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Homework Sheet 7
Model Solutions

Basic Questions

1. An insurance company has an insurance policy where the loss amount
follows a Gamma distribution with « = 3 and 6§ = 400. Calculate the
expected payment per claim if the company introduces a deductible of d.
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For the Gamma distribution f(z) = gxe;o“g . The expected payment per
loss is
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The probability that a loss results in a claim is



o g2e~ 700 i a4 d? d .
—_— — 400 _— [
/d 9% 400° " T € 2% 4002 " 400 ©

120042d4 gy 40012002+

d2 d d2
srao0z taoo 1 &5 +d+400

Thus, the expected payment per claim is
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. The severity of a loss on a fire insurance policy follows a Pareto distribu-
tion with o = 1.4 and 6 = 4000. Calculate the loss eliminatrion ratio of a
deductible of $5,000.

Without the deductible, the expected payment per loss is % = 10000.
With the deductible, the expected payment is
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Therefore the loss elimination ratio is
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. An insurance company has a policy where losses follow a log-logistic dis-
tribution with 7 = 0.5 and 8 = 6000. The company wants the TVaR at
the 95% level for this policy to be $3,000,000. What policy limit should
the company put on the policy to achieve this?

(i) $3,076,044

(ii) $3,140,336
(iii) $3,622,5/1
(iv) $4,102,421

Justify your answer.

The survival function of the log-logistic distribition is S(x) = o000+ 5 6&03_0\/5.



The VaR at the 95% level is therefore obtained by solving
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With limit u, the TVaR is
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where we have used the substitution v = /6000 + /z with 2 = (v —
V/6000)2, so 4= = 2(v — /6000). We therefore need to solve

= 724001.38696 + 293.819585906 + 40v/6000+/u — 40 x 6000 (log(\/ﬂ + vV 6000)) = 3000000

We try the values given:
u TVaRo.gg) (X)

(i) 3076044 3000000
(i) 3140336 3054118
(iii) 3622541 3444173
(iv) 4102421 3808267

So (i) u = $3,076, 044 is the policy limit that achieves this TVaR.

. Aggregate payments have a compound distribution. The frequency dis-
tribution is negative binomial with r = 5.1 and B = 0.2. The severity
distribution has mean 3,940 and variance 25,145,000. Use a Pareto ap-
prozimation to aggregate payments to estimate the expected payment on a
reinsurance policy with attachment point $100,000.



The frequency distribution has mean 5.1 x 0.2 = 1.02 and variance 5.1 x
0.2 x 1.2 = 1.224. Therefore the aggregate loss distribution has mean
1.02 x 3940 = 4018.8 and variance 1.02 x 25145000 + 1.224 x 3940% =
44648786.4. Setting these equal to the mean and variance of a Pareto
distribution with parameters o and 6 gives
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o = 3.13346443684
0 = 4018.8 x 2.13346443684 = 8573.96687877

For these parameters, the expected payment on a reinsurance policy with
attachment point $100,000 is
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Standard Questions

5. For a certain insurance policy, losses follow a Weibull distribution with
7 =2 and 0 = 1,000. The policy limit of $2,000 is applied after the
deductible. The deductible is set to achieve a loss elimination ratio of
15%. What deductible achieves this loss elimination ratio?

(i) $88

(ii) $135
(iii) $194
(iv) $28



Justify your answer

Without the deductible, the expected payment per loss is
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The expected payment after introducing a deductible d is
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We therefore want to set
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We try the given values of d to see which one works:

d (42 +2v2) o(B2+2v2) o (f2+2v2) -0 (13)
(i) 588 0.9984259 0.5495208 0.4489050
(i) $135  0.9987334 0.5757054 0.4230280
(ifi) $194  0.9990415 0.6080950 0.3909464
(iv) $284  0.9993812 0.6560243 0.3433569

So (ii) d = 135 achieves the desired loss elimination ratio.

6. An insurance company models loss frequency as negative binomial with
r = 0.1 and B = 360, and loss severity as inverse Pareto with @ = 3,
and 6 = 1500. The insurer sets a policy limit u = $30,000 per loss. The



insurer buys stop-loss reinsurance for aggregate losses above 1.2 times the
expected aggregate losses, the price for which is based on using a Pareto
distribution for aggregate losses with parameters fitted using the method of
moments. The insurer’s loading is 25% for the whole policy, including the
ceded part, and the insurer pays 45% of its total premiums to the reinsurer.
What is the loading on the reinsurance policy?

The negative binomial distribution has mean 0.1 x 360 = 36 and variance
0.1 x 360 x 361 = 12996. The expected payment on the inverse Pareto
distribution with policy limit u = 200 is
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= 10162.9360038

The expected square of the payment with policy limit u = 206 is
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= 202695853.366

The variance of the loss is therefore 202695853.366 — 10162.93600382
99410585.149 The aggregate loss therefore has mean 36 x 10162.9360038
365865.696137 and variance 36 x 99410585.149+12996 x 10162.9360038% =
1345874126820. For the Pareto approximation to aggregate losses, the
parameters are given by solving



Ll = 365865.696137
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Under this model, the expected payment on the reinsurance policy is
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We have a = 1.2-%— so the expected payment on the reinsurance is
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= 158618.328123

The total premiums are 1.25 x 365865.696137 = 457332.120171, so the
premium for the reinsurance is 0.45 x 457332.120171 = 205799.454077.

: : : 205799.454077 _ 1 _
The loading on the reinsurance is therefore {egerestos — 1 = 29.745%.



