ACSC/STAT 3740, Predictive Analytics

WINTER 2023
Toby Kenney

Homework Sheet 4
Model Solutions

Note: All data sets in this homework are simulated.

Standard Questions

1. The file HW4Q1. tzt contains data on the relation between economic policy
and child poverty rates. The data set contains the following variables:

Variable Meaning

base.tax The lowest rate of income tax

top.tax The highest marginal rate of income tax

gdp The per.capita gdp

free.health Whether the country has government-provided healthcare

free.school.years  Number of years of government-funded education
free.higher.edu, Whether the government funds higher education.
child.poverty The percentage of children living in poverty

A data analyst uses the following code to fit a linear regression model to
the data.

HWjQK—read . table ("HW/QL. tzt”)
HW4 Q1 linear<—Im( child.poverty ~., data=HW/Q1)

Use appropriate diagnostics to assess how appropriate the assumptions of
the linear regression model are. What changes would you suggest making
to the model to better model the data?

We start by making plots of residuals vs. fitted values; Q-Q plots of
residuals; Scale vs. location; and Cook’s distance vs. leverage
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We note the following:

e Residuals seem to be independent of fitted values.
e There are two slight outliers.
e Residuals are positively skewed, so not normal.

e The outliers do not have a huge influence on the slope of the line.

The first thing to do it to remove the outliers, and either transform the
response variable, or use a generalised linear model. Since the response
is a percentage, a logistic transformation may be possible. Sometimes a
transformation can affect heteroskedacity and normality of residuals. We
will refit the model with the logistic transformation and outliers removed,
then make the usual diagnostic plots.
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This model also does not appear to suffer from non-linear effects or het-
eroskedasticity, but the residuals are now negatively skewed, with a few
outliers. We try a generalised linear model with a gamma response.
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This time, the diagnostic plots indicate that the model fits the data fairly
well. We should also compare cross-validated or test predictions from
these models to confirm that they fit better.

. A data scientist at a car manufacturing company is analysing data about
engine efficiency in the file HW4G2. txt.

Variable Meaning

cylinder.number — The number of cylinders

fuel.type Regular, premium, diesel or electric
vehicle.weight The weight of the vehicle.

vehicle.speed The speed at which the vehicle is being driven
vehicle.make The manufacturer of the vehicle

mpg The vehicles miles per gallon

He has fitted a linear model to predict mpg, using the code in the file
HWAQ2_linear.R. Perform diagnostics to test which of the assumptions of
this model are reasonable. What changes would you suggest making to the
model to better model the data?

We first plot the usual diagnostic plots of residuals vs. fitted values; Q-Q



plots of residuals; Scale vs. location; and Cook’s distance vs. leverage
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We see a slightly strange pattern in the residuals, with several separate
curves. This type of pattern is often caused by discrete (or rounded) re-
sponse variables. In this case, we see that mpg is rounded to the nearest
whole number. We also see a very nonlinear pattern in the residuals,
suggesting either a transformation of the response variable or the inclu-
sion of non-linear transformations of predictors are appropriate. It seems
that the variance of mpg increases with fitted value, which suggests a log-
transformation of mpg. There are also a number of high leverage points.
After fitting a model with log-transformed mpg, we get the following diag-
nostic plots:
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The mean residuals are closer to linear, but there is still some heteroskedas-
ticity, and the residuals are very non-normal. To help interpret these re-
sults, we colour the plots of fitted values against true values by vehicle
make.
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We see that the variance of the residuals is different for different makes
of vehicle. We also see that the data points are in very regular patterns.
This might suggest that some predictors behave differently for different
makes, which could be modelled using interaction terms. To assess this,
we include a plot that shows more of the predictors. Since the patterns
for different vehicle speeds seem very regular, we have selected a single
speed for each vehicle to make the plot easier to follow.
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We see that the variance of the residuals is different for different vehicle
makes, but the residuals do not show any relation to other predictors,
which would be expected if interaction terms could resolve the issue.

. A scientist is reviewing data about the relation between the strength of a
material and the production technique, in the file HW4Q3. txt.

Variable Meaning

carbon.proportion The proportion of carbon in the mixture
titanium.proportion  The proportion of titanium in the mizture
production.temp The temperature used to produce the material
production.pressure  The pressure used to produce the material

cooling.time The time period over which the mixture is allowed to cool
tensile.strength The strength of the eventual material

She has fitted a generalised additive model, a random forest model and
a generalised linear model including a number of interaction terms and
polynomial terms, to predict the total damage, using the code in the file
HW4Q3_models.R. Assess which of these models is better at predicting the
data. [You may need to modify the code provided to do this.]



The simplest approach is to divide the data into a training and test data
set, and compare predictive performance on the test data. Since some of
the models are fitted on a log-transformed scale, and some are fitted on
the original scale, we should compare performance on both scales.



HWA4Q3<—read . table ("HW4Q3. txt”)

library (mgcv)
library (caret)
library (dplyr)

n<—423
train.index<—createDataPartition (HW4Q3$tensile.strength, p = 0.75, list = TRUE)[[1]]

HWA4Q3. train <-HW4Q3[ train . index , ]
HW4Q3. test <-HW4Q3[ train . index , |

### Creating stratified folds makes unequal fold sizes

### Fit a smooth function on cooling.time , production.temp and
### production.pressure, but not on carbon.proportion and

### titanium . proportion. The dataset is fairly small, so fitting a
### model with too many degrees of freedom can be inaccurate.

GAM. Model . train <—gam(log (tensile .strength) s (cooling.time)+
carbon . proportion+
titanium . proportion+
s(production .temp)+
s(production. pressure),
data=HW4Q3. train)

### Random forest is fairly straightforward. On my computer, 500 trees
### does not take long, because it is a small data set. If it is

### slower on your computer, you can try reducing ntree, though I

### doubt that will be necessary.

RF.Model. train<—train (HW4Q3. train [, —6],
HW4Q3. train [ ,6],
trControl=trainControl (method="repeatedcv” ,number=10,repeats=2),
tuneGrid=expand. grid (mtry=seq-len (5)),ntree=>500)

### Include quadratic terms for the predictors where we fitted smooth
### functions in the GAM above.

GIM. Formula<—log (tensile .strength)  cooling.time+I(cooling.time"2)+
carbon . proportion+
titanium . proportion+
production .temp+I(production .temp”2)+
production. pressure+I(production. pressure "2)

GLM. Model . train <—Im (GLM. Formula , data=HW4Q3. train )

GLM. Formula2<—log (tensile .strength)  cooling.time+I(cooling.time"2)+
carbon . proportion+
titanium . proportion+
I(carbon.proportion*titanium . proportion)H)
production .temp+I(production.temp”2)+
production. pressure+I(production. pressure "2)

GLM. Model2. train <—Im (GLM. Formula2 , data=HW4Q3. train )

F##H#H# get test errors:




This gives the following predictions
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And the following MSEs.

Method MSE  log-transformed MSE
GAM 137413.68  0.04555893
RF 32393.24  0.21250892
GLM 905671.43  0.35964580
GLM2  729002.94 0.33281756

A better approach is to find the cross-validated predictions.
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### Use cross—validation for a better estimate of prediction errors
n<—423
nFold<—9 #Make 9 folds of size 47

Folds<—createFolds (as.factor (rep(1l,n)),k=nFold)
### Creating stratified folds makes unequal fold sizes

predicted . values<-as.data.frame(matrix (0,n,5)) # prepare matrix for answers

colnames (predicted . values)<—c(”GAM” ,”RF” ,”GLM” ,” GLM2” ,” true”)
predicted . values$true<—HW4Q3$tensile. strength

for (i in seq-len(nFold)){
train .data<-HWAIQ3[—Folds [

i 7]
test .data<-HWAQ3[Folds [[i]]

1]
7]
### Fit a smooth function on cooling.time , production.temp and
### production.pressure, but not on carbon.proportion and

### titanium . proportion. The dataset is fairly small, so fitting a
### model with too many degrees of freedom can be inaccurate.

GAM. Model<—gam(log (tensile .strength) s(cooling.time)+
carbon . proportion+
titanium . proportion+
s(production .temp)+
s(production. pressure),
data=train.data)

### Random forest is fairly straightforward. On my computer, 500 trees
### does not take long, because it is a small data set. If it is

### slower on your computer, you can try reducing ntree, though I

### doubt that will be necessary.

RF.Model<—train (train.data[, —6],
train.data[,6],
trControl=trainControl (method="repeatedcv” ,number=10,repeats=2),
tuneGrid=expand. grid (mtry=seq_-len (5)),ntree=500)

### Include quadratic terms for the predictors where we fitted smooth
### functions in the GAM above.

GLM. Formula<—log (tensile.strength) cooling.time+I(cooling.time"2)+
carbon. proportion+
titanium . proportion+
production .temp+I(production.temp”2)+
production.pressure+I(production. pressure "2)

GLM. Model<—Im (GLM. Formula , data=train . data)

GIM. Formula2<—log (tensile .strength)  cooling.time+I(cooling.time"2)+
carbon.proportion+
titanium . proportion+
I(carbon.proportion*titanium. proportion)+
production .temp+I (production .temp”2)H3
production . pressure+I(production. pressure "2)

GLM. Model2<—Im (GLM. Formula2 , data=train . data)

predicted .values$GAM [Folds

[ [[i]]]<—exp(predict (GAM. Model , newdata=test . data))
predicted .values$SRF [Folds [[i]

[ [[i]

[ [[i]

]

]<—predict (RF.Model ,newdata=test . data)
predicted .valuessGLM [Folds ]
]

< —exp(predict (GLM. Model , newdata=test . data))
predicted . values$GLM2 [ Folds

< —exp(predict (GLM. Model2 ,newdata=test . data))




This gives the following predictions
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Method MSE  log-transformed MSE
GAM 223674.8  0.06675256
RF 170575.3  0.40338575

GLM 1098512.3  0.39341624
GLM2 941347.3  0.37182761

In both cases, random forest performs better on the original scale, while
the GAM performs better on the log-transformed scale.

4. The file HW4Q4 . tzt contains data from an insurance company about the
probability that a settlement offer is accepted. The data set contains the
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following variables:

Variable Meaning

accident.year The year of the accident

number. affected The number of individuals affected by the acci-
dent

property.damage The estimated amount of property damage.

injury.loss The direct loss due to injury.

injured.sex The sex of the injured party.

injured.age The age of the injured party.

ingured.salary The salary of the injured individual.

settlement.amount — The amount of settlement offered.
settlement.accepted ~ Whether the settlement was accepted.

A data analyst uses the following code to fit a decision tree to the data:

Reaction_data<—read. table ("HW/Q4. tzt ”)
library (rpart)

Reaction_dt<—rpart(formula=reaction.time ~.,
data=Reaction_data ,
control=rpart.control (minbucket=10, # smallest size of node
mazdepth=10)) # largest depth of tree.

and uses the following code to select variables using stepwise regression

with AIC:

Reaction_Null_model<—Im(reaction.time "1,data=Reaction_data)

Reaction_Full_model<—lm(reaction.time ~.,data=Reaction_data)

library (MASS)
Reaction_Forward<—stepAIC (Reaction_Null_model ,
direction="forward”,
scope=list (lower=Reaction_Null-model
upper=Reaction_Full_-model))

The code is in the filesHW4_Q4_Decision_tree.R and HW4_Q4_Stepwise_AIC.R
respectively.

Based on the results of these analyses, how could he try to adjust the
models to better fit the data?

We first examine the fitted decision tree:
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We see that the variables injury.loss, settlement.amount and property.damage
are the most important. This is also found by the forward selection
method, which selects only injury.loss and settlement.amount.

The decision tree could certainly be better tuned, possibly by using cross-
validation to select the complexity parameter.

The structure of the tree, with different variables interacting suggests that
interaction terms may be helpful. We also plot the moving averages of the
predicted and true probabilities of acceptance for the two methods.

Forward selection:
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We see that for both methods, the predicted probability of acceptance
does not vary very much between points. The decision tree is fairly well
callibrated (but note that these are traning predictions, so there could still
be overfitting, leading to miscallibration). The forward selection method
shows clear signs of miscallibration, indicating that the probability is likely
to be a non-linear function of the predictors. We should therefore add
interaction terms or higher order terms (possibly a GAM would be appro-
priate).

Random forest is often a good approach to improve accuracy for tree-based
methods. It should at least be compared for this dataset.
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