
MATH 3030, Abstract Algebra
FALL 2012
Toby Kenney

Homework Sheet 3
Due: Wednesday 10th October: 3:30 PM

Basic Questions

1. (a) Calculate the product

(
1 2 3 4 5
2 3 5 1 4

)(
1 2 3 4 5
3 2 5 4 1

)
.(

1 2 3 4 5
5 3 4 1 2

)

(b) Calculate the inverse of

(
1 2 3 4 5
4 3 1 2 5

)
.(

1 2 3 4 5
3 4 2 1 5

)

2. Write

(
1 2 3 4 5 6 7 8 9
2 3 7 9 5 8 1 4 6

)
as a product of disjoint cycles.

(1, 2, 3, 7)(4, 9, 6, 8)

3. How many permutations σ ∈ S6 satisfy σ2 = e?

An element σ ∈ S6 satisfies σ2 = e if and only if σ is a product of disjoint
2-cycles. There is one permutation which is a product of 0 2-cycles (the
identity). There are

(
6
2

)
= 15 permutations which are a product of 1

2-cycle. There are 1
2

(
6

2,2,2

)
= 45 permutations which are a product of 2

2-cycle, and there are 1
3!

(
6

2,2,2

)
= 15 permutations which are a product of

3 disjoint 2-cycles. That is a total of 76 permutations.

4. Recall that the order of an element x is the smallest power n > 1 such that
xn = e.

(a) What is the order of (125)(34)?

6. The powers are: (125)(34), (152), (34), (125) and (152)(34).

(b) What is the order of (1467)(35)?

4. The powers are (1467)(35), (16)(47) and (1764)(35).

5. What is the largest order of an element of S9?

The order of an element which is a product of disjoint cycles of lengths
i1, i2, . . . , in is the least common multiple of i1, i2, . . . , in. We are therefore
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looking for a combination of numbers whose sum is 9, with the largest least
common multiple. If we have 3 numbers that sum to 9, one must be a
multiple of another, so we do better to choose 2 numbers. The best we can
do is 4 and 5, making an element of order 20. For example (1234)(56789).

Standard Questions

6. A permutation group H 6 SA on a set A is transitive if for any two
elements a, b ∈ A, there is a permutation σ ∈ H such that σ(a) = b. Show
that a transitive permutation group must have at least |A| elements.

By fixing a, and letting b vary over the elements of A, we see that for each
of the |A| choices for b, there is a permutation σb ∈ H, with σb(a) = b.
These σb must all be distinct, so there must be at least |A| elements in H.

[The example of the subgroup generated by a cyclic permutation on A
shows that |A| elements is a possibility.]

7. Let B ⊆ A, where A is finite. Show that the set of permutations of A that
fix B, i.e. the set {σ ∈ SA|(∀b ∈ B)(σ(b) ∈ B)} is a subgroup of SA.

Let σ and τ be two permutations that fix B. We need to show that στ and
σ−1 fix B. For b ∈ B, we have that τ(b) ∈ B, so that σ(τ(b)) ∈ B, so that
στ fixes B. Because σ is a bijection, we must have that {σ(b)|b ∈ B} = B.
Now for b ∈ B, we must have that b = σ(x) for some x ∈ B. Therefore
σ−1(b) = x ∈ B.

8. (a) Show that Sn is generated by the transpositions (1, 2), (2, 3), . . . , (n −
1, n).

We know that the set of all transpositions generates Sn, so it is sufficient
to show that any transposition is a product of adjacent transpositions.
Consider the transpositon (i, j) where i < j. We can express it as the
product

(i, i+1)(i+1, i+2) · · · (j−2, j−1)(j−1, j)(j−2, j−1) · · · (i+1, i+2)(i, i+1)

(b) Show that for n > 2, Sn is generated by just the two elements (1, 2)
and (1, 2, 3, . . . , n).

By part (a), it is sufficient to express the transpositions of the form
(i, i + 1) as products of (1, 2) and (1, 2, 3, . . . , n). However, we see that
(1, 2, 3, . . . , n)i(1, 2)(1, 2, 3, . . . , n)−i = (i+ 1, i+ 2), so we can express all
such transpositions.

9. Show that any subgroup of Sn which is cyclic and transitive must have
order n.

Let < σ > be a cyclic transitive subgroup of Sn. Since σ is transitive, for
any i ∈ {1, . . . , n}, we have that the orbit of i under x contains the whole

2



of {1, . . . , n}. That is, x must consist of a single cycle. It must therefore
have order n.

10. Show that the set of 3-cycles generates the alternating group An.

We need to show that any even permutation is a product of 3-cycles. An
even permutation is one which has an even number of cycles of even length.
We therefore need to show that any cycle of odd length is a product of
3-cycles, and that any product of two disjoint cycles of even length is a
product of 3-cycles.

For cycles of odd length, we consider the example (1, 2, . . . , 2k + 1). All
other cycles are conjugate to this example, so it is sufficient to express
this cycle as a product of 3-cycles. We proceed by induction on k. k = 1
is a 3-cycle. Now for k > 1, we have (1, 2, . . . , 2k + 1) = (1, 2k, 2k +
1)(1, 2, . . . , 2k − 1), so by induction, we can express (1, 2, . . . , 2k + 1) as a
product of 3-cycles.

For the product of two disjoint cycles of even length, it is sufficient to
prove the case of two disjoint transpositions, since we already know that
each of the disjoint cycles can be expressed as a product of an odd number
of transpositions, so we can choose representations of each cycle as prod-
ucts of transpositions; we can extend the shorter product by a collection
of inverse pairs (this is possible, since both products have odd length);
this gives the pair of disjoint cycles as a product of pairs of disjoint trans-
positions.

Now we have that (1, 2)(3, 4) = (1, 4, 3)(1, 2, 3), and by conjugation, we
can express any product of two disjoint transpositions as a product of
3-cycles.

11. Show that permutations σ and τ are conjugate in Sn [that is, there is a
permutation θ such that τ = θσθ−1] if and only if they have the same cycle
type (that is, they have the same number of cycles, and the corresponding
cycles have the same size).

Let τ = θσθ−1. For any element x we have that τ(θ(x)) = θ(σ(θ−1(θ(x)))) =
θ(σ(x)). Similarly, we get that tauk(θ(x)) = θ(σk(x)) for any k. There-
fore, the orbits of τ are just the images of the orbits of σ. Thus σ and τ
must have the same cycle type.

Conversely, suppose that σ and τ have the same cycle type. We want
to construct θ such that τ = θσθ−1. We form a bijection between the
cycles of σ and the cycles of τ , such that each cycle is paired with one of
the same length. Now we pick one element from each cycle of σ and one
element from each cycle of τ . Now we want to construct a permutation θ
such that τ = θσθ−1. Let x1, x2, . . . , xk be a cycle of σ and y1, y2, . . . , yk
be the corresponding cycle of τ . Now if we define θ(xi) = yi, then we have
that θσθ−1(yi) = θσ(xi) = θ(xi+1) = yi+1 = τ(yi), so that τ and θσθ−1

agree on the elements of the cycle y1, y2, . . . , yk. Defining θ in a similar
way for all cycles, we get that τ and σ are conjugate.
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Bonus Questions

12. If G is a permutation group on a set X, and x ∈ X, the stabiliser of x is
the set of elements of G which fix x. That is σG(x) = {g ∈ G|g(x) = x}.
Show that |G| = |OG(x)||σG(x)| where OG(x) is the orbit of x under G.

For each element y in OG(x), we can choose an element gy ∈ G such that
gy(x) = y. Now for any h ∈ G such that h(x) = y, we have gy

−1h(x) =
gy

−1(y) = x, so that gy
−1h ∈ σG(x). That is, the sets {g ∈ G|g(x) = y}

are all in bijection with σG(x), and G is partitioned into |OG(x)| such
sets, so we get |G| = |OG(x)||σG(x)|. [The sets {g ∈ G|g(x) = y} are the
cosets of the subgroup σG(x). This is therefore a special case of Lagrange’s
theorem.]
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