ACSC/STAT 3740, Predictive Analytics

WINTER 2025
Toby Kenney

Homework Sheet 1
Model Solutions

[Note: all data in this homework are simulated.]

[Note: With many of these problems, there is no “correct” solution. These
model solutions give a range of reasonable approaches, but there are many other
good approaches that could be taken.]

Basic Questions

1. A former colleague has produced the code in the file HW1Q1.R to process the
sports-analytics dataset in the file HW1Q1. tzt, before leaving the company.
The code s intended to remove all rows with Balls.remaining equal to
zero. Howewver, it does not work. Ezplain why the code does not work, and
how to make it work, and how to restructure it in a better way.

Upon running the code, we get the error message “missing value where
TRUE/FALSE needed”. This indicates that cricket.data$Balls.remaining[i]==
is null. We can see that this happens when 1 is 8390, and the correspond-

ing row is full of NA values. Looking at the new dimensions of the data

frame, we see that it has grown significantly, instead of having rows re-

moved. The problem comes from the precedence of the : operation. The

line to remove the bad row should include parentheses.

cricket.data<-rbind(cricket.datal1:(i-1),],cricket.datal[(i+1):n,])

After making this change, we still get the same error at the same value of
i. However, the dimension of the data frame is now almost correct, but
the last several rows of the data frame are all NA. This is because the for
loop sets the indices at the start, and always runs for those indices, even
after the data frame is shorter. This code can be fixed by running the
loop backwards.

cricket .data<—read.table ("HWIQL. txt”)
n<—dim(cricket .data)[1]

Remove entries with zero balls remaining, as they must be mistakes.
for(i in n:1){
if (cricket.data$Balls.remaining [i]==0){
n<—dim(cricket.data)[1]
cricket .data<—rbind (cricket.data[l:(i—1),],cricket.data[(i+1):n,])

Note that we have also added the line to recalculate n every time a line is
deleted.

This code successfully removes the lines with Balls.remaining==0 in
this dataset. However, it still has a bug. If the first or last row had
Balls.remaining==0, then the code would not work. To make this more
robust, we should use seq-len, and we can use negative indices in the
second subset.

cricket .data<—read.table ("HWIQL. txt”)
n<—dim(cricket .data)[1]

Remove entries with zero balls remaining, as they must be mistakes.
for (i in n:1){
if (cricket.data$Balls.remaining[i]==0){
cricket .data<—rbind (cricket.data[seq_len(i—1),],cricket.data]—seq_len(i),]
}

This fixes the bug, and produces working code. The code is however
inefficient and it is easy to introduce bugs when modifying it. There are
several better ways. The simplest is to directly use the subset operation
to select the desired elements.

cricket .data<—read.table ("HWIQL. txt”)

cricket .data.good<-cricket.data[cricket.data$Balls.remaining[i]>0,]

Alternatively, we can use the dplyr package and its filter command.

cricket .data<—read.table ("HWIQL. txt”)

cricket .data.good<-cricket .data%%filter (Balls.remaining >0)

Both the improved solutions use a new variable for the cleaned data. This
is not essential, but is usually a good practice. It allows for easier debug-
ging, as the original data is still available for comparison.

If we insist on using the loop to remove individual rows one at a time,
the code can be improved by directly creating a vector of the rows to
be removed. As in the previous code, running the loop in reverse avoids
problems with the rows being renumbered. It is still somewhat inefficient
as every removed row needs the table to be recopied.

cricket .data<—read.table ("HWIQL. txt”)
rows . to.remove<—which (cricket.data$Balls.remaining[i]==0)
Remove entries with zero balls remaining, as they must be mistakes.

for (i in rev(rows.to.remove){
cricket .data<—rbind (cricket.data[seq_len(i—1),],cricket.data]—seq-len(i),])
}

2. A government worker is investigating the effect of various parenting tech-
niques on children’s mental health. He has used the code in the file HW1Q2.R
to process the data in the file HW1Q2. tzt. Add comments to the code to
make it easier to follow.

The variables in the data set are explained in the following table:

Variable Meaning

Living.With The child’s household status — one of “Both”, “Mother”, “Father”, “Joint custody”, “Foster”,
“Other”

Family.Income The combined annual household income

Age The child’s age

Siblings The number of siblings the child has

Discipline.strict.rules The extent to which the caregivers strictly enforce rules

Discipline.punishment The extent to which the caregivers use punishment for misbehaviour

Parent.attention The average number of hours per week that the caregivers spend with the child

Freedom The extent to which the child is allowed to act without supervision.

Health. index An index summarising the child’s overall physicall health.

Programmes The average number of hours per week that the child spends in extracurricular programmes.

Screentime The average number of hours per week that the child spends using electronic devices.

Friends The number of friends the child has.

School.Grades.Mathematics The child’s average grade in school mathematics.

School.Grades.English The child’s average grade in school english.

Depression.Score A summary of various psychological surveys assessing the child’s susceptibility to depression.

Here is one way the file could be commented.

Depression . data<—read . table ("HWIQ2. txt”)
library (dplyr) # for filter , mutate and select.

Depression.study.data<—Depression . data%%
filter (Age>10,
The study focuses on children aged 11 and up
Living . With%in%c (” Both” ,” Mother” ,” Father” ,” Joint Custody”),
Only children living with their natural parents.
Health .index >70) # Exclude children with very poor health.
Depression.study.data<—Depression . study . data%%
mutate (
only.child=Siblings==0,
to simplify analysis, we distinguish between only children
and children with siblings.
income . group=cut (Family . Income
breaks=c(0,25000,40000,100000, Inf),
labels=c(” poor”,” low—income” ,” middle—income” ,” high—incomg
We divide income into 4 groups to deal with the
heavy—tailed distribution.
Vo>%select (—c(” Family . Income” ,” Siblings”))
Depression.study.data.transformed<-Depression.study.data%%
mutate (
log . prog=log (Programmes)
log.attention=log (Parent.attention)
VWo>%select (—c(” Programmes” ,” Parent . attention”))
We log—transform Programme time and Parent attention because they
are heavy—tailed.

Screentime . pval<—rep (NA,4)
cut.offs<—c(5,10,20,30)
We try four cut—off values for screentime.

for (i in seq.along(cut.offs)){
cut.off <—cut.offs[i]
temp .data<-Depression . study . data%%

mutate (screen.excess=Screentime>cut. off)%>%select (—c(” Screentime”))

We convert the Screentime to an indicator variable.
model<—Im(Depression.Score ~.,data=temp.data) # fit a linear model
model . sum<—summary (model)
Screentime . pval [i]<—model.sum$coefficients[” screen .excessTRUE” ,4]
extract the p—value for the coefficient of screen.excessTRUE
(Naming conventions may be different on other systems, so you
may need to modify this code).

}

best.cut.off <—cut.offs [Screentime . pval=min(Screentime.pval)]

Y

Select the cut—off that results i% the smallest p—value.

3. A scientist is studying crop growth. Their research assistant was analysing
the data in the file HW10Q3. txzt, and wrote the code in the file HW1Q3.R to
process the data, before leaving suddenly. Upon reviewing the code, the
scientist discovers that the code does not work. Fix the code.

There are several problems with the code. If we attempt to run the code,
we get an error message and two warnings:

Warning messages:

1: In distance[median,] > cutoff :

longer object length is not a multiple of shorter object length
2: In distance[median,] > cutoff :

longer object length is not a multiple of shorter object length

Error in outliers[[i]]$x : § operator is invalid for atomic
vectors

The error messages are typically cryptic. However, examining the outliers
variable, we see that it consists of a single pair of variables x and y, instead
of a list of 10 such pairs — one for each cut-off.

[The error arises because outliers[[1]] refers to outliers$x, which is
a matrix, so the entries do not have names.|

The problem then becomes clear — the function get.outliers does not
accept a vector of values for cut.off, whereas the later code assumes
that it will. We can modify the function so that it can take a vector. [An
alternative approach would be to call the function from the loop. This is
slightly simpler, but if there is a danger that future users might expect it
to handle vectors of cut-offs, then fixing the function is a better solution.]

Plant .data<-read.table ("HWIQ3. txt”)

get.outliers <—function (x,y, distance ,median, cutoff){
This function extracts all observations further from the median than the
cut—off value, using the distance provided.
1If cutoff is a vector, then the function returns a list of the
outliers for each cut—off value
answer<—list (NA, length (cutoff))
for (i in seq-along(cutoff)){
answer [[1]]<—list ("x"=x[distance [median,]>cutoff[i],],” y"=y[distance [medign,] > cut

return (answer)

}

library (glmnet) # for LASSO

X<—model. matrix (yield 7. ,data=Plant . data)

This creates a matrix of predictors to be used in LASSO, converting
categorical variables to indicators.

Calculate a distance matrix between predictors.
inv.cov<—solve (var (X[, —1]))
for(i in seq_len(mn)){
for(j in seq-len(n)){
diff <X[i,-1]-X[j,—1]
distance [i,j]<—sqrt (t(diff)%«%inv.covix%diff)

}

The median point is the one that minimises total distance to other

points.
median<—which (colSums (distance)==min(colSums (distance)))

LASSO<—cv . glmnet (X, Plant . dataS$yield ,alpha=1)
This performs cross—validation to select the best penalty parameter lambda.

coeffs <~LASSOS$glmnet . fit$beta [,LASSOS$lambda.1 se]
Using one standard deviation above the smallest is common practice
##H## to ensure a sparse model

Extract the outliers at 10 cut—off values
cut.offs <—6+seq-len (10)/10
outliers <—get.outliers (X,Plant.data$yield ,distance ,median ,cut. offs)

For each cut—off, calculate the Mean Squared Error for the outliers
Not including the intercept in the prediction
MSE<—rep (1,10)
for (i in seq-len (10)){ .
predictions<—outliers [[1]] $x[,—1]%*% coeffs[—1]
true<—outliers [[i]]$y
MSE[i]<—mean ((predictions—true)"2)

When we run this modified code, we get the error

Error in outliers[[i]]$x[, -1] : incorrect number of dimensions
This is telling us that outliers[[1]]$x is not a matrix, but a vector. We
find that i==9 and outliers[[i]]1$x only has one row. Because it only
has one row, R reduces it to a vector, which makes the code not work. We
need to further improve the get.outliers function by using the option
drop=FALSE in the subset.

Plant .data<-read.table ("HWIQ3. txt”)

get.outliers <—function (x,y, distance ,median, cutoff){
This function extracts all observations further from the median than the
cut—off value, using the distance provided.
1If cutoff is a vector, then the function returns a list of the
outliers for each cut—off value
answer<—list (NA, length (cutoff))
for (i in seq-along(cutoff)){
answer [[1]]<—1list ("x’=x[distance [median,]>cutoff[i],,drop=FALSE],

” 9

y’=y|[distance [median,]>cutoff[i]])

}

return (answer)

}

library (glmnet) # for LASSO

X<—model. matrix (yield 7. ,data=Plant . data)

This creates a matrix of predictors to be used in LASSO, converting
categorical variables to indicators.

Calculate a distance matrix between predictors.
inv.cov<—solve (var (X[, —1]))
for(i in seq-len(mn)){
for(j in seq-len(n)){
diff<X[i,-1]-X[j, 1]
distance [i,j]<—sqrt (t(diff)%«%inv.covix%diff)

}

The median point is the one that minimises total distance to other

points.
median<—which (colSums (distance)==min(colSums (distance)))

LASSO<—cv . glmnet (X, Plant . dataS$yield ,alpha=1)
This performs cross—validation to select the best penalty parameter lambda.

coeffs <~LASSO$glmnet. fit$beta [,LASSO$lambda.1l se |
Using one standard deviation above the smallest is common practice
to ensure a sparse model

Extract the outliers at 10 cut—off values
cut . offs <—6+seq_len (10)/10
outliers<—get.outliers (X,Plant.data$yield ,distance ,median ,cut. offs)

For each cut—off, calculate the Mean Squared Error for the outliers

Not including the intercept in the prediction

MSE<—rep (1,10) 9

for (i in seq_len (10)){
predictions<—outliers [[1]] $x[,—1]%*% coeffs[—1]
true<—outliers [[1]] 8y
MSE[i]<—mean ((predictions—true)"2)

This code now runs without error and produces a vector of MSE val-
ues. The final value is NaN (Not a Number), which is because there are
no outliers above the cut-off 7.0, so taking the mean of an empty set is
undefined.

There is still an error in the code, which does not give any obvious signs.
However, if we check the vector coeffs, we see that it is all zeros. The
reason is that we used LASSO$lambda. 1se as the index, whereas, we need
to use the index for the corresponding value of lambda. That is, we can
use

coeffs<-LASSO$glmnet.fit$betal,LASSO$lambda==LASS0$lambda.1se])
or
coeffs<-LASSO$glmnet.fit$betal,which(LASSO$lambda==LASS0$lambda.1se)])

The full corrected code is

10

Plant .data<-read.table ("HWIQ3. txt”)

get.outliers <—function (x,y, distance ,median, cutoff){
This function extracts all observations further from the median than the
cut—off value, using the distance provided.
1If cutoff is a vector, then the function returns a list of the
outliers for each cut—off value
answer<—list (NA, length (cutoff))
for (i in seq-along(cutoff)){
answer [[1]]<—1list ("x’=x[distance [median,]>cutoff[i],,drop=FALSE],

” 9

y’=y|[distance [median,]>cutoff[i]])

}

return (answer)

}

library (glmnet) # for LASSO

X<—model. matrix (yield 7. ,data=Plant . data)

This creates a matrix of predictors to be used in LASSO, converting
categorical variables to indicators.

Calculate a distance matrix between predictors.
inv.cov<—solve (var (X[, —1]))
for(i in seq-len(mn)){
for(j in seq-len(n)){
diff<X[i,-1]-X[j, 1]
distance [i,j]<—sqrt (t(diff)%«%inv.covix%diff)

}

The median point is the one that minimises total distance to other

points.
median<—which (colSums (distance)==min(colSums (distance)))

LASSO<—cv . glmnet (X, Plant . dataS$yield ,alpha=1)
This performs cross—validation to select the best penalty parameter lambda.

coeffs <~LASSO$glmnet. fit$beta [, which (LASSO$lambda=—LASSO$lambda.1 se)]
Using one standard deviation above the smallest is common practice
to ensure a sparse model

Extract the outliers at 10 cut—off values
cut . offs <—6+seq_len (10)/10
outliers<—get.outliers (X,Plant.data$yield ,distance ,median ,cut. offs)

For each cut—off, calculate the Mean Squared Error for the outliers

Not including the intercept in the prediction

MSE<—rep (1,10) 1

for (i in seq_len (10)){
predictions<—outliers [[1]] $x[,—1]%*% coeffs[—1]
true<—outliers [[1]] 8y
MSE[i]<—mean ((predictions—true)"2)

4. A government researcher is studying the effect of news coverage on elec-
tions. Their research assistant was analysing the data in the file HW1Q4 . txt,
and wrote the code in the file HW1Q4.R to process the data, before leaving
suddenly. Upon reviewing the code, the researcher discovers that the code
does not work. Fizx the code and improve it to reduce the risk of this type
of mistake happenning in future.

The error message here is somewhat cryptic. Examining it carefully, it is
saying that we have referred to the variable MSE from the data frame Folds,
but Folds is not a data frame, it is a vector. Looking at Folds confirms
that it is a vector of “1”s and “2”s. The problem is that Folds is the name
of the global variable used to communicate between the create.folds
and cross.validate functions. The problem can be fixed by renaming
the data frame used to save the results. However, using a global variable
to communicate implicitly between functions is dangerous, and it is likely
that this problem will happen again. To avoid this, the Folds variable
should be explicitly passed between the functions.

12

create . folds<—function (nf,length){

Make folds for cross—validation.

The caret package has better functions to implement this ,
but we needed to avoid the dependency.

nfold <—nf

Folds<—sample(seq_len (nfold), length ,replace=TRUE, prob=rep (1,nfold)/nfold)
#This variable is local.

return (Folds)

}

cross.validate<—function (formula ,data,Folds,nfold){

First call the create.folds function to set up the folds.
Then call this function to make cross—validated predictions.
Folds is now explicitly passed as a parameter.

predictions <—rep (NA,dim(data)[1])

for (i in seq-len(nfold)){
training . data<—data[Folds!=i,]
model<—Im (formula ,data=training . data)
test .data<—data[Folds=i ,]
predictions [Folds==i|<—predict (model ,newdata=test .data)

}

return (predictions)

election .data<-read.table ("HWIM4. txt”)
n<—dim (election .data)[1]

Try different numbers of folds and compare the cross—validated MSE

##4# Prepare a table for the results:
Folds<—data.frame(” folds”’=c(2,3,4,5,10,20) ,”"MSE’=rep (NA,6))

for (i in seq-len (6)){
#H## Now we can use a different name for the variable to pass folds
between the functions, using a lower—case "f7.
folds<—create.folds (Folds$folds[i],n)
cv.pred<—cross.validate (Outcome ™., election.data, folds ,Folds$folds[i])
calculate mean—squared error.
Folds$MSE [i]<—mean ((cv.pred—election .data$Outcome) " 2)
}

13

If we feel it is necessary, or at least convenient to share variables implicitly,
we need to create an environment for these functions that will allow us to
pass variables that cannot clash with global variables. This can be done
by creating the interacting functions with another function.

14

make . functions <—function (){
These variables are local to the make.functions function

Thus, only functions defined inside this function can access them.

nfold <—0
Folds<-NULL

create.folds<—function (nf,length){

###+ Make folds for cross—validation.
The caret package has better functions to implement this ,

but we needed to avoid the dependency.

nfold <<—nf
Folds<<—sample(seq_len (nfold),length ,replace=TRUE, prob=rep (1,nfold)/nfold

}

cross.validate<—function (formula ,data){
First call the create.folds function to set up the folds.
##4# Then call this function to make cross—validated predictions.

predictions <—rep (NA,dim(data)[1])

for (i in seq-len(nfold)){
training .data<—data[Folds!=i,]
model<—Im (formula ,data=training . data)

test .data<—data[Folds=i ,]
predictions [Folds=i|<—predict (model ,newdata=test .data)

}

return (predictions)
}

return (list (" create . folds”=create.folds ,” cross.validate”’=cross.validate))

}

To make them accessible functions, we need a few extra lines of code.

functions <-make. functions ()
create.folds<—functions$create. folds
cross.validate<—functions$cross. validate

election .data<—read.table ("HWIM4. txt”)
n<—dim(election.data)[1]

Try different numbers of folds and compare the cross—validated MSE

Prepare a table for the results: 15
Folds<—data.frame(” folds”’=c(2,3,4,5,10,20) ,”"MSE’=rep (NA,6))

for (i in seq-len (6)){
create . folds (Folds$folds[i],n)
cv.pred<—cross.validate (Outcome ™., election .data)

calculate mean—squared error.
FoldsSMSE lil<c—mean ((cv _ pred—election data$Outcome)”2)

Another approach would be to make the functions into a package. This
would mean that unless the global variable Folds is exported, it would
remain in the package’s namespace and thus avoid any clashes with other
variables with the same name. Approaches that use global variables are a
bad idea for this simple code where only a single vector of folds needs to be
passed between functions, but might make things simpler if the functions
need to pass a large number of variables.

. The code in the file HW105.R is a script for processing a reinsurance com-
pany’s contract records. Improve the code to make it more reusable and
less error-prone.

Examining the code, we identify several issues that cause the code not to
be reusable or robust.

e The exchange rates are hard-coded into the code. If an exchange rate
changes, it will need to be updated in multiple places. If any one is
missed, it will cause errors.

e The code is almost the same for all cases, but is repeated in each case.
Any updates to the methods need to be changed in every branch,
leading to the possibility of mistakes. The code should be redesigned
to use a single piece of code, either using a function or by using
variables to prepare before the code. Indeed, we can see a mistake in
the code — there is no checking the policy limit for Quota-sharing
contracts in Germany. This is almost certainly a mistake caused by
the bad code design.

e The branching code assumes that all entries are from the available set
of entries, and are correctly input. If any entry is misformatted or if
a new country or contract type is added, the entry will be incorrectly
processed. The code should check for this and produce an error.

e The filename automatically uses the current date. It may be nec-
essary to process records from a previous day. The code should be
modified to allow that, probably using a function.

e The main loop over transactions uses the : operator. If the transac-
tion list is empty, it will cause an error.

We first make a more general function to open the data. The function de-
faults to using todays date, but that can be overriden, or the full filename
can be given.

16

get.contracts<—function (dat=as.character (
as . Date (
date (),
format="%a %b %d YH:9%M:%S %Y”)),
filename=NULL) {
By default , this loads today’s contracts, but another date can be provided.
A full filename can be provided to override the default.
if (is.null(filename)){
###+ if filename not given, use the default for the given date.
return (read.table (paste (” Contracts” ,dat,”.txt” ,sep="_")))

telse{

return (read. table (filename))
}

}

contracts<—get.contracts ()

Rather than using if statements to select the exchange rate, we can create
a function to lookup the exchange rate from a table. We create a lookup
table from two vectors. We create lookup tables for country and currency.
We could create a single table to give the exchange rate for each coun-
try. However, this would include the Euro exchange rate twice, making
it possible that it could be updated incorrectly. Alternatively, it might
be desirable to have different rates, even for countries that use the same
currency if the transactions are processed at different times.

17

Easy to update list of all countries

With relevant information

exchange_rate_data<—list (
"countries”=c(” Canada” ,”USA” ,” France” ,” Germany” ,” China”) ,
"currencies”=c(”CAD” ,”USD” ,”EUR” ,”EUR” ,”RMB”) ,
"currency _list”=c(”CAD” ,”USD” ,”EUR” ,”RMB”) ,
"exchange_rates”=c(1,1.24032,1.64720,1.80394,0.189401)

)

get.rate<—function (country ,data){
##4# This only works for a single country.
Would need to be modified to handle a vector.

We pass exchange rate data as a parameter to ensure that the user
is aware it is used in the function. Leaving it as a global

##4# variable would not be terrible, but keeping it as a parameter
reduces any danger of the user incorrectly specifying it.

if (country%in% data$countries){
country .no=which (country=data$countries)[1]
1f multiple matches, this takes the first
currency=data$currencies [country .no]

telse{

stop (paste (” Country \
}

if (currency %% in data$currencies){
currency .no=which (currency=—data$currency_list)[1]
return (data$exchange_rates|[currency.noj)

telsed

stop (paste (” Currency \
}

9

,country ,”\” mnot in database.” ;sep=""))

9

,currency ,”\” mnot in database.” ;sep=""))

The following modified loop avoids repeating the same code.

18

day .records <—NULL

for(i in seq_-along(contracts)){
record<—contracts[i,]
exch.rate<-get_rate (record$country ,exchange_rate_data)

if (record$contract=="Excess of Loss”){
record$claim=record$loss—record$attachment
}else if(record$contract=="Quota Share”){
record$claim=record$lossxrecord$percentage
}else if(record$contract=="Catastrophe Cover”){
record$claim=record$catastrophe.loss—record$attachment
telse{
Give a clear error message
stop (paste (” Contract type \””,record$contract ,”\” not known.” ;sep=""))
It is important to put quotations around the error, as
trailing spaces can cause errors.
}
These lines appear to be almost the same in all cases
1t is better to put them only once.
if (record$claim <0){
record$claim=0

if (record$claim>record$limit){
record$claim=record$limit
}

record$profit=record$premium—record$claim
if (record$contract=="Quota Share”){

record$profit=record$profit—record$ceding.commission
}

record$converted . profit<-record$profit«xexch.rate

For the exchange rate lookup table, we can use the names attribute to
create slightly neater lookup tables and functions.

19

##4# Use names attribute to make better lookup tables

currency .lookup . table<—c (”CAD” ,”USD” ,”EUR” ,” EUR” ,”RMB”) ,
names (currency . lookup . table)<—c (” Canada” ,”USA” ,” France” ,” Germany” ,” China”),

exchange.rate.lookup.table=c(1,1.24032,1.64720,1.80394,0.189401)
names (exchange . rate.lookup. table)=c(”CAD” ,”USD” ,”EUR” ,”RMB”) ,

exchange_rate_data<-list (
”currency”’=currency .lookup . table ,
"exchange _rates”=exchange.rate.lookup.table

)

get.rate<—function (country ,data){
This only works for a single country.
Would need to be modified to handle a vector.

currency<—data$currency [country]
if (is.null(currency)){

stop (paste (” Country \
}

rate<—data$exchange_rates|[currency]
if (is.null(rate))q{

stop (paste (” Currency \
}

return (rate)

N

,country ,”\” mnot in database.” ;sep=""))

beab

,currency ,”\” mnot in database.” ;sep=""))

One slightly awkward problem with the exchange rate lookup function is
that we need to either use the exchange rate data as a global variable, or
pass it as a parameter for every call to get.rate.

A more advanced solution uses something called a “closure” to build the
fixed values into the get.rate function.

20

Use a closure to fix constant parameters in a function.
We do this by using one function that returns a new function.

make. rate.lookup<—function (currencies ,exchange.rates){
#define these local variables to fix the wvalues.
currency=currencies
exchange_rates=exchange.rates

return (function (country){
This only works for a single country.
Would need to be modified to handle a vector.

Now this function only needs a single parameter.

curr<-currency [country]
if (is.null(curr)){

stop (paste (" Country \””,country,”\” not in database.” ;sep=""))
¥

rate<-exchange_rates [curr]
if (is.null(rate)){

stop (paste (” Currency \””,currency,”\” not in database.” ;sep=""))
}

return (rate)

1y
}

Define the same lookup tables as the previous example
currency .lookup . table<—c (”CAD” ,”USD” ,”EUR” ,” EUR” ,”RMB”) ,
names (currency . lookup. table)<—c(” Canada” ,”USA” ,” France” ,” Germany” ,” China”),

exchange.rate.lookup.table=c(1,1.24032,1.64720,1.80394,0.189401)
names (exchange.rate.lookup.table)=c(”CAD” ,”USD” ,”EUR” ,”RMB”) ,

And use them to make the look—up function.
get .rate<—make.rate.lookup (currency.lookup.table ,exchange.rate.lookup.table)

In this code, the look-up tables are built into the get.rate function when it
is created. Now the look-up tables are fixed. By calling make.rate.lookup
with different look-up tables, we could change them, but this creates a new
function.

Another approach we could take is to make a function to calculate the
claim for the different contract types so the main loop is shorter. This
does have the advantage of separating the code that deals with these types,
making it easier to add a new contract type or some similar modification.

21

get . claim .amount (record){
if (record$contract=="Excess of Loss”){
ans<—record$loss—record$attachment
}else if(record$contract=="Quota Share”){
ans<—record$loss*record$percentage
}else if(record$contract=="Catastrophe Cover”){
ans<-record$catastrophe.loss—record$attachment

telsed

Give a clear error message
stop (paste (” Contract type \””,record$contract,”\” not known.” ,sep=""))

if (ans<0){
ans=0

if (ans>record$limit){
ans=record$limit
}

return (ans)

day.records <—NULL

for(i in seq-along(contracts)){
record<—contracts[i,]
exch.rate<—get_rate (record$country ,exchange_rate_data)

record$claim<—get . claim.amount(record)
record$profit=record$premium—record$claim
if (record$contract=="Quota Share”){

record$profit=record$profit—record$ceding.commission
¥

record$converted. profit=record$profit*exch.rate

6. A data scientist has produced the code in the file HW1Q6.R to process a
company’s data. Testing the code on a small subset of the data, she finds
that it takes 7 hours to process a dataset with 200,000 records, each with
400 predictors.

(a) Approximately how long would the program be expected to take for the
company’s whole database of 4,000,000 records with 1,200 variables each?

22

We see that the code has two nested loops, both of which concatenate
lists. Concatenating lists of length n is O(n) complexity, so building a
list of length n is O(n?) complexity. Thus if n is the number of records,
and p is the number of predictors, then the complexity of this program
is O(n?p?). Thus, if we have 20 times as many records, and 3 times as
many predictors, then program execution will take 20 x 32 = 3600 times
as long, or 25200 hours, often referred to as 1050 days.

(b) Management deems the time required unacceptable. Rewrite the code
to run more efficiently for big datasets.

Apparently three years is too long. To make the code faster, we can
reorganise the code to create the lists first.

records<—list ()

for (i in seq_len (num_records)){
formatted.record<—rep (NA, num_variables)
for(j in seq-len(num_variables)){
rec<—record[i,]j]
rec<—strsplit (rec,” —7)[[1]]
rec<—mean(as.numeric(rec)) #take mean of range
formatted.record [j]<—rec #add to the list

}

records [[i]]<—formatted.record

This should be easily fast enough. However, the code can be made even
more efficient using vectorisation — the strsplit function can take a
vector as input, and will return a list of outputs. We can use the lapply
function to more efficiently process this.

records<—list ()

for (i in seq_len (num_records)){
records [[i]]<—unlist (
lapply produces a list of vectors of length 1. unlist turns
it into a single vector as required.
lapply (# When the input to strsplit is a vector, it returns a list
strsplit (record[i,],” —7),
function (x){mean(as.numeric(x))}

)

This has the same complexity O(np), but a slightly faster running time.

23

7. The file HW1Q7. tzt contains data from an entertainment company about
electricity usage. The data are not formatted in a very convenient way.
Read the data into R and reformat into a more convenient way, and use
it to create a plot showing electricity used per hour (y-axis) vs number of
people (xz-azis) with colour showing age group and size showing company
size, with a facet grid of type of event versus time of day. Make a list of
all corrections made to the data.

We first read and clean the customers table:

customers<-read . table ("HWIQT7. txt” ,skip=2,nrow=52)
could use stringsAsFactors, but will need to fix factors manually

##H# anyway to correct mistakes.

customers$ID<—as.integer (customers$ID)

str (customers)

summary (customers)

Numerical values all look OK. Next we check the categorical

##4# variable 7 Sector”.

table (customers$Sector)

Merge 7 Live performance” and ”"Live Performance”

customers$Sector [customers$Sector=="Live performace”]<—"Live Performance”
Now convert to factor

customers$Sector<—as. factor (customers$Sector)

We identify and fix several misspellings and abbreviations. We then do
the same for the events table.

24

events<-read.table ("HWIQ7. txt” ,skip=57)

str(events)
We note that Number. of.people is character, when it should be numeric.
This indicates there are probably some errors that need to be fixed.

which (is .na(as.numeric(events$Number. of.People)))
events$Number. of . People [¢(83,134)]

Commas should clearly be removed.

events$Number. of . People [¢(83,134)]<—¢(3216,5691)

Now we can convert it to numeric

events$Number . of . People<—as.integer (events§Number. of . People)
Check that it converted correctly

which (is .na(events$Number. of . People))

##4# Now Check the levels of factor variables:

table (events$Event . type)

#H## Seems OK

table (events$Age.group)

7 Adlut” is a misspelling of 7 Adult” and ” YoungChild” should be
" Young Child”.

events$Age.group [events$Age. group=="Adlut”]<—"Adult”
events$Age.group [events$Age . group=="YoungChild”]<—"Young Child”

table (events$Time. of . day)
##4# 7 Late” probably means the same as ”Late Evening”.
events$Time. of .day[events$Time. of .day=="Late”]|<—"Late Evening”

summary (events)

Change strings to factors
events$Event.type<—as.factor (events$Event.type)
events$Age.group<—as.factor (events$Age.group)
events$Time. of .day<—as. factor (events$Time. of.day)

Now that each table is cleaned, we join the two tables.

library (dplyr)

events. full <—events%%left_join (customers ,by=c(” Host .ID”="ID"))

Finally, we can make the plot requested.

25

library (ggplot2)
ggplot (data=event
mapping=ae

geom_point ()+

s. full ,

s (x=Number . of . People ,
y=Electricity . Usage,
colour=Age. group ,
size=Size))+

facet_grid (Event.type Time. of .day)+
theme (plot. title=element_text(size=20,hjust=0.5),
axis.title=element_text (size=20,hjust=0.5),
axis.text=element_text (size=16),

legend . title=element_text (size=20,hjust=0.5),
legend . text=element_text (size=16),
strip.text=element_text (size=16))

This

Electricity.Usage

[This

gives the following plot.

Afternoon Evening Late Evening

ode $ 4
2000~
1000~ a L : S5
ol 4 % o ,‘. =
2000-
1000- .& .ﬁ &
o *
2000 ‘. .‘.' T
1000- o
& : =
o
.
. .
2000~ T
o & . * 8 .
- (A . % .
- .-;b L o I‘- L4 e
Uit .

o
2000-

1000-

o2
0 3000 6000 9000 0 3000 6000 9000
Number.of.People

.
0 3000 6000 9000

is not a particularly great figure

many ways.]

Morning Overnight

Aoy

wis

Age.group
* Adult

« Child

soUBWIOad A

- Senior
* Young Adult
* Young Child

asni
o
8

Viods

e

aueb 0apiA

0 3000 6000 9000 0 3000 6000 9000

. It could certainly be improved in

During this process, we fixed the following errors in the data:

Customers

Sector

e Customers 2 and 10 have sector “Live performance”, while
customers 7, 12, 15, 34, 50 and 51 have sector “Live Perfor-
mance”. These have been merged.

26

Events
Age.group

e Events 185, 612 and 616 have age group “Adlut”, which is
almost certainly a misspelling of “Adult”.

e Events 14, 85, 184, 275, 300, 726 and 775 have age group
“YoungChild”, which should be “Young Child”.

Time.of.day

e Events 97, 214 and 457 have time of day “Late” which is
presumably the same as “Late Evening”.

Number.of.People

e Events 83 and 134 have commas in the number of people,
causing them to be interpreted as character.

27

