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Fall 2016

Toby Kenney
Homework Sheet 4
Model Solutions

Basic Questions

1. An insurance company models number of claims an individual makes in a year as following a negative
binomial distribution with β = 2.1, and R an unknown parameter with prior distribution a gamma
distribution with α = 4 and θ = 0.01.

(a) What is the probability that a random individual makes exactly 4 claims?
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The marginal probability of an individual making exactly 4 claims is found by integrating this over R:∫ ∞
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(b) The company now observes the following claim frequencies:

Number of claims Frequency
0 36
1 27
2 15
3 5
4 2
5 1

What is the probability that R > 0.4? [You may use numerical integration to calculate this.]

The likelihood of the data given R = r is
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This is proportional to
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The posterior distribution is therefore proportional to
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The probability that R > 0.4 is therefore∫∞
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where the integrals were performed numerically.

(c) Calculate the predictive probability that this individual makes 5 claims next year. [You may use
numerical integration to calculate this.]

The posterior density of R is proportional to
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Where the integral was calculated numerically.

2. An insurance company models loss sizes as following a Gamma distribution with α = 3, and finds that the
posterior distribution for Θ is an exponential distribution with θ = 1400. Calculate the Bayes estimate
for Θ based on a loss function:

(a) l(θ̂, θ) = (θ̂ − θ)2

We are trying to choose θ̂ to minimise
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E
(
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= θ̂2 − 2θ̂E(θ) + E(θ2)

For the exponential distribution, we have

E(θ) = 1400

E(θ2) = 2 × 14002

E(θ3) = 6 × 14003

E(θ4) = 24 × 14004

So we want to minimise θ̂2 − 2800θ̂ + 3920000. This is maximised by θ̂ = 1400.

(b) l(θ̂, θ) = (θ̂ − θ)4

We are trying to choose θ̂ to minimise
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This is minimised by θ̂
1400 is the solution to 4r3 − 12r2 + 24r − 24 = 0, or equivalently r3 − 3r2 +

6r − 6 = 0. Numerically, we find the solution to this is 1.596071637983322, so the best estimate is
θ̂ = 1400 × 1.596071637983322 = 2234.50.

3. An insurance company models annual claim frequencies as following a Poisson distribution with parameter
Λ, where the prior distribution for Λ is a Gamma distribution with α = 3 and θ = 0.06. They observe a
total of 5 claims in 15 years. Calculate a 95% credibility interval for Λ.

(a) Using an HPD interval.

Since the Gamma distribution is a conjugate prior, the posterior distribution is a Gamma distribution
with α = 3 + 5 = 8 and θ = 0.06

1+0.06×15 = 0.031584210526. The 95% credibility interval is the interval
which under such a gamma distribution has probability 0.95, and such that the gamma density of the
endpoints is equal. That is, if the integral is of the form [lθ, uθ], then we have lα−1e−l = uα−1e−u and∫ u
l
xα−1e−x dx = 0.95Γ(α).

(b) With equal probability above and below the interval.

The equal probability interval is between the 2.5th and 97.5th percentile of the gamma distribution,
which is [3.453832 × 0.031584210526, 14.42268 × 0.031584210526] = [0.1090684, 0.4554529].
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4. Calculate a conjugate prior distribution for the parameter α of a Pareto distribution.

Suppose a Pareto distribution has fixed θ and α following a certain prior distibution. Suppose the

observation is x. The likelihood of this observation with the given data is α
x

(
θ

θ+x

)α
, which is proportional

to αe− log(1+ x
θ )α, which is the density of a gamma distribution, so a gamma distribution is a conjugate

prior.

Standard Questions

5. An insurance company models number of claims made by an individual in a year as following a Poisson
distribution where the parameter Λ follows a Gamma distribution with α = 3 and θ = 0.06. The com-
pany monitors the individual’s claim history. If the individual’s expected number of claims per year has
decreased by 10% or more, the individual receives a discount on their premium. Suppose the individual’s
actual rate of claims is λ = 0.25, what is the probability that this individual ever receives a discount on
their premium?

If after N years, the number of claims is k, then the posterior distribution for λ is a Gamma distribution
with α = 3 + k and θ = 0.06

1+0.06×N . The expected number of claims under the prior distribution is
3× 0.06 = 0.18. A decrease of 10% would reduce the expected number of claims per year to 0.18× 0.9 =

0.162. The expected number of claims under the posterior distribution is 0.06(3+k)
1+0.06N . The individual will

therefore receive a discount if

0.06(3 + k)

1 + 0.06N
6 0.162

0.18 + 0.06k 6 0.162 + 0.00972N

0.00972N > 0.018 + 0.06k

We solve for the smallest value of N that entitles the policyholder to a discount for different values of k.

k N
0 2
1 9
2 15
3 21
4 27
5 33
6 39
7 46
8 52
9 58

10 64

The probability that the individual makes no claims in the first two years is e−0.5 = 0.6065307. The
probability that the individual makes at least one claim in the first two years and at most one claim
within the first 9 years is 0.5e−0.5e−1.75 = 0.05269961 (They must make exactly one claim in the first
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2 years and no claims in the following 7 years). The probability that the individual makes at least one
claim within the first 2 years, at least 2 claims within the first 9 years, and at most 2 claims within the

first 15 years is 0.5e−0.5 × 1.75e−1.75e−1.5 + e−0.5 0.52

2 e−1.75e−1.5 = 0.02351775. The probability that the
individual makes at least 1 claim in the first 2 years, at least 2 claims in the first 9 years, at least 3 claims
in the first 15 years, and at most 3 claims in the first 21 years is
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The probability that the individual makes at least 1 claim in the first 2 years, at least 2 claims in the
first 9 years, at least 3 claims in the first 15 years, at least 4 claims in the first 21 years and at most 4
claims in the first 27 years is
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The probability that the individual makes at least 1 claim in the first 2 years, at least 2 claims in the
first 9 years, at least 3 claims in the first 15 years, at least 4 claims in the first 21 years, at least 5 claims
in the first 27 years and at most 5 claims in the first 33 years is
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The total probability of receiving the discount is therefore 0.6065307 + 0.05269961 + 0.02351775 +
0.01314613 + 0.008275436 + 0.005896181 = 0.71.
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