If the individual does not buy insurance, then they will have wealth $4,000 with probability .95, and
$2,000 with probability 0.05. The expected utility is therefore

0.95u(4000) + 0.05u(2000) = 0.95 x (7000 x 4000 — 4000%) + 0.05 x (7000 x 2000 — 2000%) = $11, 900, 000

If the individual buys insurance, their wealth is guaranteed to be $3,880, so their utility is 7000 x 3880 —3880% =
$12,105,600. Therefore, the individual is better off buying the insurance.



Advantages of tort system

Advantages of no-fault system

Increases coverage costs for at-fault drivers,
thus increasing the incentive to drive carefully.

More flexibility to taylor payments to injured
parties needs. Under no-fault system, benefits
usually defined by a formula.

Reduces litigation costs

Evidence shows that under tort system, small
claims are overcompensated, whereas larger
claims are undercompensated.




80% of the house price is 0.8 x 350000 = $280, 000, so the coinsurance pays 328888 of the loss, which is
26000070000 __ $65 000
280000 ) DU
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a) This is less than the deductible, so no payment is made.

b) 2500 — 1000 = $1,500. The insurer therefore pays 0.8 x 1500 = $1, 200.

)
)
¢) 101600 — 1000 = $100,600. The insurer therefore pays 0.8 x 100600 = $80, 430.
d) 146900 — 1000 = $145,900. 0.8 x 145900 = $116,720. This is more than the policy limit, so the insurer
pays the policy limit $100,000.



(a) For a Pareto distribution, the probability that a loss exceeds z is (14 %)™, so in this case, for
any particular loss, it is 10172, Each policy has a 0.5 probability of producing a loss, and therefore a m
probability of producing a loss exceeding $1,000,000. This means that the probability of a single loss exceeding

100
§1,000,000 is 1~ (1= 5dsm ) = 0.004889607.

(b) Calculating the exact probability is difficult.
For the Pareto distribution, the expectation of the limited loss random variable is

100000 1
E(X A 100000) = / ) da
0

2
L+ 10300)

= 10000 / ———du
o (1+u)
11

= 10000 / a ?da
1

= 10000 [~a~1]}'

1
=1 1— —
0000( 11)

100000
11

We also calculate

100000
E((X A 100000)?) = / — dx
0

= 100002

= 100002

/
11
= 100002/ 2(a — 1)a"?da
1
J

11

=2 % 10° [log(a) + a~ ']

10
=2x 108 [ log(11) — —
x 10 ( log(11) 11)

This gives us

20 100
108 - ==
Var(X A 100000) = 10 <2 log(11) — 3 121>

= 21,5116, 245



. . . oy . . 50000
Now the losses per policy are either X or 0 with probability 0.5. The expected loss per policy is therefore 7=,

while the variance of loss per policy is (5010100)2 X % X %—i— % x 215116245 = 112,723,412 The expected aggregate
loss is therefore % = $454, 545 and the variance of aggregate loss is 11,272,341,200. The standard deviation
is therefore $106,171. The loss of $1,000,000 is therefore 5.137496 standard deviations above the mean. If we
use a normal approximation, the probability of aggregate losses exceeding $1,000,000 is 1.392117 x 10~7.

It is unclear how good the normal approximation is, so I also simulated 1,000,000 random aggregate losses,
and found that in 82 of them, the aggregate loss exceeded $1,000,000. Clearly, the normal approximation
underestimates this probability, but it is still far less than the probability in (a).




ol

If the attachment point is a, then the expected aggregate loss is #(1 — e~ ), and the expected claim on the

oS

stop-loss insurance is e~ ¢. The variance of the aggregate loss payment is

a 1% 7 - 2
- (1- 6_6)2> =6 ([—xQe_‘]g + 2/0 xe Tdr + 376_

a

? 2 a
62 (/ e T dx + %6_?
0

2 a’2 — —z1% % —x
=0"| —e 9+2[—xe ]6’—1—2 e
0 0
2 a2 _a a _a _a
:0 —076 9—256 9+2(1—6 9)+
=62 (1 — 2%67% — 672%>

The insurer’s premium is therefore set at

P=4 <263 +1—e"7+ \/1 _9%.-5 _ 6—2;)

0

We want to minimise this P. We substitute © = ¢ and calculate

0

dj
du

ue—

u _ ,—u —2u
=0 (_e—u + ¢ te )

V1—2uevw — e2u
We find the minimum by setting this equal to zero:

ue Y — e~ U + ef2u

—e "+ =0
V1= 2ue—v — ¢—2u
ue~% — el 4 o2 —u
=e
V1= 2ue—v — g—2u
—u —u —2u\2
(ue™ —e ™ + e %) _ 2

1—2ue " —e~2v
(u—1+e ") =1—-2ue ™ —e"
u? — 2u + due™" — 27V 4 272 =0

2u

dr +

T 14277 —¢

4
26

a?

0

Numerically, we solve this to get u = 0.9640863, so the attachment point that minimises the premium is

0.9640863 times the mean aggregate claims.

— 142 7 —e 2

)



[
(a) The premium period is from the 1st of October 2015 to the 30th of September 2016, so there are three
months out of 12 in 2015. The earned premium is therefore 640 x = = $160.

[If we divide by number of days, the earned premium is 640 x % = $159.56.]

(b) There are nine months out of 12 in 2016, so the earned premium is 640 x % = $480.

[If we divide by number of days, the earned premium is 640 x % = $480.44.]
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The new rate will cover annual policies written in 2018. These will be effective for 1 year. Assuming the
time that policies are written is uniformly distributed over the year, the number of policies in force at the new
rate t years from the start of 2018 is given by

Nt ift<1
N@2-t) if1<t<?2
0 otherwise

Assume that the rate of claims is proportional to the number of policies in force (so claims per policy does not
depend on time of year). Assume also that claims in accident year 2016 were uniformly distributed over the
year. We integrate over the inflation factor for all claim times. That is, if expected claim amount at the start
of 2016 is C, then we have Cf01(1.03)t dt = 26000, and we want to calculate

C(1.03)? (/01 t(1.03)" dt + /12(2 —)(1.03)* dt)
We have that

1 1.03t 1 0.03
1.03) dt = = = 1.014926
/0 (1.03) [log(l.O?))]O log(1.03)

1 t 1 1 t
1.03 1.03 1.03 0.03
#1.03) dt = [t— | — dt = - = 0.509963
/0 (1.03) { 1og(1.03)]0 /0 log(1.03) “ ~ log(1.03)  log(1.03)2

2 1
0.03 1.03 0.03
2 — £)(1.03)! dt = 1. 1—5)(1.03)* dt = 1. - = 0.520112
/1 (2-1(1.03) 03/0 (1= #)(1.03) 03 <log(1.03) log(1.03) +1og(1.03)2) 0520

! 'y 2 ‘g 0.032
£(1.03)" dt 2 1)(1.03) dt = —
/0 (1.03) +/1 ( )(1.03) log(1.03)2

We therefore get 1.014926C = 26000 and the expected claim amount per claim for policy year 2018 is

(1.03)2(0.509963 + 0.520112)
1.014926

(1.03)2(0.509963 + 0.520112)C = x 26000 = 1.076735 x 26000 = $27,995.11
so the pure premium is 27995.11 x 0.003 = $83.99.

[Algebraically, we can write the expected claim amount as 1.03% x 1og0(io%3) X 26000.]

[As a sanity check for the calculated inflation factor, we have that the average claim time in accident year
2016 is the middle of the year. Inflation is therefore approximately (1.03)% = 1.01488915651. The average
claim time in policy year 2018, is the end of 2018, so inflation is approximately 1.03.]




|§| The insurance line started % = % of the way through the year. Assuming policies are sold throughout
the year, the number of policies in force at time ¢ is proportional to ¢ — %. If the losses at time t are

proportional to the number of policies in force, then the density function of the time of a random loss is
f(t) =2 (t— %) =288 (t— ¢). The expected inflation from 1st March 2022 to the time of a random claim
in Accident Year 2022 is therefore

5 5 5
6 2.88 s 6 288
2.88t(1.08)  dt = | ————(1.08)* —/ — _¢(1.08)% dt
/0 88¢(1.08) log(1.08) ( )]0 o log(1.08) (1.08)
288 5 5 2.88 5
= = _2(1.08)s — ——— ((1.08)5 — 1
oe(1.08)6 %) ~ ogr.09) <( )*? )

= 1.0438022666

Expected inflation from the start of 2025 to a random claim in Policy Year 2025 is

1 2 1 1
/O £(1.08) dt+/1 (2 — )(1.08) dt:/o £(1.08) dt+(1.08)/0 (1 —t)(1.08)" dt

- 1.08/1(1.08)tdt— (0.0S)/lt(l.OS)tdt
0 0

B 0.08 (108)" 10 [t (L08)
_1'0810g(1.08) OIOS([log(l.OS)}O /0 log(1.08) dt)

Lo 008 ( 1.08 008 >
log(1.08)  \log(1.08)  log(1.08)2

0082

- log(1.08)

= 1.08053317542

Therefore, the premium for policy year 2025 is 644(1.08)26 L.08053317542 — $829.10.
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The loss ratio is ggggéggg; = 0.897455305567. Therefore, to achieve a loss ratio of 0.8, the premium needs
to be increased by a factor W = 1.12181913196. The new premium is therefore 974x1.12181913196 =
$1,092.65.

Using the loss-cost method, the total exposure is % = 87624.4353183 units of exposure, so the expected

loss per unit of exposure is % = $874.121467622. The premium is therefore W = $1,092.65.

11
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We first need to adjust the earned premiums to the new rate. Under uniform distribution, we have that

L3 %3 = 2 of the policies are at rate $432; % X 2 % 1% = 2% of the policies are at rate $491; and the

27014 32 12
remaining % are at rate $464. The average premium per policy is therefore % x 432+ % x 464 + % x 491 =
457.34375. The adjusted earned premiums are therefore 1700000 x % = 1825104.20226. The loss ratio

at this premium is therefore % = 0.832829160175. The new premium before inflation is therefore
491 x 0832829160175 — 511.148897058.
(1.04)" T _

To calculate inflation from accident year 2018 to policy year 2020, we calculate fol( 1.04)tdt = {log(Tﬁl) =
P4 1o

0.04  _
Tog(1.04) — 1.01986926764 and

1 2 1 1
/ t(1.04)tdt+/ (2—t)(1.04)fdt=/ t(1.04)tdt+1.04/ (1 —1)(1.04)" dt
0 1 0 0
1 1
= 1.04/ (1.04)tdt70.04/ t(1.04)" dt
0 0

t 1 1 t
— 1.04 x 1.01986926764 — 0.04 ([t(lw} _/ (1-04)) dt)
0

log(1.04) |, log(1.04
0.04 x 1.04  0.04 x 1.01986926764
= 1.06066403835 —
log(1.04) + log(1.04)

= 1.04013332308

The inflation is therefore L04°x1.04013332308 _ 1 10309059988, so the new premium is 1.10309059988 x
511.148897058 = $563.84

12



The proportion of earned premiums under the new premium is % (1 — %)2 = 0.114937136423. There-
fore, the earned premiums adjusted to the new premium are

660
1 = 14.6664
S6TITI0 0.885062863577 x 629 + 0.114937136423 x 660 §3839314.666

The loss ratio is therefore 2244610 _ — ( 845101348008. Thus to achieve a loss ratio of 0.75, the base
2393 0058008

premium should be multiplied by 3_75 = 1.12680179734.

Using 6% annual inflation, the expected inflation from the start of 2021 to a random loss in accident year
2021 is fol(l.OG)t dt = % = 1.02970867194. The expected inflation from the start of 2023 to a random
loss in policy year 2023 is

! . 2 . 0.062
(1. dt 2 —t)(1. dt = ———— = 1.06029994
/0 (1.06) +/1( )(1.06) o (1.06)2 06029994908

: : 1.06% x1.06029994908 __
The new base premium is therefore 660 x 1.12680179734 x =S5 smstesra=s = $860.43.

13



IRLRPCI 3 Loss Reserving

3.6 Loss Reserving Methods

Claim Type Policy Earned Expected Expected Losses paid Reserves
Year Premiums Loss Ratio Claims to date needed
2014 $200,000 0.79 $158,000 $130,000 $28,000
Collision 2015 $250,000 0.79 $197,500 $110,000 $87,500
2016 $270,000 0.77 $207,900 $60,000 $147,900
2014 $50,000 0.74 $37,000 $36,600 $400
Comprehensive 2015 $60,000 0.72 $43,200 $44,300 $0
2016 $65,000 0.75 $48,750 $41,400 $7,350
2014 $300,000 0.73 $219,000 $86,000 $133,000
Bodily Injury 2015 $500,000 0.73 $365,000 $85,000 $280,000
2016 $600,000 0.72 $432,000 $12,000 $420,000

The loss reserves needed are therefore 28000+ 87500 4 147900 + 400+ 0+ 7350+ 133000 + 280000 + 420000 =
$1,104, 150.

14
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The average, 3-year average and mean loss development factors are:

Accident Development year
year 1/0 2/1 3/2 4/3 5/4
Average 1.187962 1.200218 1.11665 1.052196 1.010355
3-year average 1.143815 1.117381 1.11665 1.052196 1.010355

47549 __ 43782 __ 36398 __ 23967 __ 11709 __
Mean 47549 — 1181224 3782 — 1174441 30398 — 1117909 23957 — 1.043586  1170% — 1.010355

The estimated future cumulative payments are then calculated by multiplying the most recent cumulative
payment by the corresponding loss development factors. The three methods result in the following estimated
cumulative payments:

Average:
Accident Development year
year 0 1 2 3 4 5
2012 12378 12506
2013 13432 14133 14279
2014 11223 12532 13186 13323
2015 10270 12326 13764 14483 14632

2016 11290 13412 16097 17975 18913 19109
3-year average:

Accident Development year
year 0 1 2 3 4 5
2012 12378 12506
2013 13432 14133 14279
2014 11223 12532 13186 13323
2015 10270 11476 12814 13483 13623
2016 11290 12914 14429 16113 16954 17129

mearn:

Accident Development year
year 0 1 2 3 4 5
2012 12378 12506
2013 13432 14017 14163
2014 11223 12546 13093 13229
2015 10270 12062 13484 14071 14217

2016 11290 13336 15662 17509 18272 18461

15



First we calculate the expected Loss payments. Using the loss development factors, the proportion of
payments made in each year is:
Cumulative  0.5889500 0.6996502 0.8397328 0.9376876 0.9866311 1
Proportion  0.5889500 0.1107002 0.1400826 0.0979548 0.0489435 0.0133689
This leads to expected payments:

Policy Expected Development Year
Year loss 0 1 2 3 4 5
2012 129,600  76,327.92 14,346.75 18,154.70 12,694.95 6,343.08 1,732.60

2013 147,600  86,929.02 16,339.35 20,676.19 14,458.13 7,224.07 1,973.24
2014 151,200  89,049.24 16,737.87 21,180.48 14,810.77 7,400.26 2,021.37
2015 158,400  93,280.68 17,534.91 22,189.08 15,516.04 7,752.66 2,117.63
2016 194,400 114,491.88 21,520.12 27,232.05 19,042.42 9,514.62 2,598.90

16



2 Random Variables

Key Functions
L6l

0 z <0 1 x <0
Si(z)=1—-Fi(z)=1- 00lx 0<z<100 = 1-0.01lz 0<x<100
1 x > 100 0 x > 100

d 0.01 0<x<100
fi(z) = %Fl(l’) = { 0 otherwise

G
M) = 5m) T T=001z ~ 100—=

for 0 < x < 100.

17



<0
Sa(x) =1-IF(z) =1~ { _ ( 2000 )3
z+2000
d
fa(z) = df 20007
2(2+2000)2
x <0
f € 2000
Ao(z) = SZE:C)) = @ >0
(2%7)

18

1
( 2000 )
742000
> 0

0 z <0
z+22ooo 23>0



53(.%‘) =1- F3(.’L‘) =1-

f3(x)

0.5

0.75
0.87
0.95

<0

0<z<1
1< <2
2<z<3
3<r<4
T >4

05 =0
025 =1
012 =2
0.08 z=3
005 =4

19

0.5

0.25
0.13
0.05

z <0
0<z<1
1< <2
2<r<3
3<r<4
Tz >4



0 <0 1
Sy(x) =1~ Fy(r) =1~ { 1 — 0.3¢0:00001z 5 > = { 0.3¢—0-00001z

Fi(z) = 1 z <0
0.000003¢—0-:00001z 4. >

_4dn
dr
(z) { <0 _{1 <0

—0.00001z
08030603(36 00001z x 2 0 000001 r 2 0
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3.1 Moments
20

fl (1’) =0.01

1002

100
/ 0.01z dx = 0.01

50

0.01(z — 50)2 dﬂc:0.0l/ u?
—50

100

100 50
—50

100 50

0.01(z — 50)* dsz.Ol/
—50

o— — >—

50
Coefficient of variation ( 58) = %
Skewness (25(?0) - =0
2
3
Kurtosis %225333())2 =18

3
2000
Fa(e)=1- (2000+a:)

21

0.01(z — 50)® iszOl/’ u®

for 0 < z < 100

=50

50° 2500
du = 0.01 x 220~ = 220
“ 3 3
501 — (—50)4
du = 0.01 (=50 _,

5

for0<

u4du::(102§§f = 1250000
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Do
e
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S
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:\

w

QU
IS

/°° 2000 \*
" ) da
o \ 2000+ z

> 2000 \° o0 2000 \* >/ 2000 \°
20— ) dx= 2(2 7 ) dx — 4000 " ) d
/0 v <2000+m> v /0 (2000 + ) (2000+x> v /0 <2000+x) *
= 2000 (4000 / w2 du — 4000 / u"? du)
1 1
1 o u_2 o
= 2000 (4000 {—] — 4000 [2] w2 du>
1

Ul
= 2000(4000 — 2000) = 4000000

3 3 3
o° 2000 o0 2000 o0 2000
322 | ———— | dz = 3(2000 2 —/—— ) dz—12000 / 2000 — ) d
/0 v (2000+m) v /0 (2000 + ) (2000+x) v | +x)(2000+x) v

< 7/ 92000 \*
12 ) 4
+ 12000000 A (2 500+ x> T

= 2000 (12000000/ utdu — 24000000/ u™? du + 12000000/ u? du)
1 1 1

= 0

pa = ply — (p11)% = 4000000 — 10002 = 3000000

Coefficient of variation 7”’%%)(?00 =43
Skewness undefined
Kurtosis undefined

05 x=0

025 z=1

fa(x)=<¢ 0.12 z=2

0.08 =3

0.05 z=4
z 22 2% gt P(X=z) uap ) z3p )
0O 0 0 O 0.5 0 0 0 0
1 1 1 1 0.25 0.25 0.25 0.25 0.25
2 4 8 16  0.12 0.24 0.48 0.96 1.92
3 9 27 381 0.08 0.24 0.72 2.16 6.48
4 16 64 256 0.05 0.2 0.8 3.2 12.8

E(X)=093 E(X?) =225 E(X3) =657 E(X?) =2145
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M2
3
M4

Coefficient of variation
Skewness

Kurtosis

H2
M3
Ha

Coefficient of variation

Skewness

Kurtosis

2.25 — 0.93%2 = 1.3851
6.57 —3 x 0.93 x 2.25 + 2 x 0.93% = 1.901214
21.45 — 4 x 0.93 x 6.57+ 6 x 0.93%2 x 2.25 — 3 x 0.93% = 6.44159397

7@{’9%‘“ = 1.26548679006
L901214 _ 1 16629740612

¢:1803d507

0 z <0
Fy(z) = { 1 — 0.3¢-0:00001z 2

6 x 10° — 300002 = 5.1 x 10°
1.8 x 10 — 3 x 30000 x 6 x 10° + 2 x 300003 = 1.314 x 1015
7.2 x 1029 — 4 x 30000 x 1.8 x 10'® 4+ 6 x 300002 x 6 x 109 — 3 x 30000* = 5.3397 x 10%°

VBIX109 _
22 x10° — 2.38047614285

1314x10'7 _ 3 6077804518

(5.1x1o9)%20
22T = 20.5294117647
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oo o ,—

x%e % ® ydev
E(X) = _
(X) . BT(a) dx 9/0 du
:aI‘(aJrl) o
['(a)

oo a+2, —u
E(X2 =92/ Y °
e
ZQQF(Q+2)

= ol 2
) (a+1)0

es} ua—i—ne—u
E(X") = 6 / 2
=0 ) T

_ pTlatn)

(o) =ala+1)---(a+n-—1)0"

Calculating the centralised moments,

ko = 4y — (1)’ = afar+ 16 — (af)? = af?
s = s — 3piph +2(p1)? = (el + 1)(a+2) — 3a*(a + 1) + 20%) 6° = 2a6°
pa = (a(a+1)(a+2)(a+3) —da?(a+ 1)(a+2) + 6a*(a + 1) — 3a*) 6* = (3a® — 2a)0*

. . . \/ 2
Coeflicient of variation %0 =/«
3
Skewness 2007 _ 2
(a62)3 Va
. (3a®—2a)0" _ 5 2
Kurtosis T = 3— %5

24



The mean excess loss function is the integral of the survival function.

For

0 z <0
F — 3
AN [ (TR Y

This becomes

< 7/ 2000 \°
I(z) = ) ar
(z) /z (t ¥ 2000> d

2000 / w3 du

+2000
2000

= 2000 {—1}

2u2 42000

2000
2000

o [ 242000\ 2
2 (*3500)

2000°
2( + 2000)2
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The density function is zee;g , S0 the median is the solution to

e~ 8 1
/m =3

e o 62
6 d = —
[n xre X B

or

Integrating by parts gives

/ xe b dx = [—01367%]: + fre™

m

3

m

=0Ome™ % + 0% 7

So the median is the solution to

S
—
_|_

|3

N—
\‘b‘

<f3
|

2

Numerically we obtain m = 1.67834706. For § = <, this gives m = 2.0669.
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The 100pth percentile of the excess loss random variable (X — d)4 is (7w, — d)+. The 100pth percentile
mp, ifm, <u

of the limited loss random variable X A u is { .
if m, >u
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We have that f(z) oc (1 — 2)?~!. To have the 95th percentile equal to 0.8, we need

P(X < 0.8) = 0.95
foo.s (1 —2)~tdx
fol (1l —z)P~1dx

0.8 1
/ z(l —z)P! dx:0.95/ (1 —x)?Ldx
0 0

1 1
/ (1 —u)uP! du=0.95/ (1 —wu’~tdu
0 0

2

0.2 1
/ uﬂ_l—uﬂdu:0.05/ WP — P du
0 0

=0.95

{uﬂuﬁﬂrvzo%{uﬁuﬁﬂr
B B+1], ’ B B+1],
0.28  0.26+1 1 1
- = —=0.05 —)
B8 B+1 8 +1

0.2°(8+1—-0.28) = 0.05

Numerically, the solution to this is § = 2.5526167478.
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3.3 Generating Functions and Sums of Random Variables

26] The moment generating function of a gamma distribution is
00 xafxefg
E(eX?) = / ————e¢"dx
( ) 0 ear(a)

0 _a—x (L‘(t—l)
_ / e v
0 0T ()

1—th)e

Therefore a sum of two independent gamma distributions with parameters « and 6 and o’ and 6 (same
value of #) has moment generating function

Mo, 13, (1) = Mo, () Mix, (£) = (1= 0) (1 = 16) ™ = (1 — t6)~(*+)

which is the moment generating function of a gamma distribution with the same 6 and the sum of the « values.
In particular, the sum of 16 i.i.d. gamma random variables with o = 1, # = 250 is a gamma random variable
with 8 = 250 and a = 16.

The probability that this aggregate exceeds 6000 is therefore the probability that a gamma distribution
with o« = 16 and 6 = 250 exceeds 6000, which is 0.03440009.

29



5

(a) The probability generating function of a negative binomial distribution is

Pn(z) ]E(ZN

oo

D

) 1_’_5 (7‘+n) n
n=0

(-
B Yo
+B)- (r+n—1) (;Lﬁﬂ)"

=1+8)" (1— 11%)_7
=1+8-28)""

(b) The sum of negative binomial distributions with the same 8 and r; and ro has probability generating
function

Pyv(z)=(14+8-28)""(1+B—28)""=(1+8— 2B)~(ri+72)

is a negative binomial distribution with parameters 5 and r; + 9.
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The survival function is (9_%) . The kth moment is therefore

o0 6 (o7
/ kak—t () dx
Substituting v = GJFT”” this becomes

9/000 E(O(u— 1)) u=% du = ko* kil(—l)i (k ; 1) /100 u' ™ du

=0

The integrals floo u~ du clearly exist whenever i — o < —1, which happens for all i < k — 1 if and only if
k <.
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%) 0’

’
The mean of the Pareto distribution is a‘g 7,80 we have 25 = =, or 0’ = 9%—:11.
TO

m 28] we have that the kth moment of a Pareto distribution with parameters o and 6 is

k—1 k—1
k—1 Mk —1 1
k z «@ _ k i
ko ;Zoj( Z, )/1 du = ko ?ZO( 1)( i )a—z‘—l

o (e e n e () (D) )

(’f‘i—w(lff)a_t_l+§<—1>i<’z:f>a_i-_1)

k6

) — mE(kal)

where X follows a Pareto distribution with parameters a — 1 and #. By induction, we can therefore show that

k10"

Rl o by

We therefore need to show that

klgk . k1(0))k
(a=1)-(a—k) (/" =1)---(a/ = k)

0 _ a—1
6 o'—1°

Since it is equivalent to show that

-V @
(a=1)--(a—k) (/" =1)---(a/ = k)
(a—=1)---(a—k) - (o/ =1)--- (o — k)

(o — 1) (o = 1)k

(=55) (-5 < (i) - (o)

This holds because all terms are positive, and each term on the left is smaller than the corresponding term on
the right.
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I

a—1_-%
@) = i) and o) = 2 0

fy(xz)  V2mox*le” % V2rox®! @=w? &
= = € 20
fw (ZL') ear(a)e—% eaF(Oé)
(@) _, 00, so the Gamma distribution has the heavier

: (z—p)?
Since “— 3~ — 5 — 00 as x — 00, we have that 7.(2)

tail.

33



fr(z) = % and f(2) = %» 50

fr(z) _ g(x+0)tt x40 (x@’ + 99’) «

folz) 02z +0)t 2+ 0 \ 20 + 00/

Iy (=)

20 067 _, 1, so T 1, so neither distribution has the heavier

6466’

x40

e 1 and

As x — oo, we have that
tail.
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For the Pareto distribution, f(x) = (xfg)zﬂ and S(z)

P

= @
_f&) _ _a

M) =50 " wrey "
For the Gamma distribution, let h(v) = S (2
P O [ C) N 4 ()
r—00 S((E) v—0 h(’u)

so the hazard rate is

v

) and g(v) = f(1). We want to find
= lim fl(x)dl
v—0 h/(’u) B

’ ol
v iy g/(x) T G
v—=0 § (x)% T—00 (:E)

For the Gamma distribution, f(z) = ”Z;;?;)% , so log(f(x))
_dlog(f(=)) _ 1 _

dx 0
constant.

— _ lim dlog(f(x))
z=oo f(x)
el 1

xr—r0o0
0

dx
(a—1)log(x)

_z_

alog(8) —log(T'(a)), and

0
as © — oo. Thus the hazard rate of a Gamma distribution converges to a non-zero
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The mean excess loss function is the integral of the survival function.

For a Pareto distribution

SO

=0 u"“du
x+6
0
1 o
= 0 —
[ (o — 1)u0‘_1} 240
B 0
- . a—1
(o = 1) (557)
9(1
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B34
Subadditivity Let X and Y be random variables. We have E(X +Y) = E(X) + E(Y) and

Var(X+Y) = Var(X)+Var(Y)+2 Cov(X,Y) < Var(X)+Var(Y)+2y/Var(X) Var(Y) = (\/Var(X) + \/Var(Y))2

Therefore, we have \/Var(X +Y) < /Var(X) + y/Var(Y), so

E(X +Y) +ky/Var(X +Y) < E(X) +E(Y) + ky/Var(X) + Var(Y)

Monotonicity This is not necessarily true. For example, if Y is a Bernoulli random variable with probability
p, and X =Y +¢(1 —Y), for some € > 0, then clearly X > Y with probability 1, and E(Y) = p,
E(X)=p+e(l—p), Var(Y) = p(1 — p) and Var(X) = (1 — €)?p(1 — p), so for the standard deviation
principle to be monotonic, we must have

p+e(l—p)+k(1—e€p(l—p)=p+kyp(l-p)
el—p—Fkyp(l—p)=0
1 1-p _ 1—-p
vp(1=p) p

Thus for any k£ > 0, we can choose a p such that the standard deviation principle is not monotonic.

Positive Homogeneity We have
p(aX) =E(aX)+ ky/Var(aX) = aE(X) + k/a? Var(X) = ap(X)
Translation Invariance We have

p(X +c¢)=E(X +c)+ ky/Var(X +c) = E(X) + c+ ky/Var(X) = p(X) + ¢
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VaR,(X) is the solution to

38
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The TVaR of the Pareto distribution is given by

TVaR,(X) :/ S(z) dx
VaR, (X)

:/ ) ( 0 ) dx
0((1—;,)—5—1) r+0

:/ L 0% du
o((1-p)~ =)

_ 901 |:_ ul—oz

a- J 9((1—17)’%)
plla-nt))

a—1
11—«

_,(I=p)~=
=0 a—1
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B7

Monotonicity If P(X > Y) =1, then for all z, we have Sx(z) > Sy (x). In particular VaR,(X) > Var,(Y).

Now we want to show that

1 [ 1 [
Var, (X) + f/ Sx(x)dx > Var,(Y) + f/ Sy (z) dx
P Jvar,(X) P Jvar,(v)

Equivalently, we need to show that

1 oo 1 VaR,, (X)
Var,(X) + 1% Sx(x) — Sy (x)dx > Var,(Y) + 1% Sy (z) dx
P Jvar,(x) P Jvar,(v)

00 VaRp (X)
/ Sx(x) — Sy () de > / Sy (2) dz — (1 — p)(Var,(X) — Var,(Y))
VaR, (X) VaR, (Y)

Now since SX( ) = Sy(z), the left-hand side is positive. On the other hand, the right-hand side is
VaRp(X)

f VaR (y) (z) - (1

rlght hand Slde is < 0 as required.

— p))dz, and since Sy (VaR,(Y)) = 1 — p, the integrand is non-positive, so the

Positive Homogeneity It is obvious that VaR,(aX) = aVaR,(X) for any a > 0. Therefore, aX >

VaR,(aX) if and only if X > VaR,(X). Now

TVaR,(aX) = E(aX|aX > VaR,(aX))
=E(aX|X > VaR,(X))
= aE(X|X > VaR,(X))
=aTVaR(X)

Translation Invariance It is obvious that VaR,(X + ¢) = VaR,(X) + ¢ for any c¢. Therefore, X + ¢ >

VaR, (X + ¢) if and only if X > VaR,(X). Now

TVaR,(X +¢) = E(X +¢|X 4+ ¢> VaR,(X +¢))
(X + ¢/ X > VaR, (X))
(X|X > VaR, (X)) + ¢

VaR(X) + ¢

E
E
T

Subadditivity In the following diagram, the vertical line is VaR,,(X), while the diagonal line is VaR, (X +Y).
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TVaR is subadditive

X

By definition of VaR, the area to the left of the vertical line, and the area below the diagonal line both
have probability p, so P(A) = P(C). (A is the orange area above the diagonal line and to the left of the
vertical line; C' is the blue area to the right of the vertical line and below the diagonal line).

Now TVaR,(X) = 1Tlp [suc @ fxy (2, y) de dy, while TVaR,(X+Y) = fp S goa(z+y) fx,y(z,y) de dy.
We can show that

//xfxyxwdxdy P(4) VaR,(X) = P(C) VaR,( //xfxy:vydwdy

Therefore,

TVaR,(X +Y) = // (x+y)fxy(z,y)dedy
BUA

1Tp (//BUAfo,Y(x,y) dmdy—i—//BUAyfx,y(m,y) dxdy)
< 1%]9 (//Bucazfx,y(x,y) da:dy-i—//BUA yfxy(z,y) da:dy)
= TVaR(X) + %p < / /B 9y yfxy(z,y)dx dy)

A similar argument shows that the second integral is at most TVaR,(Y").
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z F(z) F([=])

0<z<1 0.16z 0.16

l<z<2 034z —-0.18 0.5

38 2<xz<3 0.28¢—0.06 0.78

3<x<4 0.19z+0.21 0.97

4<x<b 0.026z+ 0.866 0.996

b<x<6 0.004z4+0.976 1
(a) At the 90% level, we want to solve F(z) = 0.9, which is clearly between = 3 and = = 4. In this

interval, F'(x) = 0.19z 4+ 0.21, so the VaR is the solution to 0.192 + 0.21 = 0.9, which is % = 3.63157894737.
Now the TVaR is

6 4 5 6
69
VaR,(X) +10 [ (@) da = =+ 10 </ (0.79 — 0.19z) + / (0.134 — 0.0262) dar + / (0.024 — 0.004z) dx)
% % 4 5
69
=15+ 10 ([(0.792 — 0.09522)] by + [0.134z — 0.0132%] + [0.0242 — 0.0022%])
19

= 4.06105263161

(b) At the 99% level, we want to solve F(z) = 0.99, which is clearly between = 4 and = 5. In this
interval, F(x) = 0.026x + 0.866, so the VaR is the solution to 0.026x + 0.866 = 0.99, which is % = % =
4.76923076923.

Now the TVaR is

6 5 6
VaR,(X) +100 | S(z)da = (%2 +100 ( / (0.134 — 0.0262) dz + / (0.024 — 0.004z) dx)
=% 4100 (01342 — 0.0130%) %, + [0.0242 — 0.002¢%]; )
== . . [0 00222]°

= 5.13076923077
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The VaR can be found using the qgamma function in R
gqgamma (0.95,shape=4,scale=2000)

This gives VaRg.95(X) = 15507.31.

Now to get the TVaR, we calculate

x@le~ %

TVaR0_95 (X) = 20/ dx

€rT—
VaR0495(X) ear(a)

= 209a/ & dx
VaRo.o5(x) 0°T (@ +1)

The integral in this expression is the probability that a Gamma distribution with shape a + 1 and scale 6
exceeds VaRg.95(X), which we can calculate using the pgamma function in R.
pgamma (15507 .31, shape=5,scale=2000,lower.tail=FALSE)
This gives 0.1146317 for the integral, so

TVaRg.05(X) = 20 x 2000 x 4 x 0.1146317
= 18341.072
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Z0)

(a)

The first Pareto distribution has mean &300 and variance w. The second Pareto distribution has mean
@ and variance %200.
The mean of the mixture is therefore 0.4 x @ + 0.6 x L700 = 219.047619047 The variance of the mixture

Var(X) = E(Var(X|Z2)) + Var(E(X]Z2))

2000000 4000000 1000 1000
X ———— +0.6 x + —

=04
0 147 3 7

2
) x 0.4 x 0.6

= 113922.902494

Thus the standard deviation principle is p(X) = 219.047619047 + 3.51/113922.902494 = 1400.38396216.
(b) The VaR at the 99% level is the solution to

4 8
1000 1000
A 6(———) =001
0 <1000—|—x> Jr06<1000—|—x> 0.0

4
Letting v = (léggﬁw) , we get

400 + 60v% = 1

y o —40+ V402 + 240
N 120
v = 0.0241268431592

so z = 1000 (% - 1) — 1537.31785009
0.02412684315924
Now the TVaR is

8
)dw

%0 oo 1000 \* 1000
1537.31785009 + 100/ S(z) dz = 1537.31785009 + 100/ 0.4 () +0.6 (
1537.31785009 1537.31785009 1000 + = 1000 + =
= 1537.31785009 + 100 / 0.4 x 1000*u~* + 0.6 x 10008u % du
2537.31785009
10004 10008
— 1537.31785009 + 40 x + 60

3 x 2537.317850093 x 7 x 2537.317850097

= 2366.21064631
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1 4 Characteristics of Actuarial Models

4.2 The Role of Parameters
281
(a)

Exponential The Survival function S.x () = Sx (%) For the exponential distribution, this survival function

is Sx(z) =e 7, s0

Scx(l') =Sy (f) = 6759

which is an exponential distribution with mean c6.
= 1fx (%). For the Gamma

c

Gamma The density function of a scaled random variable is given by f.x(z)

distribution, this is
zye—l =z a-1,-=2
l(c) e _at e

Jex(®) = -~y 0T (a)

which is the density of a Gamma distribution with shape parameter o« and scale parameter 6.
Normal The density function of a scaled random variable is given by fex(z) = % fx (%) For the normal

distribution, this is
2
P CE) R G
f'X r) = ——e 202 = e 2:202
x (@) V2meo 2mweco
2 2

which is the density of a normal distribution with mean cp and variance c*o®.

[

(%) = () 0 X Ly
Scx(x)SX( >(1+;’”9>

Cc

Pareto The Survival function Sex (z) = Sx (£). For the Pareto distribution, this survival function is Sx (z) =

which is the survival function of a Pareto distribution with parameters « and c6.

(b) Which of the above distributions have scale parameters?
For the exponential, Gamma and Pareto distributions, 6 is a scale paremeter. For the normal distribution,

there is no scale parameter with the usual parametrisation. [There are commonly used parametrisations for
the Gamma (and the exponential) distribution that do not have a scale parameter.]
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This year’s claims follow a Pareto distribution with & = 2 and 6. Since 6 is a scale parameter, after 6%
inflation, next year’s claims will follow a Pareto distribution with o = 2 and 1.066.

2
The proportion of claims this year that exceed d is Sx(d) = (ej%d) , while the proportion of claims next

2
year that exceed d is S1 psx (d) = (%) . The ratio r is therefore

(%)2 1.06(0 + )\ >
(ﬁ)Q :<1.060+d>
+

As d — oo, we have gt — 1, s0 7 — 1.06% = 1.1236.
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4.3 Semiparametric and Nonparametric methods

Using the kernel density distribution, the probability that a claim is larger than 3 is

51) (@ (O'i’).S 3) + @ <1'3'8 3) + o (1'38 3> +® (1'2'8 3) + @ <4'E.8 3)) = % (®(—3.375) + ® (—2.25) + & (—2) + D (—1.37
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44 (a)

For z in the interval [2.7,3.9], the survival function of the kernel smoothing density estimate is

—1.06—2

6

1/244+3—2 2843—x 354+3—2x 3943—2x 424+3—=x
S(z) = +
(@) 5( 6 6 T 6 T 6 T % )

Therefore, if it is in this interval, the median is the solution to

T
1.06 — = =0.5
6

x = 6(1.06 — 0.5)
=318

(b)
Now the kernel density estimate is different in different intervals. By inspection, we see that the median
will lie in the interval [3.4,3.7]. In this interval, the survival function is

3.5+0.5—x+3.9+0.5—x

1

+ +1> =1.88 - 0.4z

The median is therefore the solution to

1.88 — 0.4x =0.5
0.4x = 1.38
= 3.45
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The probability that the claim exceeds 3.5 is

% (q> (12;35) + (”g‘”) + (21;35) + (29;35> + (43;35» _ % (@(—1.15) + (—1.05) + B(—0.70) 1
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For a Gamma distribution with parameters o = 3 and 6 = 1, the probability of exceeding g is

/OO e dx = —xje’m OO+/OO$€xda:—1 > 267 4—§67%—&-e*g =% 1+§+ > 2
s 2 L2 s Js -~ 2\0 0 B 6 \o
For the kernel density estimate, we calculate this for all observations

6 i (145+(3))

1.8 0.6 0.01058961

, 2.1 0.7 0.02660242

, 2.1 0.7 0.02660242

2.4 0.8 0.05169997

3.6 1.2 0.21468531
The probability that the kernel density estimate exceeds 5 is therefore

fon

0.01058961 + 0.02660242 + 0.02660242 + 0.05169997 + 0.21468531
5

= 0.066035946
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47
sigma<-seq-1en(2000) /1000

Q47<-colMeans (pnorm((c(1.4, 1.9, 2.0, 2.8, 3.3)-3.1)%*/%t(rep(1,length(sigma)))/(rep(1,5)%*%t(sigma))))
plot(sigma,Q47,type=’1’,xlab="Standard deviation",ylab="P(X3.1)")
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The density function of X is fx(z) = 27 1(1 — x)?~! for 0 < 2 < 1. The density function of 5X is

therefore 5 1( ),8 .
1 T 1 jx\o-1 z\f-1 (1 —x)P~
— e (EY =2 (% 1,,> B G2

fox(@) 5fX(5> 5(5) ( 5 potA—1

for 0 <z < 5.
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The density of X is fx(x) = % The density of X! is therefore
—(a-1),—21 g—o _ et
=2 =1 _ —27T e ° _ e -
fX’l(x) =z f(ﬂ? ) =z eal—\(a) xa+1r(a)
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2

The density of X is fx(x) = e\;g . The density of X? is therefore

_ Ix(Va) + fx(=vE) _ 2e7?
fx2(l‘) - 2\/5 - 2\/@(}_

This is a Gamma distribution with shape o = % and scale § = 202.
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2

The density of X is fx(z) = 67% . The density of eX is therefore

NoZ

_ (og(x)—p)?
fox(z) = IxUo(@) e
© T V2mox
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The survival function of X is Sx(z) = <Lx) . Since Y = log (1 4 %) is an increasing function of X,

7+
we have X = f(e¥ — 1), so

This is the survival function of an exponential distribution.
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5.2.4 Mixture Distributions

The density of the inverse gamma distribution with a =5 is

§Pe~ =
f@) =575
The density of the mixture distribution is therefore
> e mm (1000 +0.10)°e”
fle) = /0 7000 2419 v

1000+0.1v+ v )

_ /OO (1000 + 0.1’(1)567( x 7000
~Jo 16800025

dv

w4 10u—10000
+ 00 )

/oo ue— (3 70
B 1000 16800(1}6

10 0o
e 1, 1
= 7/ wemu(E+7m0) dy
1

1680025 /1000
Letting t = ;f%o, we get
/ uPe™t du = [7U5t67%](1)300 +/ Stute™* du
1000 1000
= (1000°¢ + 5 x 1000* + 20 x 1000*¢> + 60 x 1000%> + 120 x 1000t + 120¢%) e~ ¢°
Therefore, the density function of the amount paid on a random claim is
e 700 700 700z \°
= —— [ 1000° 5 x 1000* 20 x 10003
@) = 550000 ( (m+700> Tox <x+700) A 7+ 700
70017 3 700I 4 700x 5 1000(z4+700)
60 x 10007 120 x 1000 120 R
U <x+700) A0 <:c+700> + (x+7oo> ©
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Given the hazard rate © = @, the conditional probability that X > 0.5 is e=?-%¢. Therefore, the marginal
probability is
1 1 0.50 1 11 e 05 _ 755
— 0504 = — [-2e7 0] T = = 0.120488777655
10/, © 1o [72e77h 5
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The hazard rate is A\(z) = g%g = 7?’(5)@) = L log(S(z)). Therefore the survival function is S(z) =
— [P A(
e Jo

) dt For this model, we have

S(75) = e~ 100.0001(20—x) da— [77 107522 d

2 _5 (753103
_ -~ (0:002x10-0.0001x 14)~10~ (=2522)

— e 1.41791666667

= 0.242218112682
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3
For a given risk factor ©, the probability that a random claim exceeds $1,000 is ( ) . The

e
©+1000
marginal probability that a random loss exceeds $1,000 is therefore

e 3 9 % 10002 0 3
Ef(——m— — x do
O + 1000 o (1000 +6)3 ~ \ 8+ 1000

> (u—1000)*
= 2000000 / (u= 100017,
1000 U
= 2000000 / (u™? = 3000u~* 4 3000000u > — 1094~ du
1000

u? w3 u™?t T
= 2000000 [2 + 30007 — 3OOOOOOT +10°—

—21 3><1+3><1 1
T2 3 4 5

=0.1

5 1000
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03]

(a) For a given value of 6, the probability that the time until a claim is at least 6 years is 1 —e 62 The
probability that a random policyholder makes no claims for 6 years is therefore

/ Lt (1—e’%§> da:l—/ L9520 4
o 4 0o 4

11— /OO Lo gt g
O 4

<92+4 5)2

= 1—76166\f/ 7&

=1- 6166\F¢>< 4\%)

= 0.3261073072

(b) The probability that a policy makes no claim for 7 years is

/ le—ﬂ<1_e*%)d0:1_/ le_wﬂg%smda
o 4 , 4
:1*/wle*w(w
0

(92+6 125)2

1 6.1252
—1—76 19 \/7/ 7d9
f

1 6252 6.125
=1l—-e 7
4 Vs ( 35&)

N

= 0.279900503

so the conditional probability of making no claim in the next year is % = 0.858307976608.
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For an individual with a given value of A, the probability of surviving to 40 is

0.08z 140
40 y 0.08 -
e—fo Ae? 8T dx e )‘[ 0.08 ]0

Y 83'271
= e 0.08

— o 294.156627464)
The marginal probability of an individual surviving to 40 is therefore

00 )\267100000)\ 1015 oo
—294.156627464\ _ 2 —100294.156627464\
/ ST — A= — / A2e d\
o 0.000013I(3) 0

1015
= T100294.156627464*%(3)

= 1.00294156627464 3
= 0.991226964653

For an individual with a given value of A, the probability of surviving to 90 is

0.08z 190
e SO0 Xe® 087 dy e*A[eo.os ]

0

Y 87'271
—e 0.08

_ 6—16730.3845549/\

The marginal probability of an individual surviving to 40 is therefore

o] /\267100000>\ 1015 00
/ 6716730'3845549)‘ d\ = / )\267116730.3845549A d\
o 0.000013I'(3) 2 /o
1015
= 7116730.3845549‘31‘(3)

1.167303845549 3
= 0.628706935472

. . . 0.628706935472 __
The probability of someone aged 40 surviving to 90 is therefore 55556551655 = 0-634271421069.
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The probability that a gamma distribution with a = 3 and # = 1000 is less than 2000 is 0.3233236.
Therefore the density at 2000 — € tends to

p  20002¢ To00

0.3233236 1000°T(3)

= 0.000837150664145p

where p is the probability that a claim is small.

4
The probability that a Pareto distribution with o = 4 and 8 = 3000 is more than 2000 is (%) =
0.1296. Therefore the density at 2000 + € tends to

q 4 x 3000*
0.1296 (3000 + 2000)3

= 0.0008¢

where ¢ = 1 — p is the probability that a claim is large. For the density to be continuous, these must be equal,
ie.

0.000837150664145p = 0.0008(1 — p)
0.001637150664145p = 0.0008
p = 0.48865386523
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Recall that for any random variable Y, E(Y) = E(E(Y|Z)). Applying thisto Y = X and Y = X? gives

(
(E(X?|2)) — E(E(X|2))?

(E(X?|Z)) - E(E(X|Z)?) + E(E(X|2)*) - E(E(X|2))?
(E(X?|Z) - E(X|Z)?) + Var(E(X|2))

(Var((X1]2)) + Var(E(X|2))
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Let X be the cost of a random claim, and let © be the parameter for a random individual. The law of
total variance gives that

Var(X) = E(Var(X|©)) + Var(E(X|©))

-F (m—f@l—z)) Y (f_)l)

3, o

3 2 1
=1 (Var(©) + E(©)%) + 1 Var(©)

3 1
= 7 (230007 + (2  3000)%) + 7 x 2 x 3000°

= 45000000
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For a given policy with parameter 6, the conditional survival function is the conditional distribution
function of a gamma distribution. That is,

The survival function of a random policy is

S(x) = E(Se(2))

=E<1—<1+®>6_
X
© P~ 1000 0 0
= (1 (14+Z)e =
/0 10002r(2)( (+m>e )Cm
00 _9(#_’_1) 2
e 1000 ' @ 0
—1- e+ ) as
/0 10002 < + x>
2]

SR _
x? /°° ge (£9650) 0 200023 /°° g2 (F4166)
0 0

8|®

— — do
(.T + 1000)2 ( 1000z )2 l’(l' + 1000)3 ( 1000z )3 F(?))
41000 41000
x? 200022

~ (z+1000)2  (x+ 1000)3

The VaR is therefore the solution to

_ 22 _ 200022 005
(z +1000)2 (x4 1000)3
2 2 2
T 00022 oo

(2 + 10002 " (+ 1000)3
22 (x + 1000) 4 20002 = 0.95(x + 1000)?

Numerically, we get x = 6388.232908696
Now the TVaR is

o) e8] 2 2
! S(x)der = 20/ (1 . < 2000z ) dz

0.05 JvaRg o5 6388.232908696 (z +1000)? - (z +1000)3

This integral is undefined.
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Let Z = 1 if X is in the component with mean 1 and variance 012, Z = 2 if X is in the component
with mean po and variance 092, and Z = 3 if X is in the component with mean p3 and variance o32.
Now we have
E(X) = E(E(X|Z)) = p1p1 + p2p2 + p3pis

and

Var(X) = E(Var(X|2)) + Var(E(X|Z2))
= 1012 + pooa® + p3os® + prn® + papia® + papa® — (pr + papiz + paps)”
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For thefts, the proportion of claims above 10000 is

-3
4000
— —_— =0. 1311 2
1 <1+ 10000) 0.63556851311953352770

For collisions, the proportion of claims above 10000 is

100°0
50!

o100 (1 +1004---+ ) = 2.401592¢ — 08

For other claims, the proportions above 10000 is e~10000/3000 — ( 13567399
The total proportion is therefore 0.15 x 0.63556851311953352770+0.75 x 2.401592¢ — 08+ 0.1 x 0.03567399 =
0.09890269
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The density function of the transformed beta distribution is

o (TatnN ()
St = (F(a)rv)) w(1+ (5"

I8

so the density of % is

If we set ¢ = % then
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[67] The density function of the transformed beta distribution is

o (TatnN ()
1= (rt) e+ Gy

We rearrange this as

fx (@)

(F(a+7’)>( x >T ~y
rfarm) \o+) 21+ (5))°
If r7 = &, then 07 = g Substituting this into the density gives
Ma+7) T T ~y
- (50 ()
I'(a)l(7) O +ra7) (1 g <§)7>

FF(EXO;F(TT)) — 7%, Substituting this in gives

As 7 — oo, we have

() = s ( gfm) e jggv)a
(Y ()
a0 ()

- xfza) (i)w e )

This is the density of an inverse transformed gamma distribution with 7 = and § = &.

H
+
7N
MR

~_
2
~_
|

Q
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The density of the transformed gamma distribution is

raare(5)

fl@) = al(a)fer

We substitute Stirlings formula:

INa) = e~ a3 2r

Now the conditions given imply 87 = 072 and o = 5= + —5. We see that (af7)* = (1 + p7)°.
o= ﬁ + 02172 - UT“T (1 + ;Tlr>’ we have that

u
T

(14 pr)™ = (1+ pr)at ((1 —HW)"%) T = eZedts

Substituting this into the formula, we have that

T\/axme*(%yea

2
" "
zestr T T /21

fz) =

We have that 07 = 0272, and 27 = €71°8% = 1 + 7 log(z) + 772(105(1))2 +.... Therefore (£)" = = +

(log(z))* + .... Substituting this in we get

202
log(z log(x))? 2
f(@) T /aaTet T - E
xTr) =
V2o
. o "
recalling o = —— + -5—, we get
ar —log@) _ (os(e)?  u? log(x) (ar— ) des@n® _ u2
f(2) TVax e o2 202 o2 T ae o2r 202 o2
z) = =
or o
Since ar — —3= = 14, we have obtained
2p log(2) — (log(2)? _ 2
(@) TV ae 202 >
€Tr) =
V2
Finally, as 7/a = % + 4%, as 7 — 0, this becomes %, o)
e 202 o2 e )

@) == T Tavare

which is the density of a log-normal distribution.
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09l
Let [a,b] be the support of the distribution (e and b can be £o0). We know that f:p(x)er(g)”dx = q(0).
Differentiating with respect to 6 gives

b b b
00) = 35 [ s o= [ o) Ger®de = [ payer 0 Ode = Oub)a0)

A (8
This gives u(0) = %.
Differentiating again gives

b
1 (0)q(0) + pu(0)q'(0) = —- / wp(a)e” D de = / v (0)ap(x)e” P du = 1" (0)q(0) 3 (6)

Dividing through by /(6)q(0), we get
1 (9)
r'(0)
©(6)

Since the variance is pb(0) — u(0)?, this is equal to IOR

+u(0)% = p5(9)
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The Gamma distribution is linear exponential with p(z) = %=1, 7(f) = —0~! and () = 6°T'(«). The
mean is therefore ) 4217
q at” ™ o
r'(0)q(0)  0720°T ()

The variance is ,
O _ @ _ o
r'(6) 02
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(a) The PGF of the Poisson distribution is given by

_ e—AeAz

_ ef)\(lfz)

(b) If X; and X, are independent Poisson random variables with parameters A\; and Ay respectively, then
PX1+X2 (Z) = PX1 (Z)PXz (Z) = e_kl(l_Z)e_)Q(l_Z) = e_()\1+A2)(1_Z)

This is the PGF of a Poisson distribution with mean A1 + A».
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Let N be the number of losses and let C be the number of claims. We have that N ~ Poisson(\) and
C|N ~ B(N,p). Therefore we have P(C' = m|N =n) = (')p™(1 — q)"~™. Therefore

oo

ZP P(C =m|N =n)

*iefﬁ < > ")t

,)\p = AT

_ I _ 2 (1_pm
R = (n—m)!( 2
P o AL
¢ Tl nz;n (n—m)!
oA PTAT AT A1-p)
m!
_ e—)\p ()‘p)
m!

This is the probability mass function for a Poisson distribution with mean Ap.
We can also show this more easily with probability generating functions. Let Zi,...,Zxy be indicator
variables of whether a loss leads to a claim. Then C = Z; + --- + Zy, so

E(z9N) = E(z7 - 27" |N) = E(z")" = (1 - p) +p2)"
Therefore
Po(2) =E(:) = EE(GEIN) = B(1 = p) + p2)) = pu (1 = p) + p2) — e 21707402 — 201

which is the PGF of a Poisson distribution with mean Ap.
Next we need to show that the C' and N — C are independent. We have that

P(C=m,N—-C=k)=P(C=m,N=m+k)
=P(N=m+k)P(C=m|N=m+k)
AR I BN
— ¢ A(m—&-k‘)!( m >p (1-p)*
Q)" (A1 - p)*

mlk!

As this separates as a product of functions of m and k, we see that C' and N — C are independant.
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(a) The probability that the number of claims is zero is 0.8'0 = 0.1073741824.
(b) The probability that the number of claims is three is (;')0.2%0.87 = 0.201326592.
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A binomial random variable is a sum of independant Bernoulli random variables. Let the Bernoulli
random variables be Z1,. .., Z,, where each P(Z; = 1) = p. This gives Pz, (z) = E(2%!) = (1 — p) + pz. We
have X = Zy + -+ Z,, so Px(z) = Pz, (2) -+ Pz,(2) = Pz, (2)" = (1 — p+ pz)™.
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If X is a gamma mixture of Poisson random variables with parameters a and 6, then

o0 A" )\afl N 1 00 .
P(X =n)= A o\ = \rta=1,-2(1+3) gy
e /0 ¢ e T il (e /0 ‘

We make the substitution 7 = A (1 + %), then we have dr = (1 + %) d\ the integral becomes

1 —(n+a) 0o 1 n+a
(1 + ) / Tn+a—le—rd,7_ — I‘(n + 0[) (1 + )
9 ) 9

PX =n) = Fr(:rj(Lao)é) <1i9>n (141r9)a

A negative binomial distribution with r = o and 5 =6

and so
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(0l
X has a negative binomial distribution with » = 70, 8 = 0.08, so P(X =0) = (ﬁ)m = 0.004574431, so
prob at least one claim is 1 — 0.004574431 = 0.99543.
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[77] Let X be a negative binomial random variable with parameters r and 3.
<"”‘1> (75) (3)
= n 1+p 1+ 4
" i n+r—1 Bz \"
1+4 = 1+
B 1
“\1+8

1+ﬁ Bz)""

Px(z) =

e

—_

|
—~
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The PGF of the negative binomial distribution is P(z) = (1 + 8 — Bz) . If 18 = A, then this becomes

P(z) = (1 + m_z)) TS

r

as r — oo. Therefore, we have that the limit of the negative binomial distribution is Poisson with mean .
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Binomial

pe__ (@A -pmt - kp_ p T
pr—1 ()PP i1 —p)rktl k(1 —p) l-p k
This is from the (a,b,0) class with @ = =2 and b = {=.
P P
Poisson N
Pr e A
pr—1 67}\7(211—11)! k

This is from the (a,b,0) class with ¢ = 0 and b = A.

Negative Binomial

n_ CT(5) (F5) _wer-ns_ s L=
pe—1 ooy (3 \U( ) k(14+8) 148 k
() () ()

This is from the (a, b,0) class with a = % and b = (lerlgﬁ.

Conversely, suppose X is from the (a,b,0) class. We ignore the degenerate case P(X = 0) = 1, so pg > 0
and p; > 0. If a > 0, we must have b > —a, since otherwise P—é < 0. If a > 1, then for all sufficiently large k&,
we have pp > pr41, which is impossible for a distribution. Therefore, we must have a < 1.

If a =1, then b > —1, we have p,, = (1 — %) DPn—1 > (1 — %) Prn_1 = %pn,l. Iterating this give p,, > %po,
and again Y~ p, does not converge, so we do not get a distribution.

If0<a<1,thenlet =% and r = g + 1, and we see that X follows a negative binomial distribution
with parameters r and .

If a = 0, then X follows a Poisson distribution with mean A = b.

If a < 0, then for large enough n, we have a—l—% < 0,s0p, = (a + %) Pn—1 is only possible if p, = p,_1 = 0.

To achieve this, there must be some N such that a+ % = 0. That is, we must have b = —Na for some N. If we
let p = — %7, then we see that a = —ﬁ and b = le’;, so X follows a binomial distribution with parameters
N and p.
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-v
50
-

UL W N - ™2

kpi
Pr—1

122/861=0.141695703
26/122=0.213114754
15/13=1.153846154
4/3=1.3333333
0
This ratio is increasing, so we have b < 0. This suggests a negative binomial distribution is most appropri-
ate.
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6.6 Truncation and Modification at zero
B

P(X =0) = 1.06"3* = 0.8202761

5.,0.06

P(X=1)=34x1.06" 6= 0.157864457

5.40.062
1.062

So P(X > 0) =0.1797, P(X > 3) = 0.00220085, so the probability that the zero-truncated random variable

. .. 0.00220085 __
is at least 3 is Soarer - = 0.012245728.

= 0.019658593

P(X =2)=44x%34x1.06
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The distribution is a zero-modified negative binomial distribution. Without the modification, the
probability that an individual makes no claims is 1.77%® = 0.654095050552. Therefore the probability that
a random individual buys the policy is 1 — 2:684095080552 _ ) 672952474724. The probability that an insured
individual makes 0 claims is therefore 72:021095050%02 . — (0.485989037205. The probability that an individual
makes n claims, for n > 0 is

1 (1.7)-08 n+r—1\/7\"
0.672952474724 " n 17
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(a) For truncated (a,b,1) distribution, since the probabilities sum to 1 we have

o (1 (ar D) (o 2) (o 2) 5.0)

(r-1)8
18

o (59 (45 (579) )

Multiplying out each term and multiplying by ra gives

1 1 2
L TOED) o TR 5
ra 2 3!

_ B _
Now we havea—mandb—

sorz%—i—l,and

(s

The series in the brackets is a binomial expansion of (1 —a)™" — 1, so we have

B ra _ s
b1 = (1701)77"7]_ - (1+5)((1+B)Tﬁ]‘)

(b) The expected value is given by

b b b
E(X):p1—|—2<a—|—2>p1+3<a+2> (a+3)p1+...

=m (1+2a+3a(a+g)+4a(a+g) (a—i—Z)—I—...—HH—b(a—&-g)—&—b(a—&—g) <a+

=p1+a+aE(X)+b

We solve this to get

E(X) = pta+b
l1—-a
For the ETNB, this is
(r=1)B B
p1+ + 5
E(X) = PR = pi (14 8) + 1
=175
Substituting p; from (a) gives
rf 1 rp
EX:—H"ﬁzrﬂ(l—k ):
W= @rer ) " T-a+a
(c) If r =0, then b = —a and we have p?’il =a—2%=a"L sop, = pla:ﬂ. We therefore get
2 —p1 log(1 —
Pep (14 % 4% o mlosll—a)
2 3 a
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we have —log(1 — a) = log(1 + ) This gives

- 8
Pr= 04 B)log(1 + B)

(d) The expectation of a logarithmic distribution is

: __B
Since a = 5
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(a) From Question [83|(a), we have
r8 —0.6 x 0.8

= = = 0.897286525399
P B+ /) —1) ~ 1.8(1.8-06 1)
We also have a = % = % = % and b = —1.6a, so pi’—”_’l = % (1 — L), This gives

AN 1.6 1.6

pn = 0.897286525399 | — 1—— - (1-——

9 2 n

From Question [83|(b),
b 0.897286525399 — 0.6 x £

E(x) =2 teto 5 9 _ 113511574572

l1—a 5

(b) From Question [83{c), we have

3 0.5
= = = 0.822101154126
P (1+p8)log(1+p5) 1.5log(1.5)
We also have a = % =% =1andb=—a,so ol = 1 (1) and p, = 2 = 240030346258
From Question [83{(d), we have
3 0.5

E(X) = = = 1.2331517311
X) = g+ ) ~ Tog(15) 3315175119
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8 Frequency and Severity with Coverage Modifications

8.2 Deductibles

[R5 The Burr distribution has survival function

(a)

The new distribution has survival function

- 5 )

(b) with a franchise deductible, expected value of the claim is

1000 + / <+000> dx
1000 \ 07 +z7

Numerically, we see this integral is 33442.51
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8.3 Loss Elimination Ratio and the Effect of Inflation

S0l
The inverse Gamma has pdf

(&)t _ ()

el(a)  2.423965z

The expected value is %. On the other hand, if the company introduces a deductible of $500, the expected

claim value per loss is

o0 (200032 2600 co (200032 o200 P (200032 o 2600
—500) 22— dr = ~rt——dz — 500 ~—r
/500(x ) %965 @ /500 04239650 /500 24239650
We substitute y = 2(;& with % = —2320 = —%. Now the expected claim per loss is

4 1.2 _— 4 0.2 —
2000y*<“e™Y 2000y~ <e™Y
SV C e —500 [ nL S dr = 553.0085 — 276.2932 = 276.7153
/O 2423965 /0 2.423965

So the loss elimination ratio is 1 — % =1—0.30438683 = 0.69561317.
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wlog 6 = 1, so the expected loss without a deductible is é = % With a deductible, the expected loss is

© © 1
/2 (1+x)2dm_/3 T

The loss elimination ratio is therefore g.
After inflation of 100%, # has doubled, so the deductible is now equal to . We can again assume wlog that
0 = 1, so with the deductible, the expected loss is

< o 1
" dr= 20y = =
/1 1+ a2 /2y 78

The loss elimination ratio is therefore %.
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=

(a) The Weibull distribution has survival function e_(%)T, so the expected loss is

SRt S % o—a 1
/ e~ (5) dg = 3000/ eV dy = 3000/ _da = 10000 (3) — 2678.939
0 0 0

3a3

(b) With the policy limit, the expected loss is

513

5000 . 5, (3)" e
/ e (5) de = 3000/ eV dy = 3000/ _da
0 0 0 3

3a
1 5\°
= 1000 (5 ) P{ X < (3 = 2675.811

(c) If there is 20% inflation, the new distribution is a Weibull distribution with 6 = 3.6 and 7 = 3, so the
expected claim with the policy limit is

5000 . 2 . (%) -
/ e (8) do = 3600/ eV dy = 3600/ _da
0 0 0 3as

1 25\*
—1200r (=) P x < (22 = 3179.
00 <3) ( <<18)> 3179.07

‘o : 3179.07 _
This is an increase of SeERIT — 1= 18.81%
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138
For loss of $6,000, the insurance pays $4,000, so the insured pays $2,000. The insured has paid $10,000
when the total loss is $14,000. The expected claim is therefore

6000 1
0.8/ o +0.9/ o da
1000 (1 + z55) 14000 (1 + £55)

Substituting y = 5000 + =, we get the expected claim amount is

11000 o)
0.8/ 50002y~ 2dy + 0.9/ 5000%y~2dy = 50002(0.8[—y16e00° + 0.9y 15%000)
6

000 19000
_ 50002 08 08 N 0.9 \ _ 308000 — 168000 + 297000 437000
- 6000 11000 = 14000 ) 462 462
= $945.89
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90

The probability that a loss results in a payment is e 3.

By the memoryless property of the exponential distribution, Y is exponentially distributed with mean
10000. It therefore has mean 10000 and variance 100002, so the coefficient of variation is 1.

E(Y*) = 10000 / e *dx = 10000e?
3

and
Var(Y1) = 100002 73(1 — e73) 4+ ¢7310000% = 10000%e¢~3(2 — e~3)

The coefficient of variation of the per-loss random variable is therefore

/o=3(9 — =3
VETZ ) 3\ fa o8 = 6.25868
(&
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2 9 Aggregate Loss Models

9.2 Model Choices
91
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9.3 The Compound Model for Aggregate Claims

Let the moments of the primary distribution be py, p2, t3 (and similar notation for raw moments). Let the
moments of the secondary distribution be v, 15,3 (and similar notation for raw moments).

Recall that P(z) = M(logz),so P'(z) = 7M/(lzg(z)), P"(z) = M”(log(z))z_zM/(lOg(z)), and P (z) = MW(log(z))_SMH(zla?g(z))Jr?M/(log(z))

In particular, P'(1) = u, P"(1) = ph — p and P"'(1) = ph — 3ub + 2p.
m.g.f. of compound model is P(M(z)) first 3 derivatives of this at 0 are:

M(0)P/(M(0)) = M/(0)P'(1) =
M"(0)P'(1) + M'(0)*P"(1) = pwy + (py — p)v°
M (0)P'(1) 4+ 3M" (0)M"(0)P" (1) + M'(0)>P" (1) = s + 3(us — p)vvy + (py — 3ps + 2p)v°
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92|
For a given claim, the amount reimbursed has mean
1000 + 0.8 x 500 = 1400, and variance 500% + 0.8% x 3002 + 2 x 0.8 x 100000 = 467, 600.

The mean of the aggregate claims is therefore: 4 x 1400 = 5600. The variance is given by the law of total
variance

Var(A) = E(N Var(X;)) + Var(NE(X;))
= E(N) Var(X;) + E(X;)? Var(N)
= 4 x 467600 + 14007 x 4
= 9710400

Alternatively, the raw second moment is

4 x (467600 + 1400%) + (20 — 4) x 14002 = 1,870,400 + 7,840, 000 + 31, 360, 000 = 41,070, 400

The variance is this minus 56002, which is 9, 710, 400.
The standard deviation is the square root of this or 3,116.15.
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94]

mean=4 x 6 x 16 = 384. Variance=uvs + usv?> = 6 x 16 x f—; +4%2 x 16 x 6 x 7 = 512 + 512 x 21
The standard deviation is therefore 32v/11. 95th percentile is 1.645 standard deviations above the mean or
384 + 52.644/11 = 558.59.
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Prob of stop-loss is e
claim=e~12%0. Premium is 2e

in fact value 0.9 was used instead of theta, so premium is 1.8e~1-2%¢, and stop loss is really set at 1.25 x
0.9 = 1.1256, so expected payment on stop-loss is e~1'12%0. Percentage loading is therefore % —-1=
1.8¢70125 — 1 =1.588494 — 1 = 58.85%.

—1.25  Expected stop-loss claim conditional on claim is 6, so expected stop-loss

—1.250
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9.8 Individual Risk Model

90l
We will use a normal approximation for the first three types of workers, then treat the senior managers
separately. We have the following for the first 3 types of workers:

Type of E(N) Var(N) E(S) Var(S)
Worker (millions)  x101°
Manual Labourer 46.22 45.7578  4.622 45.7578
Administrator 7.08 7.06584 0.6372 5.7233304
Manager 8.02 7.9398  1.604 31.7592
Total 6.8632 83.2403304

Thus the aggregate losses for the first three groups can be approximated by a normal distribution with
mean $6,863,200 and standard deviation /832403304000 = $912, 361.388924. We find the probability that the
aggregate losses exceed $10,000,000 by conditioning on the number of senior managers who die.

We can consider the various cases in a table
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Senior Managers

0O Ut W~ O

36

Probability

4.832131 x 10~
3.550137 x 10~01
1.267906 x 10701
2.932572 x 10792
4.937494 x 10793
6.448972 x 104
6.799936 x 1079
5.947466 x 10796
4.399911 x 10797
2.793594 x 10708
1.539327 x 10799
7.425327 x 10711
3.157027 x 10~12
1.189461 x 10~ 13
3.987988 x 10~1°
1.193683 x 1016
3.197366 x 10~18
7.676750 x 10~20
1.653722 x 10~2!
3.197313 x 10~28
5.546360 x 10~2°
8.624078 x 10~27
1.200011 x 10—28
1.490697 x 10—30
1.647879 x 10732
1.614249 x 1034
1.393778 x 1036
1.053498 x 1038
6.910704 x 10~
3.890614 x 10~43
1.852674 x 10~4°
7.318000 x 10748
2.333546 x 1050
5.772531 x 10753
1.039471 x 1075
1.212212 x 10758
6.871948 x 1062

Z-statistic
3.4381113
2.3420544
1.2459975
0.1499406
—0.9461163
—2.0421732
—3.1382301
—4.2342870
—5.3303439
—6.4264008
—7.5224577
—8.6185146
—9.7145715
10.8106285
11.9066854
13.0027423
14.0987992
15.1948561
16.2909130
17.3869699
18.4830268
19.5790837
20.6751406
21.7711975
22.8672544
23.9633113
25.0593682
26.1554251
27.2514820
28.3475389
29.4435958
30.5396527
31.6357096
32.7317665
33.8278234
34.9238803
36.0199372

Probability aggregate more than 10,000,000 P

0.0002928934
0.0095889599
0.1063826587
0.4404057460
0.8279553694
0.9794328242
0.9991501431
0.9999885361
0.9999999510
0.9999999999
1.0000000000
1.0000000000
1.0000000000
1.0000000000
1.0000000000
1.0000000000
1.0000000000
1.0000000000
1.0000000000
1.0000000000
1.0000000000
1.0000000000
1.0000000000
1.0000000000
1.0000000000
1.0000000000
1.0000000000
1.0000000000
1.0000000000
1.0000000000
1.0000000000
1.0000000000
1.0000000000
1.0000000000
1.0000000000
1.0000000000
1.0000000000

1.415300 x 10~%
3.404212 x 10793
1.348832 x 10792
1.291522 x 10792
4.088025 x 10793
6.316334 x 10~%4
6.794157 x 1079°
5.947398 x 10~06
4.399911 x 10797
2.793594 x 10708
1.539327 x 10799
7.425327 x 10711
3.157027 x 10~12
1.189461 x 10~ 13
3.987988 x 10~ 1°
1.193683 x 1016
3.197366 x 10~18
7.676750 x 10—20
1.653722 x 10~2!
3.197313 x 10~23
5.546360 x 1072°
8.624078 x 10~27
1.200011 x 1028
1.490697 x 10—30
1.647879 x 10732
1.614249 x 1034
1.393778 x 1036
1.053498 x 1038
6.910704 x 10~4
3.890614 x 10~43
1.852674 x 10~4°
7.318000 x 1048
2.333546 x 10~°0
5.772531 x 10753
1.039471 x 107%°
1.212212 x 10728
6.871948 x 10762

Total probability 0.0347433.

102



97

The mean aggregate loss is 6863200 + 720000 = $7,583,200, and the variance of the aggregate loss is
832403304000 + 705600000000 = 1538003304000, (so the standard deviation is 1240162.61192)

(a) Using a normal distribution, the probability that the aggregate loss exceeds 10,000,000 is 1—® (W) =
1 — ®(1.94877669813) = 0.02566105.

(b) Using a gamma distribution, we have § = 1538093582000 — 902817.188522 and @ = gyyroeagdss =

7583200
37.3893359594 We are trying to calculate the probability that the distribution is more than 49.30548575736,

which is given by Jibssssrza st ¢ T _ 0 03494672

(72 . . .
(c) Using a log-normal distribution, the mean of a log-normal distribution is e#* 2| while the variance is

249 (e7" — 1). We therefore have ¢7” — 1 = 1338008304000 _ () (267455940133, s0 0> = log(1.02674559401) =

: : _ 7583200 _ —
10g(10000000)—15.8282487408) - 1-

The probability that this is greater than 10,000,000 is therefore 1 — ® ( 026301836110
d (1.78408099245) = 0.03720525
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93]
Type of Driver E(N) Var(N) E(S) Var(9)
(thousands)  (millions)

Safe 16 15.68 48 177.12
Average 105 99.75 420 1864.8
Unsafe 60 52.8 300 1455
768 3496.92
(a) The gamma approximation therefore has § = 2420920000 — 1185640 — 4553 98125 and a = o000 =

168.669572080573.
We get soooﬂ = 175.697470917264
The expected payment on the stop-loss insurance is therefore

0 oo
—/ (z% — 175.69747091726435&’1)e’””dx = $11,234.2
[(a) J175.697470917264

The expected square of the payment on the stop-loss insurance is therefore

0?2 >
—_— / (:cC‘Jrl — 2 x 175.697470917264x“ + 175.697470917264%“’1)6’””5{93 = 740555835
['(a) J175.697470917264

so the variance of the stop-loss payment is 614348585, and the standard deviation is $24, 786.06

The reinsurance premium is therefore $36,020.26.

(b) The normal approximation has p = 768000 and o2 = 3496920000, so the standard deviation is
59134.761350664128 and the cut-off for the stop-loss is 0.541136875656 standard deviations above the mean.
The expected payment of the stop-loss is therefore

M

59134.761350664128 Jo.sarnseszsose (¢ — 0-541136875656)e ™ =

Vo
= 59134.761350664128 <[6 - ]05\/421;36875656 — 0.541136875656(1 — @(0.541136875656)))
™
. OA54113(;8756562
= 59134.761350664128 (ﬁ — 0.541136875656(1 — @(0.541136875656))) = 10963.59
™
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The expected square of the payment is

(z — 0.541136875656)2¢~ %

59134.7613506641282 Josaisesrse0

V2T
.7:2
= 59134.761350664128> Josarisesrsose(#” — 1.0822737513127 + 0.292829118194)e” 7
V2T
59134.7613506641282 [ [ o0
- (/ p (a:e_T) da — 1.082273751312/ ze= % dn
V 27T 0.541136875656 0.541136875656
oo w2
4£0.292829118194 / e dx)
0.541136875656
59134.7613506641282 L2700 o0 L2700
- ([—xe—z} / e~ dx — 1.082273751312 [—6—7]
V2r 0.541136875656 ./ 0.541136875656 0.541136875656

+0.292829118194 (1 — @(0.541136875656)))

5411 , 2
= 59134.761350664128> <1.292829118194 (1 — ®(0.541136875656)) — 0.541136875656 _o.st11asms0e >

V2T
= 677982110.383

So the variance is 677982110.383 — 10963.592 = 557781804.695
The standard deviation is 23617.4046986 26038.088226267980, so the premium is 10963.59+23617.4046986 =
$34, 580.99.
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if 20% are smokers, the expected number of claims per policy is 0.2 x 0.02 + 0.8 x 0.01 = 0.012, so the
premium is set to 1.1 x 12 = 1.32. If 30% are smokers, the expected number of claims is per policy is 0.013.
The variance of the number of claims is 0.3 x 0.02 x 0.98 + 0.7 x 0.01 x 0.99 = 0.01281. The mean aggregate
claim is therefore 13n and the variance of the aggregate claims is 12810n. The total premium is 13.2n. The

s . . : 13.2n—13n ;
probability that the total claims exceed total premiums is therefore 1 — ® (W) < 0.2. This means that

PR = 0.00176707682335y/n > 0.8416212 This means n > (porssiisalz —)? = 226841.479733.
So at least 226841 lives.

106



17 Introduction and Limited Fluctuation Credibility

17.2 Limited Fluctuation Credibility Theory

17.3 Full Credibility

100
(a) The number of claims made is a binomial distribution with n = 372 x 7 = 2604 and some unknown p.

The expected number of claims is np and the variance is np(1 — p), so the relative error % is approximately

normally distributed with mean zero and variance 171;;’. We therefore want to check whether ® ( \;%) > 0.975
np

(two-sided confidence interval).
In this example, the total number of claims in seven years of experience is 9. This sets p = ﬁ, and

. 1
P 005 = _ 015 = 0.5597202 < 0.975
1—p 1— 9
np 2604

So the company should not assign full credibility.

(b) Suppose we continue with the assumption that p = ﬁ. Then we want to find the n such that

o 005 | _ ® (0.15\/5) 0.975

1-p V2595
np

1

0.15y/n 106

V2595

1.962 x 2595
= = 77T — 443064.
n 0152 3064.5

If the company continues to employ 372 employees, then this equates to 1191.034 years.
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1ot
Recall that we had

0. ?5 =0.975
np
0.05, / =1.96
= 39.22

1 _
np = 1536.64(1 — p)
(n + 1536.64)p = 1536.64

153664

P T 1536.64
 1536.64n

P 1536.64

If p is small (and n is large), we can approximate 1 —p = 0, so the standard for full credibility is 1568.64
claims. If n is smaller, then the standard for full credibility also gets smaller. For example, if n = 1536.64,
then the standard for full credibility is only half as much.
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1LO2)

(a)
Based on the data, the coefficient of variation is 3966025_'1542 = 3.747396. Assuming the number of claims is

large enough to use a normal approximation, we have that the critical value is 1.96 at the 95% confidence level.

This means that the coefficient of variation for the average X is % = 0.01831247. Multiplying by 1.96

gives us the relative 95% confidence interval as 0.03589244. Since this is less than 0.05, the company should
assign full credibility to this data.
(b) The insurance company will assign full credibility if

3747396 1 96 < 0.05
NG

(1.96 x 3.747396

n2|—————

2
= 21579
0.05 )
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17.4 Partial Credibility

03]

The partial credibility assigned is Z = 1/@ = 0.0766632
The credibility premium is therefore

126000

0.0766632 x + 0.9233368 x 1000 = $949.303367742

Using 1568.64 claims as the standard for full credibility gives Z = 4/ 1569W = 0.075746
The credibility premium is therefore

0.075746 x 338.7097 + 0.924254 x 1000 = $949.91
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(a) The credibility for claim frequency is Z = 4/ % = 0.2124397, so the credibility estimate for claim
frequency is 0.2124397 x 1.9 4 0.7875603 x 1.2 = 1.348708.
The credibility for claim severity is Z = % = 0.1237844, so the credibility estimate for claim severity

is 0.1237844 x % + 0.8762156 x 230 = 239.4597. The credibility estimate for aggregate claims is therefore
1.348708 x 239.4597 = $322.9613.

(b) The credibility for claim frequency is Z = ,/% = 0.128761, so the credibility estimate for claim
frequency is 0.128761 x 1.9 + 0.871239 x 1.2 = 1.290133.
The credibility for claim severity is Z = 61% = 0.1763422, so the credibility estimate for claim severity

is 0.1763422 x % 4 0.8236578 x 230 = 243.4763. The credibility estimate for aggregate claims is therefore
1.290133 x 243.4763 = $314.1168.

(¢) The credibility for aggregate losses is Z = \/% = 0.1581139. The credibility premium is therefore
0.1581139 x 582.2 + 0.8418861 x 276 = $324.4145.

(d) The credibility for aggregate losses is Z = \/% = 0.1. The credibility premium is therefore 0.1 x
582.2 + 0.9 x 276 = $306.62.
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17.5 Problems with this Approach

105
Using a normal approximation, the standard for full credibility is

r/n
d (I) >1-—
T
where 7 is the coefficient of variation of X. For our data, we have

/82402 99
;o V8240268 X 3722 o 6011
3506608

N3

The standard for full credibility is therefore given by

i = 3.045911 ((I)*l (1 B g))

The credibility is

/3722 V3722 20.02297r
Z = = T =
no 3.0469110-1 (1-%5) &-1(1-5)
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