x3 − (αβ + γδ + αγ + βδ + αδ + βγ)x2

+((αβ + γδ)(αγ + βδ) + (αβ + γδ)(αδ + βγ) + (αγ + βδ)(αδ + βγ))x

−(αβ + γδ)(αγ + βδ)(αδ + βγ)

We need to evaluate the coefficients in terms of the elementary symmetric
functions of α, β, γ and δ. The first is easy — (αβ+γδ+αγ+βδ+αδ+βγ)
is a elementary symmetric funtion — it is the coefficient b in the original
polynomial.

The other products are calculated as

((αβ + γδ)(αγ + βδ) + (αβ + γδ)(αδ + βγ) + (αγ + βδ)(αδ + βγ))

= (α+ β + γ + δ)(αβγ + αβδ + αγδ + βγδ)− 4αβγδ

= ac− 4d

(αβ + γδ)(αγ + βδ)(αδ + βγ)

= αβγδ(α2 + β2 + γ2 + δ2) + (α2β2γ2 + α2β2δ2 + α2γ2δ2 + β2γ2δ2)

= d(a2 − 2b) + c2 − 2db
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This gives that Irr(αβ+γδ, F ) = x3− bx2 + (ac−4d)x− (d(a2−4b) + c2).

2. Write 1
a2 + 1

b2 + 1
c2 as a rational function in the elementary symmetric

functions a+ b+ c, ab+ ac+ bc and abc.

We see that 1
a2 + 1

b2 + 1
c2 = a2b2+b2c2+a2c2

(abc)2 , so we just need to express

a2b2 + b2c2 + a2c2 as a function of these elementary symmetric functions.
We start by trying (ab+ bc+ac)2. This gives a2b2 + b2c2 +a2c2 +2(ab2c+
a2bc+ abc2) = a2b2 + b2c2 + a2c2 + 2abc(a+ b+ c), so we deduce that

1

a2
+

1

b2
+

1

c2
=

(ab+ bc+ ac)2 − 2abc(a+ b+ c)

(abc)2

3. What is the order of G(GF (64)/GF (4))?

We know that GF(4) is perfect, so GF(64) is a separable extension, and a
splitting field. Therefore, we know that |G(GF (64)/GF (4))| = [GF (64) :
GF (4)] = 3.

4. How many extension fields of Q are contained in the field Q( 4
√

3, i)?

Q( 4
√

3, i) is the splitting field of x4 − 3, so it is a normal extension of Q.
The zeros of x4 − 3 are { 4

√
3,− 4
√

3, i 4
√

3,−i 4
√

3}. The automorphisms σ of
Q( 4
√

3, i) are entirely determined by σ( 4
√

3) and σ(i). There are 4 possi-
bilities for σ( 4

√
3 and 2 possibilities for σ(i), so there are 8 automorphisms

in total. This means that G(Q( 4
√

3, i)/Q) is isomorphic to the dihedral
group D4. The subgroup lattice of D4 looks like:

D4

vvvvvvvvv

HHHHHHHHH

Z2 × Z2

vvvvvvvvv

HHHHHHHHH Z4 Z2 × Z2

vvvvvvvvv

HHHHHHHHH

Z2

TTTTTTTTTTTTTTTTTTTT Z2

IIIIIIIIII Z2 Z2

uuuuuuuuuu
Z2

jjjjjjjjjjjjjjjjjjjj

e

The extension fields of Q contained in Q( 4
√

3, i) correspond to the sub-
groups of D4, so there are 10 in total (including Q and Q( 4

√
3, i)).

[The extension fields are: Q,Q(
√

3),Q(i),Q(
√

3i),Q(
√

3, i),Q( 4
√

3),Q( 4
√

3(1−
i)),Q( 4

√
3(1 + i)),Q( 4

√
3i) and Q( 4

√
3, i).]

Theoretical Questions

5. Let E be a finite normal extension of F . Let α ∈ E. Define the norm of
α over F by:
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NE/F (α) = Πσ∈G(E/F )σ(α)

and the trace of α over F by:

TrE/F (α) =
∑

σ∈G(E/F )

σ(α)

Show that NE/F (α) and TrE/F (α) are elements of F .

Let τ ∈ G(E/F ), and consider τ(NE/F (α)) = Πσ∈G(E/F )τσ(α). Since
left multiplication by τ gives a permutation on G(E/F ), we see that
τ(NE/F (α)) = NE/F (α), that is, NE/F (α) is in the fixed field of G(E/F ),
which by the Galois correspondence is F . Therefore, we have shown that
NE/F (α) ∈ F .

Similarly, for and τ ∈ G(E/F ), τ(TrE/F (α)) =
∑
σ∈G(E/F ) τσ(α) =

TrE/F (α), so TrE/F (α) is in the fixed field of G(E/F ), so it is in F .

6. Let D and E be two extension fields of F . Let K be an extension field of
F containing both D and E. The join D ∨ E of D and E is the smallest
subfield of K that contains both D and E as subfields — see the following
diagram:

K

D ∨ E

xx
xx

xx
xx

x

FF
FF

FF
FF

F

D

GG
GG

GG
GG

G E

xx
xx

xx
xx

x

F

Describe G(K/(D ∨ E)) in terms of G(K/D) and G(K/E).

G(K/D ∨ E) = G(K/D) ∩ G(K/E). To see this, we see that any σ ∈
G(K/D)∩G(K/E) must fix D and E, and since the set of fixed elements
is a field, it must fix the smallest subfield containing both D and E, which
is D ∨ E. This shows that G(K/D) ∩ G(K/E) ⊆ G(K/D ∨ E). On the
other hand, if σ ∈ G(K/(D∨E)), then it fixes D∨E, so it fixes all subfields
of D ∨E, which includes D and E. Therefore, we have σ ∈ G(K/D) and
σ ∈ G(K/E), so we have shown G(K/D ∨ E) ⊆ G(K/D) ∩G(K/E).

7. Let f be an irreducible monic polynomial over a field F , and let K be a
splitting field for f over F . Let the zeros of f in K be α1, . . . , αn. Let
∆(f) = Πi<j(αi − αj). Show that (∆(f))2 ∈ F .
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Consider the set S of automorphisms in G(K/F ) that leave (∆(f))2 fixed.
For any σ ∈ G(K/F ), we know that σ induces a permutation on the
αi, but (∆(f))2 is a symmetric function in the αi, so it is fixed by any
permutation of the αi. Therefore, (∆(f))2 is in the fixed field of G(K/F ),
which is F .
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