ACSC/STAT 3703, Actuarial Models I

WINTER 2023
Toby Kenney
Homework Sheet 7
Model Solutions

Basic Questions

1. An insurance company has an insurance policy where the loss amount follows a Pareto distribution with $\alpha=3.4$ and $\theta=1000$. Calculate the expected payment per claim if the company introduces a deductible of d.

The survival function of the Weibull distribution is $S(x)=\left(\frac{1000}{x+1000}\right)^{3.4}$, so the expected payment per loss with the deductible is

$$
\begin{aligned}
\int_{d}^{\infty} S(x) d x & =\int_{d}^{\infty}\left(\frac{1000}{x+1000}\right)^{3.4} d x \\
& =\int_{d+1000}^{\infty} 1000^{3.4} u^{-3.4} d u \\
& =\left[-1000^{3.4} \frac{u^{-4.4}}{4.4}\right]_{d+1000}^{\infty} \\
& =\frac{1000^{3.4}}{4.4 \times(1000+d)^{4.4}}
\end{aligned}
$$

The probability of a claim if the deductible is d is $S(d)=\left(\frac{1000}{d+1000}\right)^{3.4}$, so the expected payment per claim is

$$
\frac{\left(\frac{1000^{3.4}}{4.4 \times(1000+d)^{4.4}}\right)}{\left(\frac{1000}{d+1000}\right)^{3.4}}=\frac{1}{4.4(d+1000)}
$$

2. The severity of a loss on a worker's compensation insurance policy follows a gamma distribution with $\alpha=0.3$ and $\theta=10000$. Calculate the loss eliminatrion ratio of a deductible of $\$ 5,000$.

Without the deductible, the expected payment per loss is $0.3 \times 10000=$
$\$ 3,000$. With the deductible, the expected payment is

$$
\begin{aligned}
\int_{d}^{\infty}(x-d) \frac{x^{-0.7} e^{-\frac{x}{10000}}}{10000^{0.3} \Gamma(0.3)} d x & =\int_{d}^{\infty} \frac{x^{0.3} e^{-\frac{x}{10000}}}{10000^{0.3} \Gamma(0.3)} d x-d \int_{d}^{\infty} \frac{x^{-0.7} e^{-\frac{x}{10000}}}{10000^{0.3} \Gamma(0.3)} d x \\
& =3000 \int_{d}^{\infty} \frac{x^{0.3} e^{-\frac{x}{10000}}}{10000^{1.3} \Gamma(1.3)} d x-d \int_{d}^{\infty} \frac{x^{-0.7} e^{-\frac{x}{10000}}}{10000^{0.3} \Gamma(0.3)} d x \\
& =1274.438
\end{aligned}
$$

Therefore the loss elimination ratio is

$$
1-\frac{1274.438}{3000}=57.52 \%
$$

3. An insurance company has a policy where losses follow an inverse Pareto distribution with $\tau=1$ and $\theta=6000$. The companys wants the TVaR at the 95% level for this policy to be $\$ 150,000$. What policy limit should the company put on the policy to achieve this?

The distribution function of the inverse Pareto distribition is $F(x)=$ $\left(\frac{x}{x+\theta}\right)^{\tau}$. The VaR at the 95% level is therefore obtained by solving

$$
\begin{aligned}
\frac{x}{x+6000} & =0.95 \\
\frac{6000}{x+6000} & =0.05 \\
\frac{x}{6000}+1 & =20 \\
x & =114000
\end{aligned}
$$

With limit u, the TVaR is

$$
\begin{aligned}
\operatorname{TVaR}_{0.95}(X) & =\operatorname{VaR}_{0.95}(X)+20 \int_{\operatorname{VaR}_{0.95}(X)}^{u} S(x) d x \\
& =\operatorname{VaR}_{0.95}(X)+20 \int_{\operatorname{VaR}_{0.95}(X)}^{u}\left(1-\frac{x}{x+6000}\right) d x \\
& =\operatorname{VaR}_{0.95}(X)+20 \int_{\operatorname{VaR}_{0.95}(X)}^{u}\left(\frac{6000}{x+6000}\right) d x \\
& =\operatorname{VaR}_{0.95}(X)+20 \int_{6000+\operatorname{VaR}_{0.95}(X)}^{u+6000} 6000 v^{-1} d v \\
& =\operatorname{VaR}_{0.95}(X)+20[6000 \log (v)]_{6000+\operatorname{VaR}_{0.95}(X)}^{u+6000} \\
& =114000+20 \times 6000 \log \left(\frac{u+6000}{120000}\right)
\end{aligned}
$$

where we have used the substitution $v=x+6000$. We therefore need to solve

$$
\begin{aligned}
114000+120000 \log \left(\frac{u+6000}{120000}\right) & =150000 \\
\log \left(\frac{u+6000}{120000}\right) & =0.3 \\
\frac{u+6000}{120000} & =e^{0.3} \\
u & =120000 e^{0.3}-6000 \\
& =155983.05691
\end{aligned}
$$

4. Aggregate payments have a compound distribution. The frequency distribution is negative binomial with $r=2.2$ and $\beta=3.5$. The severity distribution has mean 2,298 and variance 62,840,000. Use a Pareto approximation to aggregate payments to estimate the probability that aggregate payments are more than 70,000.

The frequency distribution has mean $2.2 \times 3.5=7.7$ and variance $2.2 \times$ $3.5 \times 4.5=34.65$. Therefore the aggregate loss distribution has mean $7.7 \times 2298=17694.6$ and variance $7.7 \times 62840000+34.65 \times 2298^{2}=$ 666847858.6. Setting these equal to the mean and variance of a Pareto distribution with parameters α and θ gives

$$
\begin{aligned}
\frac{\theta}{\alpha-1} & =17694.6 \\
\frac{\alpha \theta}{(\alpha-1)^{2}(\alpha-2)} & =666847858.6 \\
\frac{\alpha}{\alpha-2} & =\frac{666847858.6}{17694.6^{2}}=2.12983157809 \\
1-\frac{2}{\alpha} & =0.469520693696 \\
\alpha & =3.77017534187 \\
\theta & =17694.6 \times 2.77017534187=49017.1446043
\end{aligned}
$$

For these parameters, the probability that payments exceed $\$ 70,000$ is

$$
\left(\frac{49017.1446043}{49017.1446043+70000}\right)^{3.77017534187}=0.0352773963636
$$

Standard Questions

5. For a certain insurance policy, losses follow an inverse Pareto distribution with $\tau=4$ and $\theta=5,000$. The policy limit of $\$ 1,000,000$ is applied before the deductible. The deductible is set to achieve a loss elimination ratio of 20\%. What deductible achieves this loss elimination ratio?
(i) 1246.75
(ii) 9145.50
(iii)14547.20
(iv) 21335.65

Justify your answer.
Without the deductible, the expected payment per loss is

$$
\begin{aligned}
\int_{0}^{u} S(x) d x & =\int_{0}^{u}\left(1-\left(\frac{x}{x+\theta}\right)^{4}\right) d x \\
& =u-\int_{\theta}^{u+\theta}(v-\theta)^{4} v^{-4} d v \\
& =u-\int_{\theta}^{u+\theta}\left(1-4 \theta v^{-1}+6 \theta^{2} v^{-2}-4 \theta^{3} v^{-3}+\theta^{4} v^{-4}\right) d u \\
& =4 \theta \log \left(\frac{u+\theta}{\theta}\right)-6 \theta^{2}\left(\frac{1}{\theta}-\frac{1}{u+\theta}\right)+4 \frac{\theta^{3}}{2}\left(\frac{1}{\theta^{2}}-\frac{1}{(u+\theta)^{2}}\right)-\frac{\theta^{4}}{3}\left(\frac{1}{\theta^{3}}-\frac{1}{(u+\theta)^{3}}\right) \\
& =84548.4379122
\end{aligned}
$$

The reduction in expected payment by introducing a deductible d is

$$
\begin{aligned}
\int_{0}^{d} S(x) d x & =4 \theta \log \left(\frac{d+\theta}{\theta}\right)-6 \theta^{2}\left(\frac{1}{\theta}-\frac{1}{d+\theta}\right)+4 \frac{\theta^{3}}{2}\left(\frac{1}{\theta^{2}}-\frac{1}{(d+\theta)^{2}}\right)-\frac{\theta^{4}}{3}\left(\frac{1}{\theta^{3}}-\frac{1}{(d+\theta)^{3}}\right) \\
& =20000 \log \left(\frac{d+5000}{5000}\right)-\frac{65000}{3}+\frac{6 \theta^{2}}{\theta+d}-\frac{2 \theta^{3}}{(\theta+d)^{2}}+\frac{\theta^{4}}{3(\theta+d)^{3}}
\end{aligned}
$$

We therefore want to set
$20000 \log \left(\frac{d+5000}{5000}\right)-\frac{65000}{3}+\frac{6 \theta^{2}}{\theta+d}-\frac{2 \theta^{3}}{(\theta+d)^{2}}+\frac{\theta^{4}}{3(\theta+d)^{3}}=0.2 \times 84548.4379122=16909.6875824$

Letting $v=\frac{d}{\theta}$, this becomes

$$
\begin{aligned}
4 \log (v+1)-\frac{13}{3}+\frac{6}{v+1}-\frac{2}{(v+1)^{2}}+\frac{1}{3(v+1)^{3}} & =3.38193751648 \\
4 \log (w)+\frac{6}{w}-\frac{2}{w^{2}}+\frac{1}{3 w^{3}} & =7.71527084981
\end{aligned}
$$

We try the given values of d to see which one works:

d	w	$4 \log (w)+\frac{6}{w}-\frac{2}{w^{2}}+\frac{1}{3 w^{3}}-7.71527084981$
(i) 1246.75	1.24935	-3.13267894221
(ii) 9145.50	2.82910	-1.66978069434
(iii) 14547.20	3.90944	-0.852227078332
(iv) 21335.65	5.26713	$1.94981207446 \times 10^{-06}$

So (iv) $d=21335.65$ achieves the desired loss elimination ratio.
6. An insurance company models loss frequency as negative binomial with $r=4$ and $\beta=2.8$, and loss severity as Pareto with $\alpha=1$, and $\theta=$ 100. The insurer wants to set a policy limit u per loss. The insurer buys stop-loss reinsurance for aggregate losses above 1.1 times the expected aggregate losses, the price for which is based on using a Pareto distribution for aggregate losses with parameters fitted using the method of moments. The insurer's loading is 20\% for the whole policy, including the ceded part. The stop-loss insurance has a loading of 30\%, and the insurer wants to ensure that no more than 25% of its total premiums are paid to the reinsurer. What is the largest value of u they can set to achieve this?
(i) $u=\$ 53,140.43$
(ii) $u=\$ 119,243.31$
(iii) $u=\$ 160,186.66$
(iv) $u=\$ 290,424.04$

Justify your answer.
The negative binomial distribution has mean $4 \times 2.8=11.2$ and variance $4 \times 2.8 \times 3.8=42.56$. If the expected payment per loss is a and the variance is b, then the expected aggregate loss is $11.2 a$ and the variance is $11.2 b+42.56 a^{2}$. With a loading of 20%, the aggregate premiums of the insurer are $11.2 a \times 1.2=13.44 a$, so the insurer wants to ensure that the reinsurer's premium is at most $0.25 \times 13.44 a=3.36 a$. Since the reinsurer has a loading of 30%, this means the expected payment of the reinsurer must be $\frac{3.36 a}{1.3}=2.58461538462 a$.
The parameters of the Pareto distribution for aggregate losses are set by solving.

$$
\begin{aligned}
\frac{\theta}{\alpha-1} & =11.2 a \\
\frac{\alpha \theta^{2}}{(\alpha-1)^{2}(\alpha-2)} & =11.2 b+42.56 a^{2} \\
\frac{\alpha}{\alpha-2} & =\frac{11.2 b+42.56 a^{2}}{(11.2 a)^{2}} \\
& =\frac{1}{11.2} \frac{b}{a^{2}}+0.339285714286 \\
1-\frac{2}{\alpha-2} & =\frac{a^{2}}{0.0892857142857 b+0.339285714286 a^{2}} \\
\frac{2}{\alpha-2} & =\frac{0.0892857142857 b-0.660714285714 a^{2}}{0.0892857142857 b+0.339285714286 a^{2}} \\
\alpha & =2+\frac{0.178571428571 b+0.678571428572 a^{2}}{0.0892857142857 b-0.660714285714 a^{2}} \\
& =2+\frac{0.178571428571 b+0.678571428572 a^{2}}{0.0892857142857 b-0.660714285714 a^{2}} \\
& =\frac{0.357142857142 b-0.642857142858 a^{2}}{0.0892857142857 b-0.660714285714 a^{2}} \\
\theta & =11.2\left(\frac{0.357142857142 b-0.642857142858 a^{2}}{0.0892857142857 b-0.660714285714 a^{2}}-1\right) a \\
& =\frac{3 b+0.2 a^{2}}{0.0892857142857 b-0.660714285714 a^{2}} a
\end{aligned}
$$

For a Pareto distribution with parameters α and θ, the expected payment on the stop-loss reinsurance with attachment point $r=1.1 \theta$ is

$$
\begin{aligned}
\int_{r}^{\infty}\left(\frac{\theta}{x+\theta}\right)^{\alpha} d x & =\int_{r+\theta}^{\infty} \theta^{\alpha} u^{-\alpha} d u \\
& =\theta^{\alpha}\left[\frac{u^{1-\alpha}}{1-\alpha}\right]_{r+\theta}^{\infty} \\
& =\theta^{\alpha} \frac{(r+\theta)^{1-\alpha}}{\alpha-1} \\
& =\frac{\theta^{\alpha}}{(\alpha-1)(r+\theta)^{\alpha-1}} \\
& =\theta \frac{2.1^{1-\alpha}}{(\alpha-1)}
\end{aligned}
$$

Thus, we want to solve

$$
\begin{aligned}
\frac{\theta}{\alpha-1} 2.1^{1-\alpha} & =2.58461538462 a \\
2.1^{1-\alpha} & =0.23076923077 \\
\alpha & =5.07983886856 \\
\frac{0.357142857142 b-0.642857142858 a^{2}}{0.0892857142857 b-0.660714285714 a^{2}} & =5.07983886856 \\
0.357142857142 b-0.642857142858 a^{2} & =5.07983886856\left(0.0892857142857 b-0.660714285714 a^{2}\right) \\
0.096414184694 b & =2.71346496672 a^{2} \\
b & =28.143835633 a^{2}
\end{aligned}
$$

Thus the expected squared payment per loss is $a^{2}+b=29.143835633 a^{2}$.
For the Pareto distribution, the expected payment per loss is

$$
\begin{aligned}
a & =\int_{0}^{u} \frac{\theta}{(\theta+x)} d x \\
& =\int_{\theta}^{u+\theta} \theta v^{-1} d v \\
& =\left[\theta^{\alpha} \log (v)\right]_{\theta}^{u+\theta} \\
& =\theta \log \left(\frac{u+\theta}{\theta}\right)
\end{aligned}
$$

and the expected squared payment per loss is

$$
\begin{aligned}
a^{2}+b & =\int_{0}^{u} 2 x \frac{\theta}{(\theta+x)} d x \\
& =2 \int_{\theta}^{u+\theta}(v-\theta) \theta v^{-1} d v \\
& =2 \theta[v-\theta \log (v)]_{\theta}^{u+\theta} \\
& =2 \theta\left(u-\theta \log \left(\frac{u+\theta}{\theta}\right)\right)
\end{aligned}
$$

We therefore need to choose u such that

$$
\begin{aligned}
2 \theta\left(u-\theta \log \left(\frac{u+\theta}{\theta}\right)\right) & =29.143835633 \theta^{2} \log \left(\frac{u+\theta}{\theta}\right)^{2} \\
\frac{u}{\theta} & =2 \log \left(1+\frac{u}{\theta}\right)+29.143835633 \log \left(1+\frac{u}{\theta}\right)^{2}
\end{aligned}
$$

Testing the solutions given, we see that (iii) $u=160186.66$ satisfies this.

