ACSC/STAT 3703, Actuarial Models I

WINTER 2023
Toby Kenney
Homework Sheet 6
Model Solutions

Basic Questions

1. Let X follow a negative binomial distribution with $r=5.2$ and $\beta=0.9$. What is the probability that $X=6$?

The probability is

$$
P(X=6)=\binom{4.2+6}{6} \frac{1}{1.9^{5.2}}\left(\frac{0.9}{1.9}\right)^{6}=0.0995432029236
$$

2. The number of claims on each insurance policy over a given time period is observed as follows:

Number of claims	Number of policies
0	398
1	363
2	228
3	118
4	40
5 or more	13

Which distribution(s) from the ($a, b, 0$)-class and ($a, b, 1$)-class appear most appropriate for modelling this data?

We estimate

n	$\frac{p_{n}}{p_{n}-1}$
1	$\frac{363}{382}=0.912060301508$
2	$\frac{228}{333}=0.628099173554$
3	$\frac{102}{228}=0.447368421053$
4	$\frac{40}{102}=0.392156862745$

We can plot a graph of $n \frac{p_{n}}{p_{n-1}}$ against n. For a distribution from the $(a, b, 0)$ class, this should be linear with slope a and intercept b. For a distribution from the $(a, b, 1)$ class, all points for $n \neq 1$ should be linear.

On this graph, the slope is positive, so $a>0$. The points appear to all be approximately linear, so there is not strong evidence for zero modification. This suggests a negative binomial distribution.
3. X follows an extended modified negative binomial distribution with $r=$ -0.5 and $\beta=1.2$, and $p_{0}=0.3$. What is $P(X=5)$?

For the truncated ETNB with $r=-0.5$ and $\beta=1.2$, we have $p_{1}=$ $\frac{r \beta}{(1+\beta)\left((1+\beta)^{r}-1\right)}=\frac{-0.6}{2.2\left(2.2^{-0.5}-1\right)}=0.837099931231$ We also have $a=\frac{\beta}{1+\beta}=$ $\frac{1.2}{2.2}=0.545454545454545$ and $b=(r-1) a=-1.5 \times 0.545454545454545=$ -0.8181818181818181818181818 . This gives us

$$
\begin{aligned}
& p_{2}=\left(\frac{6}{11}-\frac{9}{22}\right) p_{1}=0.114149990622 \\
& p_{3}=\left(\frac{6}{11}-\frac{3}{11}\right) p_{2}=0.0311318156242 \\
& p_{4}=\left(\frac{6}{11}-\frac{9}{44}\right) p_{2}=0.0106131189628 \\
& p_{5}=\left(\frac{6}{11}-\frac{9}{55}\right) p_{2}=0.0040522817858
\end{aligned}
$$

Now for the distribution with $p_{0}=0.3$, we have $P(X=5)=0.0040522817858 \times$ $0.7=0.00283659725006$.
4. Let X follow a mixed negative binomial distribution with $\beta=2.6$ and r following a gamma distribution with $\alpha=4$ and $\theta=3$. What is the probability that $X=2$?

For a given value of r, this probability is

$$
\binom{r+1}{2}\left(\frac{2.6}{3.6}\right)^{2}\left(\frac{1}{3.6}\right)^{r}=0.260802469136 r(r+1)(3.6)^{-r}
$$

The density of the gamma distribution is $f(r)=\frac{r^{3} e^{-\frac{r}{3}}}{81 \times 6}$. Thus the marginal probability that $X=2$ is

$$
\begin{aligned}
P(X=2)= & \int_{0}^{\infty} \frac{r^{3} e^{-\frac{r}{3}}}{81 \times 6} 0.260802469136 r(r+1)(3.6)^{-r} \\
= & 0.260802469136 \int_{0}^{\infty} \frac{\left(r^{5}+r^{4}\right) e^{-r\left(\frac{1}{3}+\log (3.6)\right)}}{81 \times 6} d r \\
= & 0.260802469136\left(\frac{20}{81\left(\frac{1}{3}+\log (3.6)\right)^{6}} \int_{0}^{\infty}\left(\frac{1}{3}+\log (3.6)\right)^{6} \frac{r^{5} e^{-r\left(\frac{1}{3}+\log (3.6)\right)}}{120} d r\right. \\
& \left.\quad+\frac{4}{81\left(\frac{1}{3}+\log (3.6)\right)^{5}} \int_{0}^{\infty}\left(\frac{1}{3}+\log (3.6)\right)^{5} \frac{r^{4} e^{-r\left(\frac{1}{3}+\log (3.6)\right)}}{24} d r\right) \\
& =0.260802469136\left(\frac{20}{81\left(\frac{1}{3}+\log (3.6)\right)^{6}}+\frac{4}{81\left(\frac{1}{3}+\log (3.6)\right)^{5}}\right) \\
= & 0.00481410883489
\end{aligned}
$$

Standard Questions

5. An insurance company finds that claim frequency for an individual has mean 0.23 and variance 0.48 . They consider modelling this using either a negative binomial distribution or a zero-inflated Poisson distribution. Which of these has a higher probability that the number of claims is 3 or more?

For the negative binomial distribution, the mean is $r \beta$ and the variance is $r \beta(1+\beta)$, so to match the values given, we must have $1+\beta=\frac{0.48}{0.23}=$ 2.08695652174 . Now to match the mean, we have $1.08695652174 r=0.23$, so $r=\frac{0.23}{1.08695652174}=0.2116$. The zero-inflated Poisson can be viewed as a mixture of a Poisson distribution, and a distribution that is always zero.

Let p_{z} be the probability of the zero distribution (so $p_{0}=p_{z}+\left(1-p_{z}\right) e^{-\lambda}$). The mean is $\left(1-p_{z}\right) \lambda$ and the variance is $\left(1-p_{z}\right) \lambda+p_{z}\left(1-p_{z}\right) \lambda^{2}$. Matching these to the given values gives

$$
\begin{aligned}
\left(1-p_{z}\right) \lambda & =0.23 \\
\left(1-p_{z}\right) \lambda+p_{z}\left(1-p_{z}\right) \lambda^{2} & =0.48 \\
p_{z}\left(1-p_{z}\right) \lambda^{2} & =0.25 \\
\left(1-p_{z}\right)^{2} \lambda^{2} & =0.0529 \\
\left(1-p_{z}\right) \lambda^{2} & =0.3029 \\
\lambda & =\frac{0.3029}{0.23}=1.31695652174 \\
p_{z} & =1-\frac{0.23}{1.31695652174}=0.825354902608
\end{aligned}
$$

The probabilities of 0,1 or 2 claims under the two models are

	Negative Binomial	Zero-inflated Poisson
$P(X=0)$	$2.08696^{-0.2116}=0.855836814896$	$0.82535+0.17465^{-1.31695652174}=0.87215097977$
$P(X=1)$	$2.08696^{-0.2116} \times 0.2116 \times \frac{1.08695652174}{2.08695652174}=0.0943203489747$	$0.17465 \times 1.31695652174 e^{-1.31695652174}=0.0616283990096$
$P(X=2)$	$2.08696^{-0.2116} \times \frac{0.2116 \times 1.216}{2} \times\left(\frac{1.08696}{2.08696}\right)^{2}=0.029760035109$	$0.17465 \times \frac{1.31695652174^{2}}{2} e^{-1.31695652174}=0.040580961$
Total	0.97991719898	0.97436033978

so the zero-inflated Poisson distribution has a higher probability of more than 2 claims.
6. If the distribution of X is from the $(a, b, 1)$-class and $P(X=2)=0.04$ and $P(X=4)=0.09$, what is the largest possible value of $P(X=3)$?

We have

$$
\left(a+\frac{b}{3}\right)\left(a+\frac{b}{4}\right)=\frac{p_{4}}{p_{2}}=2.25
$$

and we want to maximise $p_{3}=0.04\left(a+\frac{b}{3}\right)$. Letting $x=a+\frac{b}{3}$, we have $x\left(x-\frac{b}{12}\right)=2.25$ which gives $x=\frac{1}{2}\left(\frac{b}{12}+\sqrt{\frac{b^{2}}{144}+9}\right)$. We see that x is an increasing function of b, so it is maximised by making b as large as possible. If $a>0$, then $x<\frac{4}{3}\left(x-\frac{b}{12}\right)=\frac{4}{3} \frac{2.25}{x}$, so to achieve a larger x, we need $a<0$, which means X follows a zero-modified binomial. In this case, $b=(n+1) a$ for some positive integer n, and since $p_{4}>0$, we have $n \geqslant 4$. If we substitute $a=-\frac{b}{n+1}$, then we have $b^{2}\left(\frac{1}{3}-\frac{1}{n+1}\right)\left(\frac{1}{4}-\frac{1}{n+1}\right)=$ 2.25, so b is a decreasing function of n. Therefore, b is maximised when $n=4$. In this case $a^{2}\left(\frac{5}{3}-1\right)\left(\frac{5}{4}-1\right)=2.25$, so $a^{2}=13.5$, so $a=$ $-\sqrt{13.5}=-3.67423461418$. This gives $p_{3}=3.67423461418\left(\frac{5}{3}-1\right) 0.04=$ 0.0979795897116 .
7. (a) Substituting the recurrence $p_{n}=\left(a+\frac{b}{n}\right) p_{n-1}$ for $n \geqslant 2$ into the PGF $P(z)=\sum_{n=0}^{\infty} p_{n} z^{n}$ and its derivatives, write down a differential equation satisfied by $P(z)$.

Differentiating, we have $P^{\prime}(z)=\sum_{n=1}^{\infty} n p_{n} z^{n-1}$. Substituting $p_{n}=$ $\left(a+\frac{b}{n}\right) p_{n-1}$ for $n \geqslant 2$ gives

$$
\begin{aligned}
P^{\prime}(z) & =p_{1}+\sum_{n=2}^{\infty} n\left(a+\frac{b}{n}\right) p_{n-1} z^{n-1} \\
& =p_{1}+a z \sum_{n=2}^{\infty}(n-1) p_{n-1} z^{n-2}+(a+b) \sum_{n=2}^{\infty} p_{n-1} z^{n-1} \\
& =p_{1}+a z P^{\prime}(z)+(a+b)\left(P(z)-p_{0}\right) \\
(1-a z) P^{\prime}(z) & =(a+b) P(z)-\left(p_{1}-(a+b) p_{0}\right)
\end{aligned}
$$

(b) Show that the PGF of a distribution from the $(a, b, 1)$ class is

$$
P(z)=\frac{\left(1-p_{0}\right)\left(\frac{1-a z}{1-a}\right)^{-\frac{a+b}{a}}+p_{0}-(1-a)^{\frac{a+b}{a}}}{1-(1-a)^{\frac{a+b}{a}}}
$$

Writing $c=\left(p_{1}-(a+b) p_{0}\right)$, the differential equation satisfied by $P(z)$ is

$$
(1-a z) P^{\prime}(z)=(a+b) P(z)-c
$$

and we want to show that

$$
P(z)=\frac{\left(1-p_{0}\right)\left(\frac{1-a z}{1-a}\right)^{-\frac{a+b}{a}}+p_{0}-(1-a)^{\frac{a+b}{a}}}{1-(1-a)^{\frac{a+b}{a}}}
$$

is the solution. We calculate

$$
P^{\prime}(z)=\frac{\left(1-p_{0}\right) a \frac{a+b}{a}(1-a z)^{-\frac{2 a+b}{a}}(1-a)^{\frac{a+b}{a}}}{1-(1-a)^{\frac{a+b}{a}}}
$$

so
$(1-a z) P^{\prime}(z)=\frac{\left(1-p_{0}\right)(a+b)\left(\frac{1-a z}{1-a}\right)^{-\frac{a+b}{a}}}{1-(1-a)^{-\frac{a+b}{a}}}=(a+b)\left(P(z)+\frac{(1-a)^{\frac{a+b}{a}}-p_{0}}{1-(1-a)^{\frac{a+b}{a}}}\right)$
We also have

$$
p_{1}=P^{\prime}(0)=\frac{\left(1-p_{0}\right)(a+b)(1-a)^{\frac{a+b}{a}}}{1-(1-a)^{\frac{a+b}{a}}}
$$

$$
(a+b) \frac{(1-a)^{\frac{a+b}{a}}-p_{0}}{1-(1-a)^{\frac{a+b}{a}}}=p_{1}+\frac{p_{0}(a+b)(1-a)^{\frac{a+b}{a}}}{1-(1-a)^{\frac{a+b}{a}}}-\frac{p_{0}(a+b)}{1-(1-a)^{\frac{a+b}{a}}}=p_{1}-(a+b) p_{0}
$$

Substituting this into (1) shows that $P(z)$ satisfies the required equation.

Bonus Question

8. Let X be a truncated Poisson distribution with $\lambda=2$. Is there a non-zero discrete random variable Y independent of X such that $X+Y-1$ is from the $(a, b, 1)$ family?
[Hint: Use the convolution formula to determine the probability mass function for $X+Y-1$, and apply the recurrence for the $(a, b, 1)$ class to get a recursive formula for $P(Y=n)$. You then just need to show that this recurrence gives a probability mass function.]

$$
P(X+Y-1=n)=\sum_{i=1}^{n+1} P(X=i) P(Y=n+1-i)=\frac{e^{-2}}{1-e^{-2}} \sum_{i=1}^{n+1} \frac{2^{i}}{i!} P(Y=n+1-i)
$$

Thus

$$
\begin{gathered}
a+\frac{b}{n}=\frac{P(X+Y-1=n)}{P(X+Y-1=n-1)}=\frac{\sum_{i=1}^{n+1} \frac{2^{i}}{i!} P(Y=n+1-i)}{\sum_{i=1}^{n} \frac{2^{i}}{i!} P(Y=n-i)}=\frac{\sum_{i=0}^{n} \frac{2^{i+1}}{(i+1)!} P(Y=n-i)}{\sum_{i=1}^{n} \frac{2^{i}}{i!} P(Y=n-i)} \\
2 P(Y=n)=\left(a+\frac{b}{n}\right) \sum_{i=1}^{n} \frac{2^{i}}{i!} P(Y=n-i)-\sum_{i=1}^{n} \frac{2^{i+1}}{(i+1)!} P(Y=n-i) \\
2 P(Y=n)=\sum_{i=1}^{n}\left(a+\frac{b}{n}-\frac{2}{i+1}\right) \frac{2^{i}}{i!} P(Y=n-i)
\end{gathered}
$$

This recurrence will give a probability distribution provided it never gives a negative value. For a distribution to be from the ($a, b, 1$) class, we must have $a<1$, so for $i=1$, and large enough n, we will have $a+\frac{b}{n}-$ $\frac{2}{i+1}<0$. However, if $a>\frac{2}{3}$, then this will be the only negative term. In particular, for example, if $a=0.9$ and $b>0$ (so the distribution is negative binomial with $\beta=9$ and $r>1$) then $a-\frac{2}{i+1}=-0.1$ when $i=1$ and $a-\frac{2}{i+1}=\frac{7}{30}$ when $i=2$, and is larger for larger i. It therefore follows that $P(Y=n)>-0.1 P(Y=n-1)+\frac{7}{30} P(Y=n-2)$. This will be
positive unless $P(Y=n-1)>\frac{7}{3} P(Y=n-2)$, so we need to show that $P(Y=n) \leqslant \frac{7}{3} P(Y=n-1)$ for all n.
Now, also using the recurrence, we have

$$
\begin{aligned}
P(Y=n) & =\frac{1}{2} \sum_{i=1}^{n}\left(a+\frac{b}{n}-\frac{2}{i+1}\right) \frac{2^{i}}{i!} P(Y=n-i) \\
& =\left(a+\frac{b}{n}-1\right) P(Y=n-1)+\frac{1}{2} \sum_{i=2}^{n}\left(a+\frac{b}{n}-\frac{2}{i+1}\right) \frac{2^{i}}{i!} P(Y=n-i) \\
& =\left(a+\frac{b}{n}-1\right) P(Y=n-1)+\frac{1}{2} \sum_{j=1}^{n}\left(a+\frac{b}{n}-\frac{2}{j+2}\right) \frac{2^{j+1}}{(j+1)!} P(Y=n-1-j) \\
& \leqslant\left(a+\frac{b}{n}-1\right) P(Y=n-1)+\frac{1}{2} \sum_{j=1}^{n}\left(a+\frac{b}{n}-\frac{2}{j+1}\right) \frac{2^{j}}{j!} P(Y=n-1-j) \\
& =\left(a+\frac{b}{n}\right) P(Y=n-1)
\end{aligned}
$$

So if $a+b<\frac{7}{3}$, then we have $P(Y=n) \leqslant \frac{7}{3} P(Y=n-1)$ for all n, and thus $P(Y=n)>0$ for all n, so this does define a probability distribution. (We can rescale $P(Y=0)$ so that the probabilities sum to 1).

