ACSC/STAT 3703, Actuarial Models I

WINTER 2023
Toby Kenney
Homework Sheet 6
Due: Wednesday 22nd March: 11:30
Note: This homework assignment is only valid for WINTER 2023. If you find this homework in a different term, please contact me to find the correct homework sheet.

Basic Questions

1. Let X follow a negative binomial distribution with $r=5.2$ and $\beta=0.9$. What is the probability that $X=6$?
2. The number of claims on each insurance policy over a given time period is observed as follows:

Number of claims	Number of policies
0	398
1	363
2	228
3	118
4	40
5 or more	13

Which distribution(s) from the ($a, b, 0$)-class and ($a, b, 1$)-class appear most appropriate for modelling this data?
3. X follows an extended modified negative binomial distribution with $r=$ -0.5 and $\beta=1.2$, and $p_{0}=0.3$. What is $P(X=5)$?
4. Let X follow a mixed negative binomial distribution with $\beta=2.6$ and r following a gamma distribution with $\alpha=4$ and $\theta=3$. What is the probability that $X=2$?

Standard Questions

5. An insurance company finds that claim frequency for an individual has mean 0.23 and variance 0.48 . They consider modelling this using either a negative binomial distribution or a zero-inflated Poisson distribution. Which of these has a higher probability that the number of claims is 3 or more?
6. If the distribution of X is from the $(a, b, 1)$-class and $P(X=2)=0.04$ and $P(X=4)=0.09$, what is the largest possible value of $P(X=3)$?
7. (a) Substituting the recurrence $p_{n}=\left(a+\frac{b}{n}\right) p_{n-1}$ for $n \geqslant 2$ into the PGF $P(z)=\sum_{n=0}^{\infty} p_{n} z^{n}$ and its derivatives, write down a differential equation satisfied by $P(z)$.
(b) Show that the PGF of a distribution from the $(a, b, 1)$ class is

$$
P(z)=\frac{\left(1-p_{0}\right)\left(\frac{1-a z}{1-a}\right)^{-\frac{a+b}{a}}+p_{0}-(1-a)^{\frac{a+b}{a}}}{1-(1-a)^{\frac{a+b}{a}}}
$$

Bonus Question

8. Let X be a truncated Poisson distribution with $\lambda=2$. Is there a non-zero discrete random variable Y independent of X such that $X+Y-1$ is from the $(a, b, 1)$ family?
[Hint: Use the convolution formula to determine the probability mass function for $X+Y-1$, and apply the recurrence for the $(a, b, 1)$ class to get a recursive formula for $P(Y=n)$. You then just need to show that this recurrence gives a probability mass function.]
