## ACSC/STAT 3703, Actuarial Models I (Further Probability with Applications to Actuarial Science) WINTER 2015 Toby Kenney

Sample Midterm Examination

This Sample examination has more questions than the actual midterm, in order to cover a wider range of questions. Estimated times are provided after each question to help your preparation.

1. The random variable X has density function given by

$$f(x) = \frac{15}{4}x(1-x)^2(2-x), 0 \le x \le 2$$

(a) calculate the hazard rate of X. [10 mins]

(b) Calculate the kurtosis of X [10 mins]

- 2. Losses follow a Pareto distribution with  $\alpha = 3$ . How large can  $\theta$  be if the insurance company wants to limit its Value at Risk at the 95% level to \$15,000? [10 mins]
- 3. Calculate the moment generating function of a sum of 5 independent beta random variables with parameters 3 and 2. [10 mins]
- 4. Which distribution has a heavier tail: a gamma distribution with  $\alpha = 4$  and  $\theta = 400$ , or a Weibull distribution with  $\tau = 4$  and  $\theta = 400$ ? [Use any reasonable method for comparing tail-weight.] [5 mins.]
- 5. Recall that desirable coherence properties for measures of risk are:
  - Subadditivity
  - Monotonicity
  - Positive homogeneity
  - Translation invariance

Which properties are satisfied by the risk measure given by the measure  $r(X) = \mu + \pi_{0.9}$  (the mean plus the 90th percentile)? [15 mins]

- 6. Calculate the TVaR of a gamma distribution with  $\alpha = 3$  and  $\theta = 2000$  at the 0.99 level. [The VaR at the 0.99 level is 16,811.894] [15 mins]
- 7. Claims follow a Pareto distribution with  $\alpha = 4$ . There is a policy limit which is currently exceeded by 0.16% of claims. (That is  $l = \pi_{0.9984.}$ ) There is uniform inflation of 8% per year on claim amounts. What proportion of claims will exceed the policy limit in 4 years time? That is, what percentile is l in 4 years' time? [The policy limit does not change in these 4 years.] [10 mins]

- 8. An insurance company deals with three types of claim:
  - 10% of claims are for fire damage. These claims follow a Pareto distribution with  $\alpha = 3$  and  $\theta = 300,000$ .
  - 60% of claims are for weather damage. These claims follow a Weibull distribution with  $\tau = \frac{1}{3}$  and  $\theta = 10,800$ .
  - The remaining 30% of claims are for break-ins. These claims follow a Weibull distribution with  $\tau = 3$  and  $\theta = 1000$ .

Calculate the probability that a randomly chosen claim exceeds \$400,000. [15 mins]

9. You observe the following sample of insurance losses:

 $1.6 \ 3.6 \ 3.8 \ 4.2 \ 5.6$ 

Using a Kernel density model with Gaussian (normal) kernel with standard deviation 1.2, estimate the probability that a loss exceeds 5.5. [10 mins]

10. You observe the following sample of insurance losses:

 $1.6 \ 3.6 \ 3.8 \ 4.2 \ 5.6$ 

Using a Kernel density model with triangular kernel with bandwidth 2, estimate the probability that a loss exceeds 5.5. A triangular kernel with bandwidth b centred at  $x_0$  is given by the density function

$$f(x) = \begin{cases} \frac{x+b-x_0}{b^2} & \text{if } x_0 - b < x < x_0\\ \frac{x_0+b-x}{b^2} & \text{if } x_0 < x < x_0 + b\\ 0 & \text{otherwise} \end{cases}$$

[10 mins]

- 11. An insurance company models its investment gains over a period of t years as  $e^X$  where X follows a gamma distribution with parameters  $\alpha = 2t$  and  $\theta = 0.05$ . Calculate the density function for its investment gains over a 4-year period. [10 mins]
- 12. Given  $\Theta = \theta$ , the lifetime of a computer follows an inverse exponential distribution with parameter  $\theta$ .  $\Theta$  follows a gamma distribution with  $\alpha = 2$ , and  $\theta = 3$ . What is the distribution of the lifetime of a randomly chosen computer? [10 mins]
- 13. The mortality rate of a man aged x is modelled as being  $\lambda e^{0.1x}$ , where  $\lambda$  follows a gamma distribution with  $\alpha = 3$  and  $\theta = 0.001$ . Calculate the probability of a man aged 40 surviving to age 90. [10 mins]
- 14. Recall that the limit of a transformed beta distribution as  $\tau \to \infty$ ,  $\theta \to 0$ and  $\theta \tau^{\frac{1}{\gamma}} \to \xi$  is an inverse gamma with  $\theta = \xi$  and  $\alpha = \alpha$ . What is the limit of an inverse Pareto distribution as  $\tau \to \infty$  and  $\theta \to 0$  with  $\tau \theta = \xi$ . [5 mins]

15. Let X have density function given by

$$f(x) = \left(\frac{\theta}{1+\theta}\right)^x \log\left(\frac{1+\theta}{\theta}\right)$$

for 0 < x.

(a) Show that the distribution of X is from the linear exponential family, and calculate the functions p(x),  $q(\theta)$ , and  $r(\theta)$ . [5 mins.]

- (b) Calculate the variance of X as a function of  $\theta$ . [5 mins.]
- 16. The number of claims experienced by an insurance company in a given year follows a Poisson distribution with mean 30. Of these claims, 10% are for fires and 15% are for floods. What is the probability that in a given year the company experiences exactly 2 claims for fires and at most 2 claims for floods? [10 mins]
- 17. For a driver with safety rating  $\Theta = \theta$ , the number of claims made in a year follows a Poisson distribution with parameter  $\theta$ . For a random driver,  $\Theta$  follows a gamma distribution with parameter  $\alpha = 4$  and  $\theta = 0.2$ . What is the probability that a randomly chosen driver makes no claims in a given year? [10 mins]
- 18. An insurance company models the number of claims received with a distribution from the (a, b, 1)-class. It calculates that the probability of receiving exactly 5 claims is 0.1; the probability of receiving exactly 6 claims is 0.04; the probability of receiving exactly 8 claims is 0.0027. What is the modified probability of receiving no claims? [15 mins]
- 19. An insurance company observes the following claim numbers on a group insurance policy:

| Number of Claims | Frequency |
|------------------|-----------|
| 0                | 12,345    |
| 1                | 4,521     |
| 2                | 874       |
| 3                | 130       |
| 4                | 17        |
| 5                | 2         |
| 6 or more        | 0         |

By calculating  $k_{p_{k-1}}^{p_k}$ , decide which distributions from the (a, b, 0)-class are most appropriate. [10 mins]

20. An insurance company models loss frequency for an individual as following a zero-modified logarithmic distribution with  $p_0 = 0.8$  and  $\beta = 3$ . What is the probability that this individual experiences at least 3 losses? [10 mins]

- 21. Losses follow a compond Poisson-Poisson distribution with parameters 2 and 4. Calculate the probability that there are more than 2 losses. [10 mins]
- 22. The number of claims on policies from one group with 200 members follows a compound Poisson-Geometric distribution with parameters  $\lambda = 3$ and  $\beta = 2$ . The number of claims on policies from another group with 250 members follows a compound Poisson-Poisson distribution with parameters 2 and 1. Next year, the first group is increasing to 400 members and the second group is increasing to 400 members. Calculate the probability that there are at least 3 claims next year. [15 mins]
- 23. The number of claims follows a mixture distribution. Given  $\Theta = \theta$ , the number of claims follows a negative binomial distribution with r = 4 and  $\beta = \frac{\theta}{4}$ .  $\Theta$  follows a Pareto distribution with  $\theta = 4$  and  $\alpha = 3$ . What is the probability that the number of claims is exactly 3? [10 mins]