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Basic Questions

. Factorise f(z) = z* + 32 + 22% + 92 — 3:
(a) over Zs.

Over Z3, we see that f(0) = 0, f(1) =0, f(2) = 0, so we see that f(z)
factorises as f(x) = 22(x — 1)(z — 2).

(b) over Zg.

Over Zg, we see that f(0) =3, f(1) =0, f(2) =3, f(3) =0, f(4) =3,
and f(5) = 0, so we deduce that f(z) = (x — 1)(x — 5)(z — 3)2.

(c) over Z.

Suppose that we can factor f over Z. Then we must have the product of
the constant terms in the factors equal to —3. Therefore, when we consider
the factors in Zg, only one of them can have constant term divisible by 3.
Therefore, the only possible factorisations in Zg must have both (z — 3)
terms in the same factor. If we had a linear factor, it would need to be z=£1,
but these are not factors, since f(1) = 12 and f(—1) = —12. Therefore,
if f factors over Z, then it must be as a product of two quadratics, one
of which is congruent to (z — 3)2, and the other of which is congruent to
(x—1)(x—5), modulo 6. That is, one factor must be 22 — 1+ 6az, and the
other factor must be 2 + 3 + 6bx. Now by multiplying these factors, we
get 24+ 323+ 2224+ 92— 3 = 2* +6(a+b)z> + (2+36ab)r2 +6(3a — b)x — 3.
This gives (a + b) = % = %, which is not possible, so f is irreducible over
Z.

. Show that f(z) = z* + 23+ 2% +2+1 is irreducible over Z. [Hint: consider
x =y+ 1 and use Eisenstein’s criterion.]

If we substitute = y+1, then we see that f(z) = (y+1)*+(y+1)3+(y+
)2+ (y+1)+1=y*+5y>+10y> + 10y +5 = g(y), which is an irreducible
polynomial in y by Eisenstein’s criterion. However, if f(x) were reducible,
then the same substitution = y+ 1 would provide a factorisation of g(y),
which is impossible.

Alternatively: observe that (z — 1)f(z) = 2° — 1, so g(y) = % =
y* 4532 +10y? + 10y + 5. [This method allows the result to be generalised
to any other prime instead of 5.]



3. Find all solutions to the equation x> +2x —3 =0 in Za;.

We can factor f(z) = 2% + 2z — 3 as f(z) = (x — 1)(x + 3). We therefore
want to solve (z — 1)(z +3) = 0 in Zg;. There are the obvious solutions
z =1 and z = —3 = 18, but we also have the non-trivial zero products,
where one factor is divisible by 3 and the other is divisible by 7. We
consider the four cases:

r+3="T x=4,r—1=3 is divisible by 3, so this is a solution.

r—1=7: x =28, x+3 = 11 is not divisible by 3, so this is not a solution.

x—1=14: x =15, x + 3 = 18 is divisible by 3, so this is a solution.

r+3=14: z = 11,  — 1 = 10 is not divisible by 3, so this is not a
solution.

Therefore, the solutions are x =1, z = 4, x = 15 and = = 18.

4. Find all prime numbers p such that t—4 is a factor of x* —2x34+322 +2—2
in Zylx).
x —4 is a factor of f(x) if and only if f(4) = 0, so we need to find all
primes p such that f(4) =4 —2x43+3x42+4-2=178 =0 (mod p).
That is, we need all prime factors of 178, which are 2 and 89.

5. Find a generator for the multiplicative group of non-zero elements of Z1g.

We know that there are 18 non-zero elements in Z1g, so we are looking for
an element of order 18 in this group. The prime factors of 18 are 2 and 3
(repeated twice), so a non-zero element of Z;9 generates the multiplicative
group of non-zero elements if and only if it does not occur as a square or
a cube. We calculate the following in Zig:

L
1 1 1
214 8
319 8
4 116 7
5 | 6 11
6 |17 7
711 1
8 | 7 18
9|15 7
10 5 12
117 1
12 | 11 18
13 | 17 12
14|16 8
15116 12
6] 9 11
171 4 11
181 1 18



So the generators are 2, 3, 10, 13, 14, and 15.

. Show that f(x) = 2% + 3x + 2 does not factorise uniquely over Zg.

In Zg, we have (x+1)(z+2) = f(z) = (x +4)(z +5), so the factorisation
is not unique.

. Show that f(x) = x> + 42% + 1 is irreducible in Z7. [Hint: if it is not
irreducible then it must have a linear factor.]
Since f(z) is cubic, then if it is not irreducible, then one of the factors

must be linear. But by the factor theorem, f(z) must have a zero in Z;.
However, we have:
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So we see that f has no zeros, and is therefore irreducible.

Standard Questions

. Show that if D is an integral domain, then so is D[z].

We already know that D[z] is a commutative ring, and the constant unity
function is the unit element, so we just need to show that D[z] has no zero
divisors. Suppose we have f(x)g(z) = 0 in D[z], then let f(x) = a1z™ +
agx" 4t ay 17+ an, and g(x) = bia™ +box™ -+ by 1T+ by
Now let a; and b; be the last non-zero coefficients. That is a; # 0, but
ar = 0 for all k£ > ¢, and b; # 0, but b, = 0 for all £ > j. Now since
f(x)g(z) = 0, we must have that the coefficient of z"T™+27=J ig zero.
However, this coeflicient is a;b;, so a; and b; must be zero-divisors in D,
contradicting the assumption that D is an integral domain.

. Let R be a ring. (a) Show that the ring of functions from R to R is a ring
with pointwise addition and multiplication. That is:



10.

We need to check the axioms. These all follow from the corresponding
axioms for R. For example, 0 is the constantly 0 function. (—f)(x) =
—(f(z)). The axioms are all straightforward to check — for example, we
check associativity and commutativity of + and distributivity of multipli-
cation over addition:

e Commutativity:

(f+9)(x) = f(2)+g(z) =g(z)+ f(x) = (g+ f

o Associativity: ((f+g)+h)(x) = (f+g)(z)+h(z) = (f(z)+g(x

h(z)) = f(z) + (9(x) + h(z)) = f(z) + (g + h)(z) = (f + (9 + D)

e Distributivity: (f(g+h))(z) = f(z)(g+h)(x) = f(z)(g9(x)+ h(z)
f(@)g(z) + f(x)h(z) = fg(x) + fh(z) = (fg + fh)(x)

(b) Show that the set of all functions describable by polynomials gives a
subring of the ring of all functions.

We need to show that the functions describable by polynomials are closed
under addition, multiplication and additive inverse, and include the con-
stantly 0 function.

The constantly 0 function is describable by the 0 polynomial. The sum
f + g is describable by the sum of polynomials describing f and g; the
additive inverse of f is describable by the additive inverse of a polynomial
describing f, and the product is describable by the product of polynomials
describing f and g.

(c) Show that this ring is not always isomorphic to the polynomial ring
R[z]. [Hint: let R be a finite field Z,, for some prime p.]

If R is a finite field with n elements, then the number of functions from
R to R is finite with n™ elements, while the number of elements in the
polynomial ring R[z] is infinite, so the two rings cannot be isomorphic.

Show that the remainder when a polynomial f(x) € F[x] is divided by v —a
is f(a).

Consider g(z) = f(z) — f(a). Clearly, g(a) = 0, so z — a is a factor of
g(z). Let g(z) = (x — a)h(z). Now we have f(x) = (x — a)h(z) + f(a) as
required.

Bonus Questions



