
ACSC/STAT 4703, Actuarial Models II
Fall 2015

Toby Kenney
Sample Final Examination

Model Solutions

For each question that asks you to simulate a small number of samples from a distribution, use the following simulated
uniform values, starting from the first, and using as many numbers as needed for the question. Go back to the first value
at the start of each part question.

0.58665797 0.12487271 0.87530540 0.49197147 0.55262301 0.14644543 0.89151074 0.46559276 0.42856173

0.63507522 0.78161985 0.69613284 0.37786683 0.51447243 0.48952100 0.28195163 0.62179048 0.66186936

0.42715830 0.70003263 0.59328856 0.97308150 0.14087141 0.08049598 0.98662077 0.91974635 0.56037580

0.07804151 0.48363702 0.33763780

1. An insurance company collects a sample of 25 past claims, and attempts to fit a Pareto distribution to the claims.
Based on experience with other claims, the company believes that a Pareto distribution with α = 3.5 and θ =
4, 600 may be appropriate to model these claims. It constructs the following p-p plot to compare the sample to this
distribution:
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(a) How many of the points in their sample were less than 1,200?

We have

F ∗(1200) = 1−
(

46

58

)3.5

= 0.5557224

so we look for the point on the graph with F ∗(x) = 0.5557224.
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We see that the corresponding value of Fn(x) is 0.56. (The values of Fn(x) are in increments of 0.04, since there are
25 data points. The value corresponding to F ∗(x) is one increment before 0.6, so is 0.56).

(b) Which of the following statements best describes the fit of the Pareto distribution to the data:

(i) The Pareto distribution assigns too much probability to high values and too little probability to low values.

(ii) The Pareto distribution assigns too much probability to low values and too little probability to high values.

(iii) The Pareto distribution assigns too much probability to tail values and too little probability to central values.

(iv) The Pareto distribution assigns too much probability to central values and too little probability to tail values.

We see that there are 8 data points with F ∗(x) < 0.1 approximately. The expected number is 2.5. There are 7 data
points with F (x) > 0.9. Again, the expected number is 2.5. The Pareto distribution has therefore underestimated the
probabilities of these tail regions, and overestimated the probability of the region in between. Therefore, statement
(iv) best describes the fit.

2. An insurance company collects a sample of 20 claims. Based on previous experience, it believes these claims might
follow a Weibull distribution with τ = 0.6 and a known value of θ. To test this, it obtains a plot of D(x).
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(a) Which of the following is the value of θ used in the plot:

(i) 800

(ii) 1,100

(iii) 2,200

(iv) 3,500

The data points in the sample correspond to vertical line segments on the plot. We see for example, that there are
3 data points above 6000, so F20(6000) = 17

20 = 0.85. Reading from the graph, we get that D(6000) ≈ −0.09. This
means F ∗(6000) = 0.85− (−0.09) = 0.94. This gives:

1− e−( 6000
θ )

0.6

= 0.94(
6000

θ

)0.6

= − log(0.06)

6000

θ
= (− log(0.06))

1
0.6

θ =
6000

(− log(0.06))
1

0.6

= 1070.112

This is clearly closest to (ii), so (ii) is the value of θ used. (The difference between this answer and the 1,100 is
because we only have limited accuracy reading the graph.)

[We can find the value of θ by reading off the value of D(x) for any X on the graph. If it is difficult to count the
number of vertical line segments, we could compare D(x1) and D(x2) for values of x1 and x2 with no vertical line
segments in between. For example, we can read the value D(4200) ≈ −0.04, which leads us to solve

F ∗(6000)− F ∗(4200) = 0.05

We can try the values given to see which is closer to the solution.]

(b) Which of the following statements best describes the fit of the Weibull distribution to the data:

(i) The Weibull distribution assigns too much probability to high values and too little probability to low values.

(ii) The Weibull distribution assigns too much probability to low values and too little probability to high values.

(iii) The Weibull distribution assigns too much probability to tail values and too little probability to central values.

(iv) The Weibull distribution assigns too much probability to central values and too little probability to tail values.

Recall that D(x) = Fn(x)−F ∗(x), so if D(x) < 0, we have F ∗(x) > Fn(x), while if D(x) > 0, we have F ∗(x) < Fn(x).
On the graph shown, we have that D(x) is nearly always negative for the range of the data. [Technically, it is positive
for all values larger than the data sample, but this always happens, because for the largest value of the data sample,
we have Fn(x) = 1 > F ∗(x).] This means that F ∗(x) > Fn(x) for most x in the range. This means that the
Weibull distribution assigns more probability to smaller values of x, and less probability to larger values of x, which
is statement (ii).
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3. An insurance company collects a sample of 30 claims. Based on previous experience, it believes these claims might
follow a gamma distribution with α = 2.7 and θ = 1400. To test this, it compares plots of Fn(x) and F∗(x).
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(a) Which of the following is the value of the Kolmogorov-Smirnov statistic for this model and this data

(i) 0.0102432

(ii) 0.0450353

(iii) 0.0924252

(iv) 0.1678255

The Kolmogorov-Smirnov test statistic is the maximum value of the absolute difference between the empirical and
model distribution functions, that is |Fn(x)− F ∗(x)|. On the graph, we see this happens at around 2000, and read
the values from the graph:
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We read Fn(x) = 0.066667 (we know the possible values of Fn(x), since we know there are 30 data points), and
F ∗(x) = 0.23 (the actual value is 0.2318889.) The difference is therefore about 1.6, so (iv) is the correct answer.

(b) Which of the following statements best describes the fit of the Gamma distribution to the data:
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(i) The Gamma distribution assigns too much probability to high values and too little probability to low values.

(ii) The Gamma distribution assigns too much probability to low values and too little probability to high values.

(iii) The Gamma distribution assigns too much probability to tail values and too little probability to central values.

(iv) The Gamma distribution assigns too much probability to central values and too little probability to tail values.

From the graph, we see that F ∗ (x) is too large for small values less than about 2500, and about correct for larger
values. This means that the gamma model assigns too little probability in the range 0–2,000 and too much in the
range 2,000–2,500. We also see that F ∗(x) is slightly too low at values above 6,000. This means that the gamma
distribution assigns too little probability to values larger than 6,000. This means that (iv) is probably the best
description of the fit. However, a case could be made for (ii) being a good description, since the difference between
F ∗(x) and Fn(x) for x > 6000 is very small.

4. An insurance company collects a sample of 30 past claims, and attempts to fit a Pareto distribution to the claims.
Based on experience with other claims, the company believes that a Pareto distribution with α = 2.8 and θ = 2, 600
may be appropriate to model these claims. It compares the density functions in the following plot:
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(a) How many data points in the sample were between 1500 and 3000?

We are asking how many data points are in the last two bars. The height of the fourth bar (from 1,500–2,200) is
about 0.0001, and the height of the fifth bar (from 2,200–3,000) is about 0.00005, so the areas of these two bars are
700×0.0001 = 0.07 and 800×0.00005 = 0.04 respectively. Since there are 30 claims in the sample, these correspond
to 2 data points and 1 data point respectively, (which would give accurate heights of 0.00009524 and 0.00004167
respectively). Therefore, the number of data points between 1,500 and 3,000 is 3.

(b) Which of the following plots is the p-p plot for this data and model?
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(i)
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(ii)
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(iii)
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(iv)
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From the histogram, we see that the model assigns too little probability to small values less than 300, and too much
probability to values more than 500. The p-p plot should therefore have slope less than 1 for the first part, then
slope more than 1. We would expect Fn(x) > F ∗(x) for all x, so the p-p plot should be entirely below the line y = x
(it is in theory possible there could be some small values with F ∗ (x) > Fn(x), since the histogram only shows
grouped data, so it is possible for example that all samples in the range 0–300 actually fell in the range 200–300).
It seems that the largest difference between Fn(x) and F ∗(x) should happen at around x = 500, and it looks like
the area of the bar 0–300 on the histogram is approximately equal to the combined area of the other 3 bars. More
accurately, it looks like the height of this bar is about 0.0022, and the width is about 300, so the area is about 0.66,
so the largest difference between Fn(x) and F ∗(x) should occur at about Fn(x) = 0.66. Also, after the first bar, the
model is overestimating the probability density, which means that after this point, the slope of the p-p plot should
be more than 1.

Looking at the options, plots (i) and (iii) are above the y = x line for some values of x. Plot (iv) is close to the line
for values less than Fn(x) = 0.5, and does not deviate so much from the line, and its furthest point from the line is
around Fn(x) = 0.9, so it is not correct. Therefore, plot (ii) is the correct plot.

5. An insurance company collects the following sample:

2.31 8.65 35.29 42.27 151.51 194.99 523.50 1262.01 1402.72 6063.74
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They model this as following a Pareto distribution with α = 2 and θ = 2000. Calculate the Kolmogorov-Smirnov
statistic for this model and this data.

x F ∗ (x) D(x+) D(x−)
2.31 0.002306004 0.002306004 0.09769400 0.09769400
8.65 0.008594205 0.091405795 0.19140580 0.19140580

35.29 0.034377462 0.165622538 0.26562254 0.26562254
42.27 0.040966725 0.259033275 0.35903327 0.35903327

151.51 0.135881599 0.264118401 0.36411840 0.36411840
194.99 0.169776735 0.330223265 0.43022327 0.43022327
523.50 0.371864450 0.228135550 0.32813555 0.32813555

1262.01 0.624085208 0.075914792 0.17591479 0.17591479
1402.72 0.654532208 0.145467792 0.24546779 0.24546779
6063.74 0.938484160 0.038484160 0.06151584 0.06151584

So the Kolmogorov-Smirnov statistic is 0.4302.

6. An insurance company collects the following sample:

0.27 2.03 9.89 16.96 28.38 236.46 268.36 453.19 633.26 718.68 1414.59 1588.19 2535.69

4937.93 5431.13

They model this as following a gamma distribution with α = 0.4 and θ = 6000. Calculate the Anderson-Darling
statistic for this model and this data.

You are given the following values of the Gamma distribution used in the model:

x F (x) log(F (x)) log(1− F (x))
0.27 0.02056964 −3.8839392 −0.02078414
2.03 0.04609387 −3.0770753 −0.04719001
9.89 0.08680820 −2.4440542 −0.09080935

16.96 0.10767291 −2.2286572 −0.11392253
28.38 0.13222244 −2.0232696 −0.14181987

236.46 0.30572308 −1.1850755 −0.36488438
268.36 0.32111513 −1.1359556 −0.38730373
453.19 0.39258278 −0.9350079 −0.49853938
633.26 0.44506880 −0.8095264 −0.58891114
718.68 0.46633756 −0.7628455 −0.62799177

1414.59 0.59250242 −0.5234003 −0.89772028
1588.19 0.61583950 −0.4847689 −0.95669484
2535.69 0.71295893 −0.3383315 −1.24812996
4937.93 0.84646394 −0.1666877 −1.87381984
5431.13 0.86352967 −0.1467270 −1.99164807

The Anderson-Darling statistic for complete data with no truncation or censorship can be calculated as

A2 = −n+ n

k−1∑
j=0

(1− Fn(yj))
2 (log(1− F ∗(yj))− log(1− F ∗(yj+1))) + n

k∑
j=1

(Fn(yj))
2 (log(F ∗(yj+1))− log(F ∗(yj)))

7



We compute the terms in the following table:

j yj n(1− Fn(yj))
2 (log(1− F ∗(yj))− log(1− F ∗(yj+1))) n(Fn(yj))

2 (log(F ∗(yj+1))− log(F ∗(yj)))
0 0.00 0.311762095
1 0.27 0.345036675 0.3649728
2 2.03 0.491444551 0.6910801
3 9.89 0.221886527 0.9992218
4 16.96 0.225038563 1.4317238
5 28.38 1.487096754 2.0290460
6 236.46 0.121064462 1.3379735
7 268.36 0.474605439 1.8103976
8 453.19 0.295214434 1.7395509
9 633.26 0.093793516 1.6241571

10 718.68 0.449547513 2.4527362
11 1414.59 0.062906196 1.2514677
12 1588.19 0.174861070 2.0328028
13 2535.69 0.166850636 2.2157161
14 4937.93 0.007855215 0.4465469
15 5431.13 1.917233

total 4.928964 22.34463

This gives A2 = 4.928964 + 22.34463− 15 = 12.27359.

7. An insurance company collects the following sample:

105.13 304.10 323.11 359.09 360.43 368.63 413.47 448.81 606.88 612.58 930.35 1002.37

1161.78 1205.25 5585.37

They want to decide whether this data is better modeled as following an inverse gamma distribution, or an inverse
exponential distribution. They calculate that the MLEs for the inverse gamma distribution as α = 1.695545 and
θ = 705.7664, and the MLE for the inverse exponential distribution as θ = 416.2476. They also calculate, for this
data that

∑15
i=1 log(xi) = 95.31415 and

∑15
i=1

1
xi

= 0.03603625, and that Γ(1.695545) = 0.9078021. You are given the
following table of critical values for the chi-squared distribution at the 5% significance level. Indicate in your answer
which critical value you are using.

Degrees of Freedom 95% critical value
1 3.841459
2 5.991465
3 7.814728
4 9.487729
5 11.070498

For the inverse gamma distribution, the log-likelihood of the data point x is
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log

(
705.76641.695545e−

705.7664
x

x2.695545Γ(1.695545)

)
= 1.695545 log(705.7664)− log(Γ(1.695545))− 2.695545 log(x)− 705.7664

x

= 11.21829− 2.695545 log(x)− 705.7664

x

The total log-likelihood of the data is therefore

11.21829× 15− 2.695545 (log(105.13) + log(304.10) + log(323.11) + log(359.09) + log(360.43) + log(368.63) + log(413.47)+

log(448.81) + log(606.88) + log(612.58) + log(930.35) + log(1002.37) + log(1161.78) + log(1205.25) + log(5585.37))

−705.7664

(
1

105.13
+

1

304.10
+

1

323.11
+

1

359.09
+

1

360.43
+

1

368.63
+

1

413.47
+

1

448.81
+

1

606.88
+

1

612.58
+

1

930.35
+

1

1002.37
+

1

1161.78
+

1

1205.25
+

1

5585.37

)
= −114.0824

For the inverse exponential, the log-likelihood of the data point x is

log

(
416.2476

x2
e−

416.2476
x

)
= 6.03128− 2 log(x)− 416.2476

x

The log-likelihood of the data is therefore

6.03128× 15− 2 (log(105.13) + log(304.10) + log(323.11) + log(359.09) + log(360.43) + log(368.63) + log(413.47)+

log(448.81) + log(606.88) + log(612.58) + log(930.35) + log(1002.37) + log(1161.78) + log(1205.25) + log(5585.37))

−416.2476

(
1

105.13
+

1

304.10
+

1

323.11
+

1

359.09
+

1

360.43
+

1

368.63
+

1

413.47
+

1

448.81
+

1

606.88
+

1

612.58
+

1

930.35
+

1

1002.37
+

1

1161.78
+

1

1205.25
+

1

5585.37

)
= −115.1591

The likelihood ratio statistic is therefore 2(−114.0824 − (−115.1591)) = 2.1534. This should be compared to the
chi-square distribution with one degree of freedom (since the inverse gamma has 2 degrees of freedom, and the inverse
exponential has 1). The critical value for this is 3.841459, so the statistic is not significant. This means there is not
sufficient evidence that the inverse gamma distribution fits the data better.

8. An insurance company collects the following data sample on claims data
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Claim Amount Number of Claims
Less than $5,000 1,026
$5,000–$10,000 850
$10,000–$20,000 1,182
$20,000–$50,000 942
More than $50,000 573

Its previous experience suggests that the distribution should be modelled as following a Pareto distribution with α = 3
and θ = 28, 000. Perform a chi-squared test to determine whether this distribution is a good fit for the data at the
95% level.

You may use the following critical values for the chi-squared distribution:

Degrees of Freedom 95% critical value
1 3.841459
2 5.991465
3 7.814728
4 9.487729
5 11.070498

The expected frequencies of each interval are:

4573

(
1−

(
28

33

)3
)

= 1779.598

4573

((
28

33

)3

−
(

28

38

)3
)

= 963.9355

4573

((
28

38

)3

−
(

28

48

)3
)

= 921.7474

4573

((
28

48

)3

−
(

28

78

)3
)

= 696.1798

4573

(
28

78

)3

= 211.5395

Therefore, the chi-squared statistic is

(1026− 1779.598)2

1779.598
+

(850− 963.9355)2

963.9355
+

(1182− 921.7474)2

921.7474
+

(942− 696.1798)2

696.1798
+

(573− 211.5395)2

211.5395
= 1110.503

Since the parameters are not estimated the number of degrees of freedom is 5−1 = 4, so the critical value is 9.487729.
The null hypothesis is rejected. The data do not fit the model well.

9. An insurance company sells home insurance. It estimates that the standard deviation of the aggregate annual claim
is $5,326 and the mean is $1,804.
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(a) How many years history are needed for an individual or group to be assigned full credibility? (Use r = 0.05,
p = 0.95.)

The variance of the mean of a sample of n observations from an individual is 53262

n , so a 95% confidence interval for
this individual is their mean plus or minus 1.96 × 5326√

n
. We want the relative error in this estimate to be at most

5%. That is we want

1.96× 5326√
n

= 0.05× 1804

n =

(
10438.96

90.2

)2

= 13393.73

(b) What is the Credibility premium, using limited fluctuation credibility, for an individual who has claimed a total
of $42,381 in the past 19 years?

This individual’s average annual aggregate claims are 42381
19 = $2230.58. The credibility is

√
19

13393.73 = 0.03766396,

so the credibility premium is 0.03766396× 2230.58 + 0.96233604× 1804 = $1820.07.

10. For a car insurance policy, the book premium for claim severity is $2,300. An individual has made 7 claims in
the past 12 years, with average claim severity $1,074. Calculate the credibility estimate for claim severity for this
individual using limited fluctuation credibility, if the standard for full credibility is:

(a) 157 claims.

If the standard for full credibility is 157 claims, then this individual’s credibility is
√

7
157 = 0.2111539, and the

credibility estimate is 0.2111539× 1074 + 0.7888461× 2300 = 2041.13.

(b) 284 years.

If the standard for full credibility is 157 claims, then this individual’s credibility is
√

12
284 = 0.2055566, and the

credibility estimate is 0.2055566× 1074 + 0.7944434× 2300 = 2047.99.

11. A worker’s compensation insurance company classifies workplaces as “safe” or “hazardous”. Claims from hazardous
workplaces follow a Gamma distribution with α = 0.1021749, θ = 1066798 (mean $109,000 and standard deviation
$341,000). Claims from safe workplaces follow a Gamma distribution with α = 0.01209244, θ = 2646281 (mean
$32,000 and standard deviation $261,000). 94% of workplaces are classified as safe.

[You may need the following values:

Γ(0.01209244) = 82.13091

Γ(0.1021749) = 9.302457

(a) Calculate the expectation and variance of claim size for a claim from a randomly chosen workplace.

The expectation is 0.94× 32000 + 0.06× 109000 = $36, 620. The variance is (109000− 32000)2× 0.94× 0.06 + 0.94×
2610002 + 0.06× 3410002 = 71, 345, 000, 000.
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(b) The last 2 claims from a particular workplace are $488,200 and $17,400. Calculate the expectation and variance
for the next claim size from this workplace.

If the workplace is safe, the likelihood of these claim sizes is(
488200−0.98790756e−

488200
2646281

26462810.01209244Γ(0.01209244)

)(
17400−0.98790756e−

17400
2646281

26462810.01209244Γ(0.01209244)

)
= 1.32923× 10−14

If the workplace is hazardous, the likelihood of these claim sizes is(
488200−0.8978251e−

488200
1066798

10667980.1021749Γ(0.1021749)

)(
17400−0.8978251e−

17400
1066798

10667980.1021749Γ(0.1021749)

)
= 5.134517× 10−13

The posterior probability that the workplace is safe is therefore 0.94×1.32923×10−14

0.94×1.32923×10−14+0.06×5.134517×10−13 = 0.2885502,
so the expectation is 0.2885502× 32000 + 0.7114498× 109000 = $86, 781.63.

The variance is 770002 × 0.2885502× 0.7114498 + 0.2885502× 2610002 + 0.7114498× 3410002 = 103, 601, 580, 743.

12. An insurance company sets the book pure premium for its home insurance at $791. The expected process variance is
6,362,000 and the variance of hypothetical means is 341,200. If an individual has no claims over the last 8 years,
calculate the credibility premium for this individual’s next year’s insurance using the Bühlmann model.

The credibility is Z = 8
8+ 6362000

341200

= 0.3002332. Therefore the premium is 0.6997668× 791 = $553.52.

13. An insurance company is reviewing the premium for an individual with the following past claim history:

Year 1 2 3 4 5
Exposure 0.2 1 1 0.4 0.8
Aggregate claims 0 $2,592 0 $147 $1,320

The usual premium per unit of exposure is $2,700. The expected process variance is 123045 and the variance of
hypothetical means is 36403 (both per unit of exposure). Calculate the credibility premium for this individual if she
has 0.6 units of exposure in year 6.

The credibility of the policyholder’s experience is 3.4
3.4+ 123045

36403

= 0.5014691. The policyholder’s aggregate claims were

$4,059, so average claims per unit of exposure are 4059
3.4 = $1, 193.53. The credibility premium per unit of exposure

is therefore 0.5014691 × 1193.53 + 0.4985309 × 2700 = $1, 944.70. This is for a whole unit of exposure. Since the
policyholder has 0.6 units of exposure, the credibility premium is 0.6× 1944.70 = $1, 166.82.

14. An insurance company has 3 years of past history on a homeowner, denoted X1, X2, X3. Because the individual
moved house at the end of the second year, the third year has a different mean and variance, and is not as correlated
with the other two years. It has the following
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E(X1) = 1, 322 Var(X1) = 226, 000

E(X2) = 1, 322 Var(X2) = 226, 000

E(X3) = 4, 081 Var(X3) = 1, 108, 000

E(X4) = 4, 081 Var(X4) = 1, 108, 000

Cov(X1, X2) = 214 Cov(X1, X3) = 181

Cov(X2, X3) = 181 Cov(X1, X4) = 181

Cov(X2, X4) = 181 Cov(X3, X4) = 861

It uses a formula X̂4 = α0 +α1X1 +α2X2 +α3X3 to calculate the credibility premium in the fourth year. Calculate
the values of α0, α1, α2 and α3.

The company needs to choose α0, α1, α2 and α3 to satisfy:

E(X4) = α0 + α1E(X1) + α2E(X2) + α3E(X3)

Cov(X4, X1) = α1 Var(X1) + α2 Cov(X2, X1) + α3 Cov(X3, X1)

Cov(X4, X2) = α1 Cov(X1, X2) + α2 Var(X2) + α3 Cov(X3, X2)

Cov(X4, X1) = α1 Cov(X1, X3) + α2 Cov(X2, X3) + α3 Var(X3)

Substituting the values gives:

4081 = α0 + 1322α1 + 1322α2 + 4081α3

181 = 226000α1 + 214α2 + 181α3

181 = 214α1 + 226000α2 + 181α3

861 = 181α1 + 181α2 + 1108000α3

By symmetry, we see that α1 and α2 are equal. This gives

181 = 226214α1 + 181α3

861 = 362α1 + 1108000α3

226214× 861− 362× 181 = (226214× 1108000 + 362× 181)α3

α3 =
194704732

250, 645, 046, 478
= 0.0007768146

α1 =
181− 181× 0.0007768146

226214
= 0.0007995058

α0 = 4081− 1322× 2× 0.0007995058− 4081× 0.0007768146 = 4075.716
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The values are:

α0 = 4075.716

α1 = 0.0007995058

α2 = 0.0007995058

α3 = 0.0007768146

15. An insurance company has the following previous data on aggregate claims:

Policyholder Year 1 Year 2 Year 3 Year 4 Mean Variance
1 1,210 246 459 1,461 944.00 340158.00
2 0 0 0 0 0.00 0.00
3 0 2,185 0 0 548.25 1202312.25
4 809 0 0 1,725 633.50 674939.00
5 0 0 0 0 0.00 0.00

Calculate the Bühlmann credibility premium for policyholder 3 in Year 5.

The expected process variance is 1
5 (340158 + 0 + 1202312.25 + 674939 + 0) = 443421.85. The population mean is

944+0+548.25+633.50+0
5 = 405.15.

total variance of estimated means is (944−405.15)2+(−405.15)2+(548.25−405.15)2+(633.50−405.15)2+(−405.15)2
4 = 172318.425.

The variance of hypothetical means is therefore 172318.425 − 443421.85
4 = 61462.96. The credibility of 4 years of

experience is therefore 4
4+ 443421.85

61462.96

= 0.3566825. The premium for policyholder 3 is therefore 0.3566825 × 548.25 +

0.6433175× 405.15 = $456.19.

16. An insurance company collects the following claim frequency data for 7,000 customers insured for the past 3 years:

No. of claims Frequency
0 1,491
1 2,461
2 1,810
3 831
4 302
5 72
6 30
7 2
8 1
> 8 0

It assumes that the number of claims an individual makes in a year follows a Poisson distribution with parameter
Λ, which may vary between individuals.

Find the credibility estimate for the expected number of claims per year for an individual who has made 4 claims in
the past 3 years.

The total number of claims in the past 3 years was 1×2461+2×1810+3×831+4×302+5×72+6×30+7×2+8×1 =
9, 345. The total number of policyholders is 1491 + 2461 + 1810 + 831 + 302 + 72 + 30 + 2 + 1 = 7, 000. The average
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number of claims per policyholder per year is therefore 9345
21000 = 0.445. This is also the expected process variance.

The variance of estimated means is

1491× 0.4452 + 2461
(
1
3 − 0.445

)2
+ 1810

(
2
3 − 0.445

)2
+ 826(1− 0.445) + 307

(
4
3 − 0.445

)2
+ 72

(
5
3 − 0.445

)2
+ 30(2− 0.445)2 + 2

(
7
3 − 0.445

)2
+
(
8
3 − 0.445

)2
6999

= 0.1553991

The variance due to the Poisson sampling is 0.445
3 = 0.148333. Therefore, the variance of hypothetical means is

0.1553991− 0.148333 = 0.0070658. The credibility of 3 year’s experience is 3
3+ 0.445

0.0070658

= 0.04546872. The expected

number of claims is therefore 0.04546872× 4
3 + 0.95453128× 0.445 = 0.4853914.

17. Use the method of inversion to simulate two random samples from a Pareto distribution with α = 4, θ = 6, 200.

If U follows a uniform distribution, then the method of inversion gives a sample from a Pareto distribution by solving

1−
(

6200

6200 +X

)4

= U(
6200

6200 +X

)4

= 1− U

6200

6200 +X
= (1− U)

1
4

X

6200
+ 1 = (1− U)−

1
4

X = 6200((1− U)−
1
4 − 1)

Substituting U = 0.58665797 and U = 0.12487271 gives X = 1532.400 and X = 210.234.

18. An insurance company classifies individuals into three classes, each with a different claim severity distribution, as
shown in the following table:

Class Probability Severity Distribution Parameters
1 0.20 Pareto α = 4, θ = 7, 000
2 0.35 Weibull τ = 1.7, θ = 800
3 0.45 Inverse Weibull τ = 2.8, θ = 590

Simulate 2 claim severities from 2 random individuals.

For the first severity, we first simulate to determine which component of the mixture applies. Our random value is
0.58665797, which is between 0.55 and 1, so the third component of the mixture applies, which is the Inverse Weibull
distribution. We then use 0.12487271 to generate a random number by solving
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e−( 590
X )

2.8

= 0.12487271(
590

X

)2.8

= − log(0.12487271)

590

X
= (− log(0.12487271))

1
2.8

X =
590

(− log(0.12487271))
1

2.8

= 454.1754

For the second random variable, we use 0.87530540 to simulate the component of the mixture. Again, it is between
0.55 and 1, so we simulate from the third component. We use 0.49197147 to simulate a random number by solving

e−( 590
X )

2.8

= 0.49197147(
590

X

)2.8

= − log(0.49197147)

590

X
= (− log(0.49197147))

1
2.8

X =
590

(− log(0.49197147))
1

2.8

= 666.9902

19. A pension plan has three types of exit with probabilities in the table below:

Exit Type Probability
Retirement 0.65
Withdrawl 0.25
Death 0.10

Simulate the number of each type from a sample of 634 plan members. [You may use a normal approximation to the
binomial distribution.]

The number who exit through retirement follows a binomial distribution with n = 634, and p = 0.65, which is
approximately a normal distribution with mean 634×0.65 = 412.1, and variance 634×0.65×0.35 = 144.235, which is
standard deviation 12.00979. We use 0.58665797 to simulate from the normal distribution, we get Φ−1(0.58665797) =
0.2189563, so the simulated binomial random variable is 412.1 + 0.2189563 × 12.00979 = 414.7296, which after
rounding becomes 415.

With 415 retirees, there are 219 members who withdraw or die. The conditional distribution of the number of
withdrawls is therefore Binomial with n = 219 and p = 0.25

0.35 = 5
7 . The distribution is approximately normal

with mean 219 × 5
7 = 152.42856 and variance 219 × 5

7 ×
2
7 = 44.69388, or standard deviation 6.685348. We have

Φ−1(0.12487271) = −1.150968, so the simulated number of withdrawls is 152.42856−1.150968×6.685348 = 148.7339,
which gives 149 withdrawls. The simulated number of deaths is therefore 219− 149 = 70.

20. Use a stochastic process method to simulate 2 samples from each of the following distributions:
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(a) A Poisson distribution with λ = 3.

A Poisson distribution with λ = 3 is the number of exponential distributions with λ = 3 that can be added without
exceeding 1. For a uniform random variable U , we can generate an exponential random variable T with parameter
λ by solving:

1− e−λT = U

e−λT = 1− U

T =
− log(1− U)

λ

Using λ = 3 and the given uniform random variables, we simulate

T1 =
− log(1− 0.58665797)

3
= 0.29449329

T2 =
− log(1− 0.12487271)

3
= 0.04446198

T3 =
− log(1− 0.87530540)

3
= 0.69396258

This gives T1 + T2 + T3 = 1.0329178 > 1, so the first simulated number is 2.

Next we simulate

T1 =
− log(1− 0.49197147)

3
= 0.22573922

T2 =
− log(1− 0.55262301)

3
= 0.26811789

T3 =
− log(1− 0.14644543)

3
= 0.05278193

T4 =
− log(1− 0.89151074)

3
= 0.74036803

This gives T1 + T2 + T3 + T4 = 1.287007 > 1, so the simulated value is 3.

(b) A negative binomial distribution with r = 7 and β = 0.52.

For the negative binomial, we simulate λk = (7 + k) log(1.52) = 2.930972 + 0.4187103k.

We then simulate
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T1 =
− log(1− 0.58665797)

2.930972
= 0.30142893

T2 =
− log(1− 0.12487271)

3.349683
= 0.03982047

T3 =
− log(1− 0.87530540)

3.768393
= 0.55246035

T4 =
− log(1− 0.49197147)

4.187103
= 0.16173894

This gives T1 + T2 + T3 + T4 = 1.0554487 > 1, so the simulated value is 3.

For the second simulated value, we simulate:

T1 =
− log(1− 0.5526230)

2.930972
= 0.27443236

T2 =
− log(1− 0.1464454)

3.349683
= 0.04727188

T3 =
− log(1− 0.8915107)

3.768393
= 0.58940352

T4 =
− log(1− 0.4655928)

4.187103
= 0.14964931

This gives T1 + T2 + T3 + T4 = 1.060757 > 1, so the simulated value is 3.

21. Simulate 2 samples from a normal distribution with µ = 3 and σ = 7 using

(a) A Box-Muller transformation.

Using the Box-Muller transformation, we simulate

Z1 =
√
−2 log(0.58665797) cos(0.12487271× 2π) = 0.7308669

Z2 =
√
−2 log(0.58665797) sin(0.12487271× 2π) = 0.7296987

X1 = 7Z1 + 3 = 8.116068

X2 = 7Z2 + 3 = 8.107891

(b) The polar method.

Using the polar method, we get X1 = 2×0.58665797−1 = 0.17331594 and X2 = 2×0.12487271−1 = −0.75025458.
Now we get W = X1

2 +X2
2 = 0.173315942 +(−0.75025458)2 = 0.5929203. Since W < 1, we do not need to simulate

new values. We now let Y =
√
−2 log(W )

W = 1.327826. The simulated values are then Y X1 = 1.327826×0.17331594 =

0.2301334 and Y X2 = 1.327826×−0.75025458 = −0.9962073.
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7Y X1 + 3 = 4.610934

7Y X2 + 3 = −9.973451

22. An insurance company is simulating its aggregate losses. It is attempting to estimate the probability that its aggregate
losses exceed $1,000,000.

(a) How many aggregate losses does it need to simulate to ensure that there is a 99% probability that the estimated
probability of exceeding $1,000,000 is within 0.001 of the true probability, regardless of the true probability?

If the true probability is p, then the estimated probability from n simulations is a scaled binomial distribution with

parameters n and p. This can be approximated by a normal distribution with mean p and variance p(1−p)
n . The

probability that the estimated probability is within 0.001 of the true probability is 2Φ

(
0.001√
p(1−p)
n

)
− 1. Setting this

to 0.99 gives

2Φ

 0.001√
p(1−p)
n

− 1 = 0.99

Φ

 0.001√
p(1−p)
n

 = 0.995

0.001√
p(1−p)
n

= 2.575829

√
p(1− p)

n
=

0.001

2.575829

n = 2575.8292p(1− p)

We see that this is maximised when p = 0.5, which gives n = 1, 658, 724.

(b) Suppose the true probability of aggregate losses exceeding $1,000,000 is 0.05. How many simulations does the
company need to perform in order for the relative error in this estimated probability to be less than 1% with probability
0.95?

If the true probability is 0.05, then a relative error less than 1% means that the estimated probability is between
0.0495 and 0.0505. We want the probability of this to be 0.95. Using the same normal approximation, with p = 0.05
gives:
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2Φ

 0.0005√
0.05×0.95

n

− 1 = 0.95

Φ

 0.0005√
0.05×0.95

n

 = 0.975

0.0005√
0.05×0.95

n

= 1.96

n = 39202 × 0.0475 = 729904

23. A reinsurance company is using a simulation to calculate the premium for a stop-loss insurance contract. It simulates
100,000 outcomes, and finds that the mean payment is $492,384, and the standard deviation of the payments is
$2,643,000. It wants to calculate the net premium with a 99% chance that the relative error in its net premium is
less than 1%. Assuming the mean and standard deviation are similar to the results it already has, how many more
simulations does it need to perform to achieve this accuracy?

By the central limit theorem, the mean of the simulation can be approximated by a normal distribution with mean

the true mean, which is approximately 492,384, and variance 26430002

n . If these are the true mean and variance, then
to have a 1% relative error with 99% probability, it needs to simulate a total of n simulations so that

2Φ

0.01× 492384(
2643000√

n

)
− 1 = 0.99

Φ

(
4923.84

√
n

2643000

)
= 0.995

0.001862974
√
n = 2.575829

n = 1, 911, 704

So it needs to perform another 1,811,704 simulations.

24. An insurance company is estimating its aggregate losses. It simulates 1000 claim frequencies, and finds a total of 749
claims. It therefore simulates 749 claim severities, and simulates the aggregate losses by adding the claim severities
in groups corresponding to the simulated claim frequencies. The insurance company has a second line of insurance
which also has the same severity distribution, but a different frequency distribution. It simulates 1000 new frequencies
and gets a total of 749 claims again. It uses the same simulated claim severities to model aggregate losses for the
second line of insurance. Based on these simulated values, it calculates a 95% confidence interval for the aggregate
losses. Which of the following statements best describes this procedure? Explain your answer.

(i) The procedure is sound and should produce an accurate confidence interval.
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(ii) The procedure is unsound and will produce a narrower confidence interval than it should (so the confidence
interval will contain the true value less than 95% of the time).

(iii) The procedure is unsound and will produce a wider confidence interval than it should (so the confidence interval
will contain the true value more than 95% of the time).

(iv) The procedure is unsound, and the confidence interval will be wider than it should in some cases and narrower
than it should in others.

Using the same simulated values for the claim severities will mean that the aggregate losses for the two lines are
correlated. The assumption that the variance is decreased by taking the average of two lines of insurance is not correct
because they are using the same values for the simulation, so they are correlated. This will make the confidence
interval narrower than it should be. On the other hand, if the variance of the aggregate losses is calculated based on
the variance of the sum of the aggregate losses from the two lines of insurance, then using the same aggregate losses
may create correlation between these values, so that it has more estimated variance than it should, and therefore,
will give a wider confidence interval than it should. The extent to which this happens will depend how the simulated
frequencies correspond. Therefore, whether the procedure will produce a wider or narrower confidence interval than
it should will vary between simulations. Therefore (iv) best describes the procedure.
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