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Model Solutions

Basic Questions

. An insurance company has an insurance policy where the loss amount
follows a Pareto distribution with o = 3.4 and 6 = 1000. Calculate the
expected payment per claim if the company introduces a deductible of d.
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The survival function of the Weibull distribution is S(z) = ( 1000 ) ,

so the expected payment per loss with the deductible is
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The probability of a claim if the deductible is d is S(d) = (
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. The severity of a loss on a worker’s compensation insurance policy follows
a gamma distribution with « = 0.3 and 6 = 10000. Calculate the loss

eliminatrion ratio of a deductible of $5,000.

Without the deductible, the expected payment per loss is 0.3 x 10000 =



$3,000. With the deductible, the expected payment is
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Therefore the loss elimination ratio is

1274.438
3000 57.52%

. An insurance company has a policy where losses follow an inverse Pareto
distribution with T = 1 and 0 = 6000. The companys wants the TVaR at
the 95% level for this policy to be $150,000. What policy limit should the
company put on the policy to achieve this?

The distribution function of the inverse Pareto distribition is F(x) =
(IL_H;) . The VaR at the 95% level is therefore obtained by solving
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where we have used the substitution v = 2 + 6000. We therefore need to
solve
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u = 120000%3 — 6000
= 155983.05691

4. Aggregate payments have a compound distribution. The frequency distri-
bution is megative binomial with r = 2.2 and 8 = 3.5. The severity dis-
tribution has mean 2,298 and variance 62,840,000. Use a Pareto approx-
imation to aggregate payments to estimate the probability that aggregate
payments are more than 70,000.

The frequency distribution has mean 2.2 x 3.5 = 7.7 and variance 2.2 X
3.5 x 4.5 = 34.65. Therefore the aggregate loss distribution has mean
7.7 x 2298 = 17694.6 and variance 7.7 x 62840000 + 34.65 x 22982 =
666847858.6. Setting these equal to the mean and variance of a Pareto
distribution with parameters o and 6 gives

Ll = 17694.6
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o = 3.77017534187
0 =17694.6 x 2.77017534187 = 49017.1446043

= 666847858.6

= 2.12983157809

For these parameters, the probability that payments exceed $70,000 is

= 0.0352773963636
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Standard Questions

. For a certain insurance policy, losses follow an inverse Pareto distribution

with 7 = 4 and 0 = 5,000. The policy limit of $§1,000,000 is applied before
the deductible. The deductible is set to achieve a loss elimination ratio of
20%. What deductible achieves this loss elimination ratio?

(i) 1246.75
(ii) 9145.50
(iii)14547.20
(iv) 21335.65

Justify your answer.

Without the deductible, the expected payment per loss is
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We try the given values of d to see which one works:
d w 4log (w) + & — 2 + by — 7.71527084981

2
(1) 1246.75 1.24935 —3.13267894221w
(i) 9145.50 2.82910 —1.66978069434
(iii)14547.20  3.90944 —0.852227078332

(iv) 21335.65 5.26713  1.94981207446 x 10~%

So (iv) d = 21335.65 achieves the desired loss elimination ratio.

. An insurance company models loss frequency as megative binomial with
r =4 and B = 2.8, and loss severity as Pareto with o = 1, and 0 =
100. The insurer wants to set a policy limit uw per loss. The insurer
buys stop-loss reinsurance for aggregate losses above 1.1 times the expected
aggregate losses, the price for which is based on using a Pareto distribution
for aggregate losses with parameters fitted using the method of moments.
The insurer’s loading is 20% for the whole policy, including the ceded
part. The stop-loss insurance has a loading of 30%, and the insurer wants
to ensure that no more than 25% of its total premiums are paid to the
reinsurer. What is the largest value of u they can set to achieve this?

(i) u = $53,140.43

(i) u = $119,243.31
(iii) u = $160, 186.66
(iv) u = $290, 424.04

Justify your answer.

The negative binomial distribution has mean 4 x 2.8 = 11.2 and variance
4 x 2.8 x 3.8 = 42.56. If the expected payment per loss is a and the
variance is b, then the expected aggregate loss is 11.2a and the variance
is 11.2b + 42.56a2. With a loading of 20%, the aggregate premiums of the
insurer are 11.2a x 1.2 = 13.44a, so the insurer wants to ensure that the
reinsurer’s premium is at most 0.25 x 13.44a = 3.36a. Since the reinsurer
has a loading of 30%, this means the expected payment of the reinsurer

must be 325¢ = 2.58461538462a.

The parameters of the Pareto distribution for aggregate losses are set by
solving.
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For a Pareto distribution with parameters a and 6, the expected payment
on the stop-loss reinsurance with attachment point » = 1.16 is
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Thus, we want to solve

Lml—a = 2.58461538462a
a—1
2.117% = 0.23076923077
a = 5.07983886856
0.357142857142b — 0.642857142858a>
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0.357142857142b — 0.642857142858a = 5.07983886856(0.0892857142857b — 0.660714285714a2)
0.096414184694b = 2.71346496672a>

b = 28.143835633a>

= 5.07983886856

Thus the expected squared payment per loss is a® + b = 29.143835633a2.

For the Pareto distribution, the expected payment per loss is
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We therefore need to choose u such that
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2
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Testing the solutions given, we see that (iii) u = 160186.66 satisfies this.



