ACSC/STAT 4703, Actuarial Models II

FALL 2021

Toby Kenney
Homework Sheet 1
Due: Tuesday 28th September: 11:30 AM

Basic Questions

1. Aggregate payments have a compund distribution. The frequency distribution is Binomial with $n=7$ and $p=0.4$. The severity distribution is Pareto with shape $\alpha=2.3$ and scale $\theta=600$. Use a Pareto approximation to aggregate payments to estimate the probability that aggregate payments are more than 10,000 .
2. Loss amounts follow a Gamma distribution with shape $\alpha=4.6$ and scale $\theta=500$. The distribution of the number of losses is given in the following table:

Number of Losses	Probability
0	0.880
1	0.064
2	0.035
3	0.021

Assume all losses are independent and independent of the number of losses. The insurance company buys excess-of-loss reinsurance on the part of the loss above $\$ 1,000$. Calculate the expected payment for this excess-of-loss reinsurance.
3. Claim frequency follows a negative binomial distribution with $r=1.8$ and $\beta=2.2$. Claim severity (in thousands) has the following distribution:

Severity	Probability
1	0.69
2	0.24
3	0.06
4 or more	0.01

Use the recursive method to calculate the exact probability that aggregate claims are at least $\$ 4,000$.
4. Use an arithmetic distribution $(h=1)$ to approximate a Weibull distribution with shape $\tau=0.5$ and scale $\theta=8.2$.
(a) Using the method of rounding, calculate the mean of the arithmetic approximation. [You can evaluate this numerically: use 2,000 terms in the sum.]
(b) Using the method of local moment matching, matching 1 moment on each interval, estimate the probability that the value is larger than 5.5.

Standard Questions

5. An insurance company models loss frequency as Poisson with parameter $\lambda=6$, and loss severity as Pareto with shape $\alpha=2.5$ and scale $\theta=2400$. One reinsurance company uses a gamma distribution to model aggregate losses, fitted by the method of moments, and sells stop-loss reinsurance with attachment point $\$ 10,000$ for a loading of 100% based on the estimated payments under this model. Another reinsurance company uses a Pareto distribution to model aggregate losses and charges a 20% loading.
(a) Which reinsurance company is cheaper if each policy includes a deductible of $\$ 500$.
(b) Show that a deductible $d=519.285$ is a local maximum for the second reinsurer's premium.
6. The number of claims an insurance company receives follows a binomial distribution with $n=128$ and $p=0.64$. Claim severity follows a negative binomial distribution with $r=8.3$ and $\beta=24$. Calculate the probability that aggregate losses exceed $\$ 20,000$.
(a) Starting the recurrence 6 standard deviations below the mean [You need to calculate 30000 terms of the recurrence for f_{s}.]
(b) Using a suitable convolution.
