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Homework Sheet 3
Model Solutions

Standard Questions

. An insurance company has collected the following data on life expectancy
in the file HW3Q1.

Variable Meaning

current.age The individual’s current age.

sex The individual’s current sex.

BMI The individual’s BMI1

cigarettes.per.day  The average number of cigarettes the individual smokes each day
daily.ezxercise The average number of minutes per day spent doing physical exercise
health.index An index measuring overall health

survival.five.year ~ Whether the individual survives 5 years

Fit a generalised linear model, with a binomial response variable (and a
logistic link function), to predict the probability of dying within 5 years.
Use this model to predict the probability of dying for the individuals in the
file HW3Q1test .

We fit the following logistic regression model:

Est. S.d. p-value
(Intercept) 5.3354193  1.0696473 6.10 x 10~7
current.age —0.0352538  0.0085759 3.94 x 10~°
sexmale 0.3261624 0.2881374 0.258
BMI —0.0009522 0.0234914 0.968
cigarettes.per.day | —0.0132777 0.0442093 0.764
daily.exercise 0.0303735 0.3743734 0.935
health.index —0.0075536  0.0074890 0.313

It makes the following predictions for 5-year survival:

Individual prediction | Individual prediction
1006 0.9422064 | 1011 0.9646362
1007 0.9875033 | 1012 0.9832101
1008 0.9547466 | 1013 0.9175382
1009 0.9371595 | 1014 0.9889852
1010 0.9566812 | 1015 0.9183298

The following code was used to fit this model.



HW3Ql<—read . table ("HW3QL. txt” ,stringsAsFactors=TRUE)

HW3Ql glm<—glm (survival. five.year ~.,data=HW3QL, family=binomial (link="logit "))
summary (HW3Q1_glm )

HW3Q1 _test<—read . table ("HW3Q1_test. txt” ,stringsAsFactors=TRUE)

predict (HW3Q1 glm, newdata=HW3Q1 _test , type="response”)

2. A company is analysing data on the effect of maintainance on productivity
in the file HW3Q2.

Variable Meaning
machine.age The age of the machine.
machine.operators The number of workers operating the machine.

machine.preemptive.maintainance  The amount spent on pre-emptive maintainance of the machine over the past year.
machine. corrective.maintainance The amount spent on corrective maintainance of the machine over the past year.

machine.power The power consumed by the machine.
machine.output The number of parts produced by the machine.
machine.defect.rate The proportion of part output by the machine that are defective.

Fit a random forest to predict the machine defect rate from the other pre-
dictors. Use this model to predict defect rates for the machines in the file
HWS3Q2test .

[Random forest has some randomness, so results may vary.]

The tuning selects mtry=1, using cross validation — that is, for each split,
one variable is chosen at random. The model gives the following variable

importances:
Variable Importance
machine.power 100.00
machine.preemptive.maintainance 98.67
machine.output 88.31
machine.age 82.79
machine.corrective.maintainance 68.68
machine.operators 0.00

and the following predictions:

Observation Prediction | Observation Prediction
511 1.208576 516 1.148972
512 1.179932 517 1.854719
513 1.917122 518 1.655178
514 1.661475 519 1.180423
515 1.690702 520 3.015765

The following code was used to fit this model.



HW3QXread . table ("HW3Q2. txt” ,stringsAsFactors=TRUE)

HW3Q2_ test<—read.table (" HW3Q2_test. txt” ,stringsAsFactors=TRUE)

library (caret)

HW3Q2.rf<—train (machine. defect . rate ., data=HW3Q2, method="rf" |
trControl=trainControl (method="repeatedcv” ,number=10,repeats=2),
tuneGrid=expand. grid (mtry=seq_len (6)) ,ntree =500, varlmp=TRUE)

varlmp (HW3Q2.rf)

predict (HW3Q2.rf, newdata=HW3Q2_test)

3. The file HW3Q3. txt contains measurements of the total annual rainfall in
a certain city over the last century

(a) Fit a quadratic model to estimate log annual rainfall as a function of
time.

We use the following code:

HW3Q3<—read . table ("HW3Q3. txt”)

library (dplyr)

trend<—Im(log(rainfall)  year+I(year " 2),data=HW3Q3)

summary (trend )

which gives the model:

Coefficient  Estimate Std. Error p-value
(Intercept) —670.9 441.2 0.132
year 0.6850 0.4469 0.129
I(year?) —0.0001740 0.0001132  0.128

(b) Use AIC to fit the best ARMA model to the residuals of the quadratic
model.

We use the following code:

library (forecast)
rain.resid .arma<—auto.arima(trend$residuals ,ic="aic” ,max.d=0)

summary (rain . resid .arma)

It selects an ARMA(3,4) model with the following coefficients:




Coefficient  Estimate Std. Error
arl 0.2421 0.1835
ar2 0.6400 0.1792
ar3 —0.3802 0.1355
mal —0.7164 0.1868
ma2 0.3830 0.1934
ma3 0.0992 0.1629
mad —0.4078 0.1480

(¢) Fit a GARCH model to model the variance.

Using the order (3,4) found in the previous part, we use the following code

to fit a GARCH model

library (rugarch)

GARCH._model<—ugarchspec (mean. model=list (armaOrder=c(3,4)),

distribution="norm”)

GARCH rain<—ugarchfit (GARCH.model, trendS$residuals , solver="hybrid”)

## The default solver fails to converge.

GARCH_rain

It fits the following model:

Parameter Estimate Std. Error p-value

mu 0.00000 0.032613 1.000000
arl 0.22899 0.212551 0.281318
ar2 0.66716 0.271391 0.013960
ar3 —0.36869 0.161440 0.022386
mal —0.71657  0.223655 0.001356
ma2 0.36647 0.232203 0.114515
mad3 0.10722 0.180269 0.551982
mad —0.43354  0.199150 0.029486
omega 0.14756 0.384908 0.701446
alphal 0.00000 0.059414 1.000000
betal 0.32819 1.606430 0.838119

(d) Based on this model, what is the probability that average annual rain-
fall will exceed 2500 in the decade from 2090 to 2099¢ [You can use the
ugarchboot function to run a simulation to estimate this.]




GARCH Bootstraps<—ugarchboot (GARCH_rain
method="full”,
n.ahead=75,
n.bootfit =400, # 400 parameter estimates
n.bootpred=400, # 400 bootstraps
rseed=seq_len (800)) #Need to explicitly set seed
### rseed needs to be a vector of length n.bootfit+n.bootpred

### This may take a few minutes to run. To make it run faster , you
### could reduce n.bootfit to about 100. You could also use
##H## 'method="partial”’ to used fixed parameter estimates from

#H#+ part (b).

### Calculate Distribution of average annual rainfall over the decade.
GARCH _boot_2090s<—GARCH _Bootstraps@fseries [ ,66:75]
trend_2090s<—predict (trend ,newdata=list (" year”=2090:2099))
ave.rain <-rowMeans (exp (GARCH_boot_2090s+

rep (1,dim (GARCH_boot-2090s)[1])%*%t (trend_2090s)))
### Remember to add the trend.
### Also remember that we log—transformed rainfall , so we need to exponentiate.
### Parameter estimates do not converge for some simulations
### So use dim(GARCH_boot_2090s)[1] instead of 160000

library (ggplot2)

ggplot (data . frame (” ave.rain”=ave.rain ) ,mapping=aes (x=ave.rain))+geom_density ()
+largertextsize

mean (ave.rain >2500)
### probability of average rain exceeding 2500.
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In my bootstap, the probability of this event is 0.1052381. It depends a
lot on the bootstrapped predictors, so using the partial method is likely
to underestimate this probability. In addition a number of the bootstraps
fail, so choosing bootfit too small could also lead to volatile estimation.

4. The file HW3Q4 . tzt contains the following data about school performances
in standardised tests for Grade 8:

Variable

Meaning

no.students
teacher.student.ratio
funding
spectalist.teacher

teacher.5.years
parent.employment
median.parent.salary
mean. parent. education

average.score.mathematics

average.score.english

The number of students in Grade 8 attending the school.

The average number of students per teacher in a class at the school.
The schools source of funding — government, independent or private.
Whether the school employs teachers with specialist knowledge for each
subject.

The percentage of teachers at the school with at least 5 years of experi-
ence.

The percentage of parents of children at the school who are employed.
The median salary of parents of children at the school

The average number of years of full-time education of parents of chil-
dren at the school.

The average score of children in Grade 8 at the school on the standard-
ised mathematics test.

The average score of children in Grade 8 at the school on the standard-
ised English test.

Fit generalised additive models with Gaussian response and identity link
function to predict average. score.mathematics and average.score.english
from the other predictors.

We use the following code:



HW3Q4&—read . table ("HW3M4. txt”)
HW3Q4_test<—read . table (" HW3Q4_test. txt”)

library (mgcv)

### GAM does not allow the use of
predictors <—"s(no.students)+s(teacher.student.ratio)+s(teacher.5.years)+

s (parent .employment)+s (median. parent.salary)+s(mean. parent.education)+
funding+specialist .teacher”

GAM_model_maths<—gam (as . formula (paste(” average.score.mathematics”,

predictors ,sep=""")),
data=HW3Q4)
GAM_model_english<-gam(as.formula(paste(” average.score.english”,
predictors ,sep=""")),
data=HW3Q4)

summary (GAM_model_maths)
summary (GAM _model _english)

for (i in seq-len (6)){
plot (GAM_model_maths, select=i)
}

for (i in seq-len (6)){
plot (GAM_model_english , select=i)
}

It produces the following smooth curves for the predictors’ effects on av-
erage mathematics score:
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The models predict the following average scores for the test data:



School no. Predicted Mathematics Score  Predicted English Score

1639 74.33654 78.97500
1640 68.87436 73.52036
1641 69.70518 74.85969
1642 77.61418 79.56861
1643 71.81126 76.88420
1644 81.96649 83.16504
1645 69.76377 75.22856
1646 70.03958 75.44406
1647 68.62463 76.54513
1648 74.79599 76.86610

5. A company has collected the following data on employee training effective-
ness in the file HW3Q5.

Variable Meaning

training.type The type of training.

compulsory Whether the training was compulsory for the employee.
employee.experience  The number of years of experience of the employee.
employee.salary The employee’s annual salary.

employee.gender The employee’s gender.

work.type The type of work.

training.time The amount of time spent on the training.
productivity. before The employee’s productivity rating before the training.
productivity. after The employee’s productivity rating after the training.

Fit a linear model, using LASSO for variable selection and regularisation
to predict sales from the other predictors. Use this model to predict sales
for the scenarios in the file HW3Q5test.

Lasso using one standard error on the cross-validation to select A selects

A = 0.2231302, while using the minimum for cross-validation gives \ =
0.003027555. These values of A give the following models:
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Coefficient Alse Amin

(Intercept) 0.1024965  0.1048495
training.typeCourse 0 0.07343168
training.typelnteractive 0 —0.4134413
training.typePassive 0 —0.4717399
compulsory 0 —0.02457364
employee.experience 0 0.0005848728
employee.salary 0 4.874131 x 1077
employee.gendermale 0 —0.01383078
work.typecustomer service 0 0.04246316
work.typefinancial 0 0.03341932
work.typelT 0 —0.08780233
work.typemaintainance 0 0.03475568
training.time 0.01829942  0.02110295
productivity.before 1.00027941 1.001852

and the following predictions:

>\lse Amin

804 157.64290 158.02254
805 149.34784  149.02260
806  249.97969  250.55525
807  70.82408  70.44031
808 158.65593 158.35815
809 291.29481 291.40193
810  64.96097  65.24300
811 198.47620 198.35855
812  290.93313 290.86321
813  35.42151  35.08816
814 164.25384 164.20132
815 236.20321 236.17607
816 221.98411 222.66893
817  212.74677  213.36404
818  285.50605 286.03936
819  256.19964  256.24233
820 236.37032  236.19666
821 179.66363 179.57840
822  145.96885 145.76334
823 605.77717  606.35474
824 293.39357  293.41553

Here is the code used to fit these models and make the predictions:
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HW3Qx—read . table ("HW3Q5. txt” ,stringsAsFactors=TRUE)

library (glmnet)

HW3Q5 LASSO<—cv . glmnet (model . matrix (productivity . after 7., data=HW3Q5) ,
HW3Q5$productivity . after ,
nfolds=10)

HW3Q5_LASSOSindex

### The smallest lambda is chosen. This suggests the range is wrong.

HW3Q5 LASSO<—cv . glmnet (model . matrix (productivity . after 7., data=HW3Q5) ,
HW3Q5$productivity . after ,nfolds=10,
lambda=exp(—seq_-len (100)/10))
HW3Q5_LASSOS$index ## looks OK now.

index.1se<-HW3Q5_LASSOSindex[” 1se” ,1]
index . min<—HW3Q5_LASSOSindex [” min” ,1]

HW3Q5_LASSOS$lambda|[index.1se]

HW3Q5.-LASSOS$glmnet . fit$a0 [index.1se]
HW3Q5.-LASSOS$glmnet . fit$beta [,index.1se]

HW3Q5_LASSOS$lambda [ index . min ]

HW3Q5_-LASSOS$glmnet . fit$a0 [index .min]
HW3Q5_-LASSOS$glmnet . fit$beta [, index .min]

HW3Q5 test<—read . table (" HW3Q5_test. txt” ,stringsAsFactors=TRUE)
summary (HW3Q5_test) ## check all levels exist for factor variables.

HW3Q5 test$productivity . after <—1 ### Model matrix doesn’t work with NAs

### Estimated values

model . matrix (productivity . after 7., data=HW3Q5_test)%*%
HW3Q5.-LASSOSglmnet . fit$beta [,index.1se]+
HW3Q5_LASSOS$glmnet . fit$a0 [index.1se]

model. matrix (productivity . after 7., data=HW3Q5_test)%*%
HW3Q5.-LASSOSglmnet . fit$beta [, index . min]+
HW3Q5_LASSOSglmnet . fit$a0 [index . min]
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