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Basic Questions

1. Aninsurance company has the following portfolio of workers compensation
isurance policies:

Type of worker Number Probability —mean standard
of claim claim deviation
Engineer 15300 0.015 $46,000 $88,000
Salesperson 1100 0.005 $29,000 $32,000
Manager 150 0.001 $20,000  $28,000

Calculate the co
on the reinsuran

st of reinsuring losses above $3,000,000, if the loading
ce premium is one standard deviation above the expected

claim payment on the reinsurance policy using a Gamma approzimation

for the aggregate

We calculate the

class of workers:
Expected aggregate claims

losses on this portfolio.

expectation and variance of the aggregate losses for each

variance of aggregate claims

Engineer
Salesperson
Manager

1300 x 0.015 x 46000 = 897000
1100 x 0.005 x 29000 = 159500
150 x 0.001 x 20000 = 3000

1300 x 0.015 x 880002 + 1300 x 0.015 x (1 — 0.015) x 460002 = 191651070000
1100 x 0.005 x 320002 + 1100 x 0.005 x (1 — 0.005) x 29000% = 10234372500
150 x 0.001 x 280002 + 150 x 0.001 x (1 — 0.001) x 20000? = 177540000

The expected aggregate loss on the whole portfolio is therefore, 897000 +
159500 + 3000 = $1,059,500, and the variance of the aggregate loss is

191651070000 +

10234372500 + 177540000 = 202062982500. We get the

parameters of the gamma approximation by matching moments:

af = 1059500
af? = 202062982500
10595002

= 202062982500
— 5.55539780771
1059500

= 5.55539780771
— 190715.41529



Now we want to use this approximation to calculate the expectation and
variance of the payments on the reinsurance. The expected reinsurance
payment is
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This can be calculated using the following R code.

th<—190715.41529

al <—5.55539780771

integrall <—pgamma(3000000,shape=al+1,scale=th,lower. tail=FALSE)
integral2 <—pgamma(3000000,shape=al ,scale=th,lower. tail=FALSE)
alxthxintegrall —3000000%xintegral2

The expected square of the reinsurance payment is
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=126320327

This is calculated using the following R code.

integrall <—pgamma(3000000,shape=al+2,scale=th,lower. tail=FALSE)
integral2 <—pgamma(3000000,shape=al+1,scale=th,lower. tail=FALSE)
integral3 <—pgamma(3000000,shape=al ,scale=th,lower. tail=FALSE)
alx(al+1)xth"2xintegrall —6000000xal*thxintegral2+3000000"2xintegral3

The standard deviation of the reinsurance payment is therefore /126320327 — 253.28172 =
$11236.3773246. The premium is therefore 253.284-11236.38 = $11, 489.66.

. An insurance company is modelling claim data as following a Weibull dis-
tribution with T = 0.7. It collects the following sample of claims:

16.3 22.3 37.5 38.6 68.6 69.7 79.1 85.8 142.9 158.5
175.2 176.1 205.1 265.5 266.9 287.3 299.8 354.2 357.}
365.9 391.9 407.9 613.4 692.4 745.2 771.3 845.9 1780.3
1795.5 1994.7



The MLE for 0 is 880.1094. Graphically compare this empirical distribu-
tion with the best fitting Weibull distribution with T = 0.7. Include the
following plots:

(a) Comparisons of F(x) and F*(z)

FxPlot<—function (x){
n<—length (x)
Fx<—seq_-len (n)/n
xv<—sort (x)
xvals<—c(as.vector (rbind (¢ (0,xv[seq-len(n—1)]),xv)) ,xv[n],xv[n]*x1.05)
distvals<—c(0,as.vector (rbind(c(0,Fx[seq-len(n—1)]),Fx)),1)
plot (xvals ,distvals ,ylim=c (0,1),xlab=expression (x),ylab=expression (F[n](

sampleHW2Q2<—c (

16.3, 22.3, 37.5, 38.6, 68.6, 69.7, 79.1, 85.8, 142.9, 158.5,
175.2,176.1,205.1,265.5,266.9 ,287.3,299.8, 354.2, 357.4, 365.9,
391.9,407.9,613.4,692.4,745.2,771.3,845.9,1780.3,1795.5,1994.7)

FxPlot (sampleHW2Q2)
points (1:2000,1 —exp (—((1:2000)/380.1094)70.7),col="red” ,type=’1")

Fulx)

0 500 1000 1500 2000

(b) Comparisons of f(z) and f*(x)

hist (sampleHW2Q2, breaks=c(0,200,500,1000,2000))
x<—1:2000

fx <—0.7%(x" (—0.3)/380.1094°0.7)*exp(—(x/380.1094) " (0.7))
points (x,fx ,type="1",col="red”)



Histogram of sampleHW2Q2
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(c) A plot of D(z) against x.

DxPlot<—function (x,F){
n<—length (x)
plotvals <—(max(x)*1.1)*(1:2000)/2000
Fstx<-F(plotvals)
xv<—sort (x)
Fnx<—rep (0,2000)
cval <—1
for (i in 1:2000){
while (cval<=n&xv|[cval]<plotvals[i]){
cval<—cval+1
}

Fox[i]<—cval-1
}
Fnx<—Fnx/n
plot (plotvals ,Fstx—Fnx, xlab=expression (x),ylab="D(x)” ,type="1")
abline (h=0)
}
Fweibul<—function (x){1—exp(—(x/380.1094)°0.7)}
DxPlot (sampleHW2Q2, Fweibul)
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(d) A p-p plot of F(x) against F*(x).

ppPlot<—function (dist){
n<—length (dist)
xv<—seq_len(n)/n
xvals<—c(as.vector (rbind (¢ (0,xv[seq-len(n—1)]),xv)) ,xv[n],1)
distsort <—sort (dist)
distvals<—c(0,as.vector(rbind(c(0,distsort [seq_len(n—1)]),distsort)),1)
plot (xvals ,distvals ,xlim=c (0,1),ylim=c(0,1),xlab=expression (F[n](x)),yla
abline (0,1, col="red”)
}

ppPlot (Fweibul (sampleHW2Q2))

0.0

. For the data in Question 2, calculate the following test statistics for the
goodness of fit of the Weibull distribution with T = 0.7 and 8 = 380.1094:

(a) The Kolmogorov-Smirnov test.

For the observed data points we calculate:



x F*(z) Fu(z™) Fo(z™) D(z™) D(z™)

16.3 0.10444 0.033333 0 —0.07111 0.10444
22.3 0.12835 0.066667 0.033333 —0.06168 0.09502
37.5 0.17934 0.1 0.066667 —0.07934 0.11267
38.6 0.18265 0.13333 0.1 —0.04931 0.08265
68.6 0.26040 0.16667  0.13333  —0.09373 0.12706
69.7 0.26289 0.2 0.16667  —0.06289 0.09622
79.1 0.28342 0.23333 0.2 —0.05009 0.08342
85.8 0.29727 0.26667  0.23333  —0.03060 0.06394
142.9  0.39600 0.3 0.26667  —0.09600 0.12933
158.5  0.41848 0.33333 0.3 0.08514 0.11848
175.2  0.44093 0.36667  0.33333  —0.07427 0.10760
176.1  0.44210 0.4 0.36667  —0.04210 0.07543
205.1  0.47758 0.43333 0.4 —0.04425 0.07758
265.5  0.54062 0.46667  0.43333  —0.07395 0.10728
266.9  0.54193 0.5 0.46667  —0.04193 0.07527
287.3  0.56047 0.53333 0.5 —0.02714 0.06047
299.8  0.57127 0.56667  0.53333  —0.00460 0.03794
354.2  0.61395 0.6 0.56667  —0.01395 0.04728
3574  0.61626 0.63333 0.6 0.01707 0.01626
365.9  0.62231 0.66667  0.63333 0.04436  —0.01102
391.9  0.63999 0.7 0.66667 0.06001 —0.02668
4079  0.65028 0.73333 0.7 0.08305 —0.04972
613.4  0.75289 0.76667  0.73333 0.01378 0.01956
692.4  0.78165 0.8 0.76667 0.01835 0.01498
745.2  0.79850 0.83333 0.8 0.03483 —0.00150
771.3  0.80622 0.86667  0.83333 0.06044 —0.02711
8459  0.82633 0.9 0.86667 0.07367 —0.04034
1780.3 0.94751 0.93333 0.9 —0.01418 0.04751
1795.5 0.94843 0.96667  0.93333 0.01824 0.01510
1994.7 0.95888 1 0.96667 0.04112  —0.00778

We see that the Kolmogorov-Smirnov statistic is 0.12933.
(b) The Anderson-Darling test.

The Anderson-Darling test statistic for a finite sample is given by

k
A? = —n+nY (1= Fu(y;))* (log(1 — F*(y;)) —log(1 — F*(y;11)))
j=0

k
Y (Fa(y;)? (log(F*(yj+1)) — log(F" (y;))
j=0

For our dataset, we calculate this in the following table:



yi  Fuly;)  F*(y)) (1= Fu(yy))? Fo(y;)?
(log(1 — F*(y;)) — log(1 — F*(y;+1))) (log(F*(y;+1)) — log(F*(y;)))

0.0 0 0 0.110305024718 0
16.3 L 0.10444 0.0252864239085 0.000229048987189
22.3 2 0.12835 0.0525102345225 0.00148679643667
37.5 % 0.17934 0.00327294884466 0.0001828478896
38.6 A 0.18265 0.0750777951422 0.00630478805402
68.6 % 0.26040 0.002345612875 0.000264773767223
69.7 S 0.26289 0.0180763512058 0.003007461036
79.1 % 0.28342 0.0114720071619 0.0025976706374
85.8 = 0.29727 0.0814196408298 0.0203930456357
142.9 S 0.39600 0.0185833672835 0.00496889066205
158.5 B 041848 0.0175012417658 0.00580738858833
175.2 0 0.44093 0.000838059693796 0.000355319113467
176.1 044210 0.0236586166866 0.0123531888293
205.1 B 047758 0.0412890988326 0.0232792948074
265.5 % 0.54062 0.000816066001634 0.000529509110947
266.9 15 (.54193 0.0103271265508 0.0084080974435
287.3 8 056047 0.00541743564968 0.00542839014342
299.8 % os7m127 0.0196895853329 0.0231356317342
354.2 ® 061395 0.00096176897168 0.00135408509892
357.4 B 061626 0.00213619629605 0.00391800268022
365.9 B 062231 0.00532560208722 0.0124478374173
391.9 B 0.63099 0.0026118629379 0.007821583938
407.9 B 065028 0.0246963987151 0.0787906814834
613.4 B 075280 0.00673584568866 0.0220320003214
692.4 3 078165 0.0032130064972 0.0136524751034
745.2 B 079850 0.00108533711945 0.00668272047847
771.3 B 050622 0.0019476831447 0.0185037754384
845.9 % 082633 0.0119659580105 0.110845424592
1780.3 B 004751 0.0000781844932452 0.000841038366546
1795.5 B 004843 0.000251766097184 0.0102456496497
1994.7 % 0.95888 0 0.0419842986768

0.578896247069

0.447851716119

The Anderson-Darling statistic is therefore 30(0.578896247069+0.447851716119—
1) = 0.8024388957. For a fully specified distribution, the critical value is
2.492: for the Weibull distribution with one parameter estimated, the crit-
ical value is even higher, so we cannot reject the Weibull distribution with

a = 5.

(¢) The chi-square test, dividing into the intervals 0-200, 200-400, and
more than 400.

The observed frequencies of these intervals are 12, 9 and 9 respectively.

Under the Weibull model, the expected frequencies are 30 (1 — o (w0003 )0‘7) =

200 400

14.1487266103, 30 (e*(izwwm)m — e*(isso.wm)m) — 5.20884661662 and



.7
30~ (s¥t51)"" = 106424267731 respectively.

The chi-squared statistic is therefore

(12 — 14.1487266103)2 N (9 — 5.20884661662)> N (9 — 10.6424267731)>
14.1487266103 5.20884661662 10.6424267731

= 3.3391078709

There are 3 classes, which gives 2 degrees of freedom, and one estimated
parameter reduces this to 1 degree of freedom. For a chi-squared distribu-
tion with one degree of freedom, at the 5% significance level, the critical
value is 3.841459, so we cannot reject the Weibull distribution.

. For the data in Question 2, perform a likelihood ratio test to determine
whether a Weibull distribution with fized T = 0.7, or a Weibull distribution
with T freely estimated is a better fit for the data. [The MLE for the general
Weibull distribution is 7 = 0.9089666 and 6 = 428.7284682.]

[The original version on the homework mistakenly gave the MLE for the
general Weibull as 7 = 0.3125 and § = 295.7674. This leads to a log-
likelihood that is smaller than the log-likelihood for # = 0.7, at which
point it should be obvious that this is not the MLE. This model solution
uses the correct MLE.]

The log-likelihood of the Weibull distribution is

S log (f””gfle-w) = nlog+(r=1) 3 log(a:) -nrlog(0)-3 ()

We get

dl  nr Soa”

9= 0 o

(=)

Substituting this into the above expression for the log-likelihood gives us

so the MLE for 0 is

l(r) =nlogT + (1 —1) ZIOg(Sﬂi) ~nlog (Z;f) .
di(r) =z + Zlog(mi) — nM

dr T ST
d?1(7) __n_ nzxf log(z;)? i > ;" log(z;) 2
d7'2 7'2 inT Z.’EiT

for 7 = 0.7,0 = 380.1094 I(7) is —214.6077, while for 7 = 0.9089666, 0 =
428.7284682, it is —213.0527. The log-likelihood ratio statistic is therefore



2(—213.0527 — (—214.6077)) = 3.11. The null distribution is chi-squared
with one degree of freedom, so the critical value at the 5% significance
level is 3.841459, so there is not strong evidence against 7 = 0.7.

. For the data in Question 2, use AIC and BIC to choose between a Weibull
distribution with = = 0.7 and a Pareto distribution for the data. [The
MLE for the Pareto distribution is o = 4.8761 and 6 = 1760.6118.]

From Question 4, we have that the log-likelihood for the Weibull distri-
bution is —214.6077. The log-likelihood for the Pareto distribution is

Zlog <(aga> = nlog(a)+nalog(d)—(a+1)log(z+6) = —212.8249

Therefore the AIC is —214.6077 — 2 = —216.6077 for the Weibull dis-
tribution and —212.8249 — 4 = —216.8249 for the Pareto distribution.
Therefore, the Weibull distribution is prefered.

The BIC for the Weibull distribution is —214.6077— 6% — —216.308298691

and for the Pareto distribution, it is —212.8249—2@ = —216.226097382,
so under BIC, the Pareto distribution is prefered.

Standard Questions

. An insurance company insures three types of properties and has the fol-
lowing estimates:

Property type Probability mean  standard
of claim claim  deviation
Residential (House) 0.004 $8,600 $25,800
Residential (Apartment) 0.009 $2,300 $6,900
Commercial 0.02 $3,600 $12,400

The insurance company estimates the mean p and standard deviation o
for the aggregate loss distribution, and buys stop-loss insurance for losses
above $200,000. One reinsurer models aggregate losses as following a
Pareto distribution and sets its premium as 110% of the expected claims on
the stop-loss policy. Another reinsurer models aggregate losses as follow-
ing a Gamma distribution, and sets its premium at 200% of the expected
claims. The portfolio includes 2,243 houses and 1,832 apartments. How
many commercial properties would it need to include for the two reinsur-
ance companies to charge the same premium on the stop-loss insurance?

(i) 640

(ii) 1,209
(iii) 1,853
(iv) 2,177



Policy

We calculate the expectation and variance of the loss for a property of
each type:

Expected aggregate claims variance of aggregate claims

Residential (House)
Residential (Apartment)
Commercial

0.004 x 8600 = 34.4  0.004 x 258007 + 0.004 x 0.996 x 8600% = 2957216.64
0.009 x 2300 = 20.7  0.009 x 6900% + 0.009 x 0.991 x 23002 = 475671.51
0.02 x 3600 = 72 0.02 x 12400% + 0.02 x 0.98 x 3600% = 3329216

If the portfolio includes C' commercial properties, then the overall ag-
gregate loss has expectation 2243 x 34.4 + 1832 x 20.7 4+ 72C = 72C +
115081.6, and variance 2243 x 2957216.64+ 1832 x475671.514+3329216C =
3329216C + 7504467129.84

For the first reinsurer, using the Pareto distribution to model aggregate
losses, the parameters are obtained by solving

0
= 72C + 115081.6
a—1
92
= 3329216C + 3237903929.84
(@-1(a—-2) "
. (72C + 115081.6)?

~ 3320216C + 3237903929.84
(72C + 115081.6)?
3320216C + 3237903929.84

6 = (72C + 115081.6) <

For a Pareto distribution, the expected payment on the excess-of-loss in-

surance is
o0 9 (0% [e'e)
/ dx = 9/ uw *du
1000000 \ 0 + 14 1000000

_ ')
0 ul «
a—1 1+ 1003000

9 ( 1000000)1“
1+

0

a—1

9 ) o=l
" a—1 \ 6+ 1000000

For the second reinsurer, the parameters of the Gamma distribution are
obtained by solving

10



aof = 72C + 115081.6
af? = 3329216C + 3237903929.84

o (72C + 115081.6)?
3329216C + 3237903929.84
g _ 3329216C + 3237903929.84
72C + 115081.6

For the Gamma distribution, the expected payment on the excess-of-loss
reinsurance is

o8] a—1,-%
/ ( — 2000000) %" gy
2

000000 0T ()
o0 a,—% oo a—1 _ —2Z
—af e T dr — 2000000 / r _° "
2000000 0T (a +1) 2000000 0°T(c)

We compute the reinsurance costs for different values of C":

C Expected  Variance 1st Reinsurance 2nd Reinsurance
Agg. Loss Agg. Loss Premium Premium

640 161161.6 9635165370  85562.75 48856.98

1,209 202129.6 11529489274 117262.24 85532.19

1,853  248497.6 13673504378  155960.73 142331.32

2,177  271825.6 14752170362 176328.86 176337.65

So they would need to sell (iv) 2177 commercial policies for the reinsurance
to have the same costs.

7. An insurance company collects a sample of 40 past claims, and attempts
to fit a distribution to the claims. Based on experience with other claims,
the company believes that a Pareto distribution with a = 3 and 8 = 1,200
may be appropriate to model these claims. It constructs the following p-p
plot to compare the sample to this distribution:

11
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(a) How many of the points in their sample were less than 1687

3
For the Pareto distribution, F*(168) = 1— (%) = 0.325028483798.
From the p-p plot, we get that F,(x) = 0.15, so there are 6 points less
than 168.

(b) Which of the following statements best describes the fit of the Pareto
distribution to the data:

(i) The Pareto distribution assigns too much probability to high values and
too little probability to low values.

(i) The Pareto distribution assigns too much probability to low values and
too little probability to high values.

(iii) The Pareto distribution assigns too much probability to tail values
and too little probability to central values.

(iv) The Pareto distribution assigns too much probability to central values
and too little probability to tail values.

We see that for smaller values, the plot is above the y = x line, meaning
F*(x) > F,(x), while for larger values, the plot is below the line, meaning
F*(x) < F,(z). This means that the Pareto distribution assigns too much
probability to tail values, so (iii) is the best description.

(¢) Which of the following plots shows the empirical distribution function?
Justify your answer.
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3
Looking at the value F,(900), we can see F*(900) = 1 — (%) =

0.813411078717. From the p-p plot, we can read the corresponding value
F,,(900) = 0.975. For plots (i) and (ii) F,(900) is clearly less than 0.975,
so (iii) is the only possible plot for the empirical distribution.
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